Mercurial > hg > CbC > CbC_llvm
view libunwind/src/DwarfInstructions.hpp @ 207:2e18cbf3894f
LLVM12
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 08 Jun 2021 06:07:14 +0900 |
parents | 1d019706d866 |
children | c4bab56944e8 |
line wrap: on
line source
//===-------------------------- DwarfInstructions.hpp ---------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // // // Processor specific interpretation of DWARF unwind info. // //===----------------------------------------------------------------------===// #ifndef __DWARF_INSTRUCTIONS_HPP__ #define __DWARF_INSTRUCTIONS_HPP__ #include <stdint.h> #include <stdio.h> #include <stdlib.h> #include "dwarf2.h" #include "Registers.hpp" #include "DwarfParser.hpp" #include "config.h" namespace libunwind { /// DwarfInstructions maps abtract DWARF unwind instructions to a particular /// architecture template <typename A, typename R> class DwarfInstructions { public: typedef typename A::pint_t pint_t; typedef typename A::sint_t sint_t; static int stepWithDwarf(A &addressSpace, pint_t pc, pint_t fdeStart, R ®isters, bool &isSignalFrame); private: enum { DW_X86_64_RET_ADDR = 16 }; enum { DW_X86_RET_ADDR = 8 }; typedef typename CFI_Parser<A>::RegisterLocation RegisterLocation; typedef typename CFI_Parser<A>::PrologInfo PrologInfo; typedef typename CFI_Parser<A>::FDE_Info FDE_Info; typedef typename CFI_Parser<A>::CIE_Info CIE_Info; static pint_t evaluateExpression(pint_t expression, A &addressSpace, const R ®isters, pint_t initialStackValue); static pint_t getSavedRegister(A &addressSpace, const R ®isters, pint_t cfa, const RegisterLocation &savedReg); static double getSavedFloatRegister(A &addressSpace, const R ®isters, pint_t cfa, const RegisterLocation &savedReg); static v128 getSavedVectorRegister(A &addressSpace, const R ®isters, pint_t cfa, const RegisterLocation &savedReg); static pint_t getCFA(A &addressSpace, const PrologInfo &prolog, const R ®isters) { if (prolog.cfaRegister != 0) return (pint_t)((sint_t)registers.getRegister((int)prolog.cfaRegister) + prolog.cfaRegisterOffset); if (prolog.cfaExpression != 0) return evaluateExpression((pint_t)prolog.cfaExpression, addressSpace, registers, 0); assert(0 && "getCFA(): unknown location"); __builtin_unreachable(); } }; template <typename A, typename R> typename A::pint_t DwarfInstructions<A, R>::getSavedRegister( A &addressSpace, const R ®isters, pint_t cfa, const RegisterLocation &savedReg) { switch (savedReg.location) { case CFI_Parser<A>::kRegisterInCFA: return (pint_t)addressSpace.getRegister(cfa + (pint_t)savedReg.value); case CFI_Parser<A>::kRegisterAtExpression: return (pint_t)addressSpace.getRegister(evaluateExpression( (pint_t)savedReg.value, addressSpace, registers, cfa)); case CFI_Parser<A>::kRegisterIsExpression: return evaluateExpression((pint_t)savedReg.value, addressSpace, registers, cfa); case CFI_Parser<A>::kRegisterInRegister: return registers.getRegister((int)savedReg.value); case CFI_Parser<A>::kRegisterUndefined: return 0; case CFI_Parser<A>::kRegisterUnused: case CFI_Parser<A>::kRegisterOffsetFromCFA: // FIX ME break; } _LIBUNWIND_ABORT("unsupported restore location for register"); } template <typename A, typename R> double DwarfInstructions<A, R>::getSavedFloatRegister( A &addressSpace, const R ®isters, pint_t cfa, const RegisterLocation &savedReg) { switch (savedReg.location) { case CFI_Parser<A>::kRegisterInCFA: return addressSpace.getDouble(cfa + (pint_t)savedReg.value); case CFI_Parser<A>::kRegisterAtExpression: return addressSpace.getDouble( evaluateExpression((pint_t)savedReg.value, addressSpace, registers, cfa)); case CFI_Parser<A>::kRegisterIsExpression: case CFI_Parser<A>::kRegisterUnused: case CFI_Parser<A>::kRegisterUndefined: case CFI_Parser<A>::kRegisterOffsetFromCFA: case CFI_Parser<A>::kRegisterInRegister: // FIX ME break; } _LIBUNWIND_ABORT("unsupported restore location for float register"); } template <typename A, typename R> v128 DwarfInstructions<A, R>::getSavedVectorRegister( A &addressSpace, const R ®isters, pint_t cfa, const RegisterLocation &savedReg) { switch (savedReg.location) { case CFI_Parser<A>::kRegisterInCFA: return addressSpace.getVector(cfa + (pint_t)savedReg.value); case CFI_Parser<A>::kRegisterAtExpression: return addressSpace.getVector( evaluateExpression((pint_t)savedReg.value, addressSpace, registers, cfa)); case CFI_Parser<A>::kRegisterIsExpression: case CFI_Parser<A>::kRegisterUnused: case CFI_Parser<A>::kRegisterUndefined: case CFI_Parser<A>::kRegisterOffsetFromCFA: case CFI_Parser<A>::kRegisterInRegister: // FIX ME break; } _LIBUNWIND_ABORT("unsupported restore location for vector register"); } template <typename A, typename R> int DwarfInstructions<A, R>::stepWithDwarf(A &addressSpace, pint_t pc, pint_t fdeStart, R ®isters, bool &isSignalFrame) { FDE_Info fdeInfo; CIE_Info cieInfo; if (CFI_Parser<A>::decodeFDE(addressSpace, fdeStart, &fdeInfo, &cieInfo) == NULL) { PrologInfo prolog; if (CFI_Parser<A>::parseFDEInstructions(addressSpace, fdeInfo, cieInfo, pc, R::getArch(), &prolog)) { // get pointer to cfa (architecture specific) pint_t cfa = getCFA(addressSpace, prolog, registers); // restore registers that DWARF says were saved R newRegisters = registers; pint_t returnAddress = 0; const int lastReg = R::lastDwarfRegNum(); assert(static_cast<int>(CFI_Parser<A>::kMaxRegisterNumber) >= lastReg && "register range too large"); assert(lastReg >= (int)cieInfo.returnAddressRegister && "register range does not contain return address register"); for (int i = 0; i <= lastReg; ++i) { if (prolog.savedRegisters[i].location != CFI_Parser<A>::kRegisterUnused) { if (registers.validFloatRegister(i)) newRegisters.setFloatRegister( i, getSavedFloatRegister(addressSpace, registers, cfa, prolog.savedRegisters[i])); else if (registers.validVectorRegister(i)) newRegisters.setVectorRegister( i, getSavedVectorRegister(addressSpace, registers, cfa, prolog.savedRegisters[i])); else if (i == (int)cieInfo.returnAddressRegister) returnAddress = getSavedRegister(addressSpace, registers, cfa, prolog.savedRegisters[i]); else if (registers.validRegister(i)) newRegisters.setRegister( i, getSavedRegister(addressSpace, registers, cfa, prolog.savedRegisters[i])); else return UNW_EBADREG; } else if (i == (int)cieInfo.returnAddressRegister) { // Leaf function keeps the return address in register and there is no // explicit intructions how to restore it. returnAddress = registers.getRegister(cieInfo.returnAddressRegister); } } // By definition, the CFA is the stack pointer at the call site, so // restoring SP means setting it to CFA. newRegisters.setSP(cfa); isSignalFrame = cieInfo.isSignalFrame; #if defined(_LIBUNWIND_TARGET_AARCH64) // If the target is aarch64 then the return address may have been signed // using the v8.3 pointer authentication extensions. The original // return address needs to be authenticated before the return address is // restored. autia1716 is used instead of autia as autia1716 assembles // to a NOP on pre-v8.3a architectures. if ((R::getArch() == REGISTERS_ARM64) && prolog.savedRegisters[UNW_ARM64_RA_SIGN_STATE].value && returnAddress != 0) { #if !defined(_LIBUNWIND_IS_NATIVE_ONLY) return UNW_ECROSSRASIGNING; #else register unsigned long long x17 __asm("x17") = returnAddress; register unsigned long long x16 __asm("x16") = cfa; // These are the autia1716/autib1716 instructions. The hint instructions // are used here as gcc does not assemble autia1716/autib1716 for pre // armv8.3a targets. if (cieInfo.addressesSignedWithBKey) asm("hint 0xe" : "+r"(x17) : "r"(x16)); // autib1716 else asm("hint 0xc" : "+r"(x17) : "r"(x16)); // autia1716 returnAddress = x17; #endif } #endif #if defined(_LIBUNWIND_TARGET_SPARC) if (R::getArch() == REGISTERS_SPARC) { // Skip call site instruction and delay slot returnAddress += 8; // Skip unimp instruction if function returns a struct if ((addressSpace.get32(returnAddress) & 0xC1C00000) == 0) returnAddress += 4; } #endif #if defined(_LIBUNWIND_TARGET_PPC64) #define PPC64_ELFV1_R2_LOAD_INST_ENCODING 0xe8410028u // ld r2,40(r1) #define PPC64_ELFV1_R2_OFFSET 40 #define PPC64_ELFV2_R2_LOAD_INST_ENCODING 0xe8410018u // ld r2,24(r1) #define PPC64_ELFV2_R2_OFFSET 24 // If the instruction at return address is a TOC (r2) restore, // then r2 was saved and needs to be restored. // ELFv2 ABI specifies that the TOC Pointer must be saved at SP + 24, // while in ELFv1 ABI it is saved at SP + 40. if (R::getArch() == REGISTERS_PPC64 && returnAddress != 0) { pint_t sp = newRegisters.getRegister(UNW_REG_SP); pint_t r2 = 0; switch (addressSpace.get32(returnAddress)) { case PPC64_ELFV1_R2_LOAD_INST_ENCODING: r2 = addressSpace.get64(sp + PPC64_ELFV1_R2_OFFSET); break; case PPC64_ELFV2_R2_LOAD_INST_ENCODING: r2 = addressSpace.get64(sp + PPC64_ELFV2_R2_OFFSET); break; } if (r2) newRegisters.setRegister(UNW_PPC64_R2, r2); } #endif // Return address is address after call site instruction, so setting IP to // that does simualates a return. newRegisters.setIP(returnAddress); // Simulate the step by replacing the register set with the new ones. registers = newRegisters; return UNW_STEP_SUCCESS; } } return UNW_EBADFRAME; } template <typename A, typename R> typename A::pint_t DwarfInstructions<A, R>::evaluateExpression(pint_t expression, A &addressSpace, const R ®isters, pint_t initialStackValue) { const bool log = false; pint_t p = expression; pint_t expressionEnd = expression + 20; // temp, until len read pint_t length = (pint_t)addressSpace.getULEB128(p, expressionEnd); expressionEnd = p + length; if (log) fprintf(stderr, "evaluateExpression(): length=%" PRIu64 "\n", (uint64_t)length); pint_t stack[100]; pint_t *sp = stack; *(++sp) = initialStackValue; while (p < expressionEnd) { if (log) { for (pint_t *t = sp; t > stack; --t) { fprintf(stderr, "sp[] = 0x%" PRIx64 "\n", (uint64_t)(*t)); } } uint8_t opcode = addressSpace.get8(p++); sint_t svalue, svalue2; pint_t value; uint32_t reg; switch (opcode) { case DW_OP_addr: // push immediate address sized value value = addressSpace.getP(p); p += sizeof(pint_t); *(++sp) = value; if (log) fprintf(stderr, "push 0x%" PRIx64 "\n", (uint64_t)value); break; case DW_OP_deref: // pop stack, dereference, push result value = *sp--; *(++sp) = addressSpace.getP(value); if (log) fprintf(stderr, "dereference 0x%" PRIx64 "\n", (uint64_t)value); break; case DW_OP_const1u: // push immediate 1 byte value value = addressSpace.get8(p); p += 1; *(++sp) = value; if (log) fprintf(stderr, "push 0x%" PRIx64 "\n", (uint64_t)value); break; case DW_OP_const1s: // push immediate 1 byte signed value svalue = (int8_t) addressSpace.get8(p); p += 1; *(++sp) = (pint_t)svalue; if (log) fprintf(stderr, "push 0x%" PRIx64 "\n", (uint64_t)svalue); break; case DW_OP_const2u: // push immediate 2 byte value value = addressSpace.get16(p); p += 2; *(++sp) = value; if (log) fprintf(stderr, "push 0x%" PRIx64 "\n", (uint64_t)value); break; case DW_OP_const2s: // push immediate 2 byte signed value svalue = (int16_t) addressSpace.get16(p); p += 2; *(++sp) = (pint_t)svalue; if (log) fprintf(stderr, "push 0x%" PRIx64 "\n", (uint64_t)svalue); break; case DW_OP_const4u: // push immediate 4 byte value value = addressSpace.get32(p); p += 4; *(++sp) = value; if (log) fprintf(stderr, "push 0x%" PRIx64 "\n", (uint64_t)value); break; case DW_OP_const4s: // push immediate 4 byte signed value svalue = (int32_t)addressSpace.get32(p); p += 4; *(++sp) = (pint_t)svalue; if (log) fprintf(stderr, "push 0x%" PRIx64 "\n", (uint64_t)svalue); break; case DW_OP_const8u: // push immediate 8 byte value value = (pint_t)addressSpace.get64(p); p += 8; *(++sp) = value; if (log) fprintf(stderr, "push 0x%" PRIx64 "\n", (uint64_t)value); break; case DW_OP_const8s: // push immediate 8 byte signed value value = (pint_t)addressSpace.get64(p); p += 8; *(++sp) = value; if (log) fprintf(stderr, "push 0x%" PRIx64 "\n", (uint64_t)value); break; case DW_OP_constu: // push immediate ULEB128 value value = (pint_t)addressSpace.getULEB128(p, expressionEnd); *(++sp) = value; if (log) fprintf(stderr, "push 0x%" PRIx64 "\n", (uint64_t)value); break; case DW_OP_consts: // push immediate SLEB128 value svalue = (sint_t)addressSpace.getSLEB128(p, expressionEnd); *(++sp) = (pint_t)svalue; if (log) fprintf(stderr, "push 0x%" PRIx64 "\n", (uint64_t)svalue); break; case DW_OP_dup: // push top of stack value = *sp; *(++sp) = value; if (log) fprintf(stderr, "duplicate top of stack\n"); break; case DW_OP_drop: // pop --sp; if (log) fprintf(stderr, "pop top of stack\n"); break; case DW_OP_over: // dup second value = sp[-1]; *(++sp) = value; if (log) fprintf(stderr, "duplicate second in stack\n"); break; case DW_OP_pick: // pick from reg = addressSpace.get8(p); p += 1; value = sp[-(int)reg]; *(++sp) = value; if (log) fprintf(stderr, "duplicate %d in stack\n", reg); break; case DW_OP_swap: // swap top two value = sp[0]; sp[0] = sp[-1]; sp[-1] = value; if (log) fprintf(stderr, "swap top of stack\n"); break; case DW_OP_rot: // rotate top three value = sp[0]; sp[0] = sp[-1]; sp[-1] = sp[-2]; sp[-2] = value; if (log) fprintf(stderr, "rotate top three of stack\n"); break; case DW_OP_xderef: // pop stack, dereference, push result value = *sp--; *sp = *((pint_t*)value); if (log) fprintf(stderr, "x-dereference 0x%" PRIx64 "\n", (uint64_t)value); break; case DW_OP_abs: svalue = (sint_t)*sp; if (svalue < 0) *sp = (pint_t)(-svalue); if (log) fprintf(stderr, "abs\n"); break; case DW_OP_and: value = *sp--; *sp &= value; if (log) fprintf(stderr, "and\n"); break; case DW_OP_div: svalue = (sint_t)(*sp--); svalue2 = (sint_t)*sp; *sp = (pint_t)(svalue2 / svalue); if (log) fprintf(stderr, "div\n"); break; case DW_OP_minus: value = *sp--; *sp = *sp - value; if (log) fprintf(stderr, "minus\n"); break; case DW_OP_mod: svalue = (sint_t)(*sp--); svalue2 = (sint_t)*sp; *sp = (pint_t)(svalue2 % svalue); if (log) fprintf(stderr, "module\n"); break; case DW_OP_mul: svalue = (sint_t)(*sp--); svalue2 = (sint_t)*sp; *sp = (pint_t)(svalue2 * svalue); if (log) fprintf(stderr, "mul\n"); break; case DW_OP_neg: *sp = 0 - *sp; if (log) fprintf(stderr, "neg\n"); break; case DW_OP_not: svalue = (sint_t)(*sp); *sp = (pint_t)(~svalue); if (log) fprintf(stderr, "not\n"); break; case DW_OP_or: value = *sp--; *sp |= value; if (log) fprintf(stderr, "or\n"); break; case DW_OP_plus: value = *sp--; *sp += value; if (log) fprintf(stderr, "plus\n"); break; case DW_OP_plus_uconst: // pop stack, add uelb128 constant, push result *sp += static_cast<pint_t>(addressSpace.getULEB128(p, expressionEnd)); if (log) fprintf(stderr, "add constant\n"); break; case DW_OP_shl: value = *sp--; *sp = *sp << value; if (log) fprintf(stderr, "shift left\n"); break; case DW_OP_shr: value = *sp--; *sp = *sp >> value; if (log) fprintf(stderr, "shift left\n"); break; case DW_OP_shra: value = *sp--; svalue = (sint_t)*sp; *sp = (pint_t)(svalue >> value); if (log) fprintf(stderr, "shift left arithmetric\n"); break; case DW_OP_xor: value = *sp--; *sp ^= value; if (log) fprintf(stderr, "xor\n"); break; case DW_OP_skip: svalue = (int16_t) addressSpace.get16(p); p += 2; p = (pint_t)((sint_t)p + svalue); if (log) fprintf(stderr, "skip %" PRIu64 "\n", (uint64_t)svalue); break; case DW_OP_bra: svalue = (int16_t) addressSpace.get16(p); p += 2; if (*sp--) p = (pint_t)((sint_t)p + svalue); if (log) fprintf(stderr, "bra %" PRIu64 "\n", (uint64_t)svalue); break; case DW_OP_eq: value = *sp--; *sp = (*sp == value); if (log) fprintf(stderr, "eq\n"); break; case DW_OP_ge: value = *sp--; *sp = (*sp >= value); if (log) fprintf(stderr, "ge\n"); break; case DW_OP_gt: value = *sp--; *sp = (*sp > value); if (log) fprintf(stderr, "gt\n"); break; case DW_OP_le: value = *sp--; *sp = (*sp <= value); if (log) fprintf(stderr, "le\n"); break; case DW_OP_lt: value = *sp--; *sp = (*sp < value); if (log) fprintf(stderr, "lt\n"); break; case DW_OP_ne: value = *sp--; *sp = (*sp != value); if (log) fprintf(stderr, "ne\n"); break; case DW_OP_lit0: case DW_OP_lit1: case DW_OP_lit2: case DW_OP_lit3: case DW_OP_lit4: case DW_OP_lit5: case DW_OP_lit6: case DW_OP_lit7: case DW_OP_lit8: case DW_OP_lit9: case DW_OP_lit10: case DW_OP_lit11: case DW_OP_lit12: case DW_OP_lit13: case DW_OP_lit14: case DW_OP_lit15: case DW_OP_lit16: case DW_OP_lit17: case DW_OP_lit18: case DW_OP_lit19: case DW_OP_lit20: case DW_OP_lit21: case DW_OP_lit22: case DW_OP_lit23: case DW_OP_lit24: case DW_OP_lit25: case DW_OP_lit26: case DW_OP_lit27: case DW_OP_lit28: case DW_OP_lit29: case DW_OP_lit30: case DW_OP_lit31: value = static_cast<pint_t>(opcode - DW_OP_lit0); *(++sp) = value; if (log) fprintf(stderr, "push literal 0x%" PRIx64 "\n", (uint64_t)value); break; case DW_OP_reg0: case DW_OP_reg1: case DW_OP_reg2: case DW_OP_reg3: case DW_OP_reg4: case DW_OP_reg5: case DW_OP_reg6: case DW_OP_reg7: case DW_OP_reg8: case DW_OP_reg9: case DW_OP_reg10: case DW_OP_reg11: case DW_OP_reg12: case DW_OP_reg13: case DW_OP_reg14: case DW_OP_reg15: case DW_OP_reg16: case DW_OP_reg17: case DW_OP_reg18: case DW_OP_reg19: case DW_OP_reg20: case DW_OP_reg21: case DW_OP_reg22: case DW_OP_reg23: case DW_OP_reg24: case DW_OP_reg25: case DW_OP_reg26: case DW_OP_reg27: case DW_OP_reg28: case DW_OP_reg29: case DW_OP_reg30: case DW_OP_reg31: reg = static_cast<uint32_t>(opcode - DW_OP_reg0); *(++sp) = registers.getRegister((int)reg); if (log) fprintf(stderr, "push reg %d\n", reg); break; case DW_OP_regx: reg = static_cast<uint32_t>(addressSpace.getULEB128(p, expressionEnd)); *(++sp) = registers.getRegister((int)reg); if (log) fprintf(stderr, "push reg %d + 0x%" PRIx64 "\n", reg, (uint64_t)svalue); break; case DW_OP_breg0: case DW_OP_breg1: case DW_OP_breg2: case DW_OP_breg3: case DW_OP_breg4: case DW_OP_breg5: case DW_OP_breg6: case DW_OP_breg7: case DW_OP_breg8: case DW_OP_breg9: case DW_OP_breg10: case DW_OP_breg11: case DW_OP_breg12: case DW_OP_breg13: case DW_OP_breg14: case DW_OP_breg15: case DW_OP_breg16: case DW_OP_breg17: case DW_OP_breg18: case DW_OP_breg19: case DW_OP_breg20: case DW_OP_breg21: case DW_OP_breg22: case DW_OP_breg23: case DW_OP_breg24: case DW_OP_breg25: case DW_OP_breg26: case DW_OP_breg27: case DW_OP_breg28: case DW_OP_breg29: case DW_OP_breg30: case DW_OP_breg31: reg = static_cast<uint32_t>(opcode - DW_OP_breg0); svalue = (sint_t)addressSpace.getSLEB128(p, expressionEnd); svalue += static_cast<sint_t>(registers.getRegister((int)reg)); *(++sp) = (pint_t)(svalue); if (log) fprintf(stderr, "push reg %d + 0x%" PRIx64 "\n", reg, (uint64_t)svalue); break; case DW_OP_bregx: reg = static_cast<uint32_t>(addressSpace.getULEB128(p, expressionEnd)); svalue = (sint_t)addressSpace.getSLEB128(p, expressionEnd); svalue += static_cast<sint_t>(registers.getRegister((int)reg)); *(++sp) = (pint_t)(svalue); if (log) fprintf(stderr, "push reg %d + 0x%" PRIx64 "\n", reg, (uint64_t)svalue); break; case DW_OP_fbreg: _LIBUNWIND_ABORT("DW_OP_fbreg not implemented"); break; case DW_OP_piece: _LIBUNWIND_ABORT("DW_OP_piece not implemented"); break; case DW_OP_deref_size: // pop stack, dereference, push result value = *sp--; switch (addressSpace.get8(p++)) { case 1: value = addressSpace.get8(value); break; case 2: value = addressSpace.get16(value); break; case 4: value = addressSpace.get32(value); break; case 8: value = (pint_t)addressSpace.get64(value); break; default: _LIBUNWIND_ABORT("DW_OP_deref_size with bad size"); } *(++sp) = value; if (log) fprintf(stderr, "sized dereference 0x%" PRIx64 "\n", (uint64_t)value); break; case DW_OP_xderef_size: case DW_OP_nop: case DW_OP_push_object_addres: case DW_OP_call2: case DW_OP_call4: case DW_OP_call_ref: default: _LIBUNWIND_ABORT("DWARF opcode not implemented"); } } if (log) fprintf(stderr, "expression evaluates to 0x%" PRIx64 "\n", (uint64_t)*sp); return *sp; } } // namespace libunwind #endif // __DWARF_INSTRUCTIONS_HPP__