Mercurial > hg > CbC > CbC_llvm
view clang/test/SemaTemplate/instantiation-dependence.cpp @ 207:2e18cbf3894f
LLVM12
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 08 Jun 2021 06:07:14 +0900 |
parents | |
children | c4bab56944e8 |
line wrap: on
line source
// RUN: %clang_cc1 -std=c++2b -verify %s // Ensure we substitute into instantiation-dependent but non-dependent // constructs. The poster-child for this is... template<class ...> using void_t = void; namespace PR24076 { template<class T> T declval(); struct s {}; template<class T, class = void_t<decltype(declval<T>() + 1)>> void foo(T) {} // expected-note {{invalid operands to binary expression}} void f() { foo(s{}); // expected-error {{no matching function}} } template<class T, class = void_t<decltype(declval<T>() + 1)>> // expected-error {{invalid operands to binary expression}} struct bar {}; bar<s> bar; // expected-note {{in instantiation of}} } namespace PR33655 { struct One { using x = int; }; struct Two { using y = int; }; template<typename T, void_t<typename T::x> * = nullptr> int &func() {} template<typename T, void_t<typename T::y> * = nullptr> float &func() {} int &test1 = func<One>(); float &test2 = func<Two>(); template<class ...Args> struct indirect_void_t_imp { using type = void; }; template<class ...Args> using indirect_void_t = typename indirect_void_t_imp<Args...>::type; template<class T> void foo() { static_assert(!__is_void(indirect_void_t<T>)); // "ok", dependent static_assert(!__is_void(void_t<T>)); // expected-error {{failed}} } } namespace PR46791 { // also PR45782 template<typename T, typename = void> struct trait { static constexpr int specialization = 0; }; // FIXME: Per a strict interpretation of the C++ rules, the two void_t<...> // types below are equivalent -- we only (effectively) do token-by-token // comparison for *expressions* appearing within types. But all other // implementations accept this, using rules that are unclear. template<typename T> struct trait<T, void_t<typename T::value_type>> { // expected-note {{previous}} FIXME-note {{matches}} static constexpr int specialization = 1; }; template<typename T> struct trait<T, void_t<typename T::element_type>> { // expected-error {{redefinition}} FIXME-note {{matches}} static constexpr int specialization = 2; }; struct A {}; struct B { typedef int value_type; }; struct C { typedef int element_type; }; struct D : B, C {}; static_assert(trait<A>::specialization == 0); static_assert(trait<B>::specialization == 1); // FIXME expected-error {{failed}} static_assert(trait<C>::specialization == 2); // FIXME expected-error {{failed}} static_assert(trait<D>::specialization == 0); // FIXME-error {{ambiguous partial specialization}} } namespace TypeQualifier { // Ensure that we substitute into an instantiation-dependent but // non-dependent qualifier. template<int> struct A { using type = int; }; template<typename T> A<sizeof(sizeof(T::error))>::type f() {} // expected-note {{'int' cannot be used prior to '::'}} int k = f<int>(); // expected-error {{no matching}} } namespace MemberOfInstantiationDependentBase { template<typename T> struct A { template<int> void f(int); }; template<typename T> struct B { using X = A<T>; }; template<typename T> struct C1 : B<int> { using X = typename C1::X; void f(X *p) { p->f<0>(0); p->template f<0>(0); } }; template<typename T> struct C2 : B<int> { using X = typename C2<T>::X; void f(X *p) { p->f<0>(0); p->template f<0>(0); } }; void q(C1<int> *c) { c->f(0); } void q(C2<int> *c) { c->f(0); } }