Mercurial > hg > CbC > CbC_llvm
view lldb/scripts/analyze-project-deps.py @ 220:42394fc6a535
Added tag llvm12 for changeset 0572611fdcc8
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 15 Jun 2021 19:13:43 +0900 |
parents | 1d019706d866 |
children | 2e18cbf3894f |
line wrap: on
line source
#! /usr/bin/env python import argparse import itertools import os import re import sys from collections import defaultdict from use_lldb_suite import lldb_root parser = argparse.ArgumentParser( description='Analyze LLDB project #include dependencies.') parser.add_argument('--show-counts', default=False, action='store_true', help='When true, show the number of dependencies from each subproject') parser.add_argument('--discover-cycles', default=False, action='store_true', help='When true, find and display all project dependency cycles. Note,' 'this option is very slow') args = parser.parse_args() src_dir = os.path.join(lldb_root, "source") inc_dir = os.path.join(lldb_root, "include") src_map = {} include_regex = re.compile('#include \"((lldb|Plugins|clang)(.*/)+).*\"') def is_sublist(small, big): it = iter(big) return all(c in it for c in small) def normalize_host(str): if str.startswith("lldb/Host"): return "lldb/Host" if str.startswith("Plugins"): return "lldb/" + str if str.startswith("lldb/../../source"): return str.replace("lldb/../../source", "lldb") return str def scan_deps(this_dir, file): global src_map deps = {} this_dir = normalize_host(this_dir) if this_dir in src_map: deps = src_map[this_dir] with open(file) as f: for line in list(f): m = include_regex.match(line) if m is None: continue relative = m.groups()[0].rstrip("/") if relative == this_dir: continue relative = normalize_host(relative) if relative in deps: deps[relative] += 1 elif relative != this_dir: deps[relative] = 1 if this_dir not in src_map and len(deps) > 0: src_map[this_dir] = deps for (base, dirs, files) in os.walk(inc_dir): dir = os.path.basename(base) relative = os.path.relpath(base, inc_dir) inc_files = [x for x in files if os.path.splitext(x)[1] in [".h"]] relative = relative.replace("\\", "/") for inc in inc_files: inc_path = os.path.join(base, inc) scan_deps(relative, inc_path) for (base, dirs, files) in os.walk(src_dir): dir = os.path.basename(base) relative = os.path.relpath(base, src_dir) src_files = [x for x in files if os.path.splitext(x)[1] in [".cpp", ".h", ".mm"]] norm_base_path = os.path.normpath(os.path.join("lldb", relative)) norm_base_path = norm_base_path.replace("\\", "/") for src in src_files: src_path = os.path.join(base, src) scan_deps(norm_base_path, src_path) pass def is_existing_cycle(path, cycles): # If we have a cycle like # A -> B -> C (with an implicit -> A at the end) # then we don't just want to check for an occurrence of A -> B -> C in the # list of known cycles, but every possible rotation of A -> B -> C. For # example, if we previously encountered B -> C -> A (with an implicit -> B # at the end), then A -> B -> C is also a cycle. This is an important # optimization which reduces the search space by multiple orders of # magnitude. for i in range(0,len(path)): if any(is_sublist(x, path) for x in cycles): return True path = [path[-1]] + path[0:-1] return False def expand(path_queue, path_lengths, cycles, src_map): # We do a breadth first search, to make sure we visit all paths in order # of ascending length. This is an important optimization to make sure that # short cycles are discovered first, which will allow us to discard longer # cycles which grow the search space exponentially the longer they get. while len(path_queue) > 0: cur_path = path_queue.pop(0) if is_existing_cycle(cur_path, cycles): continue next_len = path_lengths.pop(0) + 1 last_component = cur_path[-1] for item in src_map[last_component]: if item.startswith("clang"): continue if item in cur_path: # This is a cycle. Minimize it and then check if the result is # already in the list of cycles. Insert it (or not) and then # exit. new_index = cur_path.index(item) cycle = cur_path[new_index:] if not is_existing_cycle(cycle, cycles): cycles.append(cycle) continue path_lengths.append(next_len) path_queue.append(cur_path + [item]) pass cycles = [] path_queue = [[x] for x in iter(src_map)] path_lens = [1] * len(path_queue) items = list(src_map.items()) items.sort(key = lambda A : A[0]) for (path, deps) in items: print(path + ":") sorted_deps = list(deps.items()) if args.show_counts: sorted_deps.sort(key = lambda A: (A[1], A[0])) for dep in sorted_deps: print("\t{} [{}]".format(dep[0], dep[1])) else: sorted_deps.sort(key = lambda A: A[0]) for dep in sorted_deps: print("\t{}".format(dep[0])) def iter_cycles(cycles): global src_map for cycle in cycles: cycle.append(cycle[0]) zipper = list(zip(cycle[0:-1], cycle[1:])) result = [(x, src_map[x][y], y) for (x,y) in zipper] total = 0 smallest = result[0][1] for (first, value, last) in result: total += value smallest = min(smallest, value) yield (total, smallest, result) if args.discover_cycles: print("Analyzing cycles...") expand(path_queue, path_lens, cycles, src_map) average = sum([len(x)+1 for x in cycles]) / len(cycles) print("Found {} cycles. Average cycle length = {}.".format(len(cycles), average)) counted = list(iter_cycles(cycles)) if args.show_counts: counted.sort(key = lambda A: A[0]) for (total, smallest, cycle) in counted: sys.stdout.write("{} deps to break: ".format(total)) sys.stdout.write(cycle[0][0]) for (first, count, last) in cycle: sys.stdout.write(" [{}->] {}".format(count, last)) sys.stdout.write("\n") else: for cycle in cycles: cycle.append(cycle[0]) print(" -> ".join(cycle)) print("Analyzing islands...") islands = [] outgoing_counts = defaultdict(int) incoming_counts = defaultdict(int) for (total, smallest, cycle) in counted: for (first, count, last) in cycle: outgoing_counts[first] += count incoming_counts[last] += count for cycle in cycles: this_cycle = set(cycle) disjoints = [x for x in islands if this_cycle.isdisjoint(x)] overlaps = [x for x in islands if not this_cycle.isdisjoint(x)] islands = disjoints + [set.union(this_cycle, *overlaps)] print("Found {} disjoint cycle islands...".format(len(islands))) for island in islands: print("Island ({} elements)".format(len(island))) sorted = [] for node in island: sorted.append((node, incoming_counts[node], outgoing_counts[node])) sorted.sort(key = lambda x: x[1]+x[2]) for (node, inc, outg) in sorted: print(" {} [{} in, {} out]".format(node, inc, outg)) sys.stdout.flush() pass