Mercurial > hg > CbC > CbC_llvm
view llvm/lib/Analysis/ConstantFolding.cpp @ 220:42394fc6a535
Added tag llvm12 for changeset 0572611fdcc8
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 15 Jun 2021 19:13:43 +0900 |
parents | 0572611fdcc8 |
children | 2e18cbf3894f |
line wrap: on
line source
//===-- ConstantFolding.cpp - Fold instructions into constants ------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines routines for folding instructions into constants. // // Also, to supplement the basic IR ConstantExpr simplifications, // this file defines some additional folding routines that can make use of // DataLayout information. These functions cannot go in IR due to library // dependency issues. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/ConstantFolding.h" #include "llvm/ADT/APFloat.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/Analysis/TargetFolder.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/Analysis/VectorUtils.h" #include "llvm/Config/config.h" #include "llvm/IR/Constant.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/IntrinsicsAMDGPU.h" #include "llvm/IR/IntrinsicsX86.h" #include "llvm/IR/Operator.h" #include "llvm/IR/Type.h" #include "llvm/IR/Value.h" #include "llvm/Support/Casting.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/KnownBits.h" #include "llvm/Support/MathExtras.h" #include <cassert> #include <cerrno> #include <cfenv> #include <cmath> #include <cstddef> #include <cstdint> using namespace llvm; namespace { //===----------------------------------------------------------------------===// // Constant Folding internal helper functions //===----------------------------------------------------------------------===// static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy, Constant *C, Type *SrcEltTy, unsigned NumSrcElts, const DataLayout &DL) { // Now that we know that the input value is a vector of integers, just shift // and insert them into our result. unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy); for (unsigned i = 0; i != NumSrcElts; ++i) { Constant *Element; if (DL.isLittleEndian()) Element = C->getAggregateElement(NumSrcElts - i - 1); else Element = C->getAggregateElement(i); if (Element && isa<UndefValue>(Element)) { Result <<= BitShift; continue; } auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); if (!ElementCI) return ConstantExpr::getBitCast(C, DestTy); Result <<= BitShift; Result |= ElementCI->getValue().zextOrSelf(Result.getBitWidth()); } return nullptr; } /// Constant fold bitcast, symbolically evaluating it with DataLayout. /// This always returns a non-null constant, but it may be a /// ConstantExpr if unfoldable. Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) { assert(CastInst::castIsValid(Instruction::BitCast, C, DestTy) && "Invalid constantexpr bitcast!"); // Catch the obvious splat cases. if (C->isNullValue() && !DestTy->isX86_MMXTy()) return Constant::getNullValue(DestTy); if (C->isAllOnesValue() && !DestTy->isX86_MMXTy() && !DestTy->isPtrOrPtrVectorTy()) // Don't get ones for ptr types! return Constant::getAllOnesValue(DestTy); if (auto *VTy = dyn_cast<VectorType>(C->getType())) { // Handle a vector->scalar integer/fp cast. if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) { unsigned NumSrcElts = VTy->getNumElements(); Type *SrcEltTy = VTy->getElementType(); // If the vector is a vector of floating point, convert it to vector of int // to simplify things. if (SrcEltTy->isFloatingPointTy()) { unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits(); Type *SrcIVTy = VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElts); // Ask IR to do the conversion now that #elts line up. C = ConstantExpr::getBitCast(C, SrcIVTy); } APInt Result(DL.getTypeSizeInBits(DestTy), 0); if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C, SrcEltTy, NumSrcElts, DL)) return CE; if (isa<IntegerType>(DestTy)) return ConstantInt::get(DestTy, Result); APFloat FP(DestTy->getFltSemantics(), Result); return ConstantFP::get(DestTy->getContext(), FP); } } // The code below only handles casts to vectors currently. auto *DestVTy = dyn_cast<VectorType>(DestTy); if (!DestVTy) return ConstantExpr::getBitCast(C, DestTy); // If this is a scalar -> vector cast, convert the input into a <1 x scalar> // vector so the code below can handle it uniformly. if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) { Constant *Ops = C; // don't take the address of C! return FoldBitCast(ConstantVector::get(Ops), DestTy, DL); } // If this is a bitcast from constant vector -> vector, fold it. if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C)) return ConstantExpr::getBitCast(C, DestTy); // If the element types match, IR can fold it. unsigned NumDstElt = DestVTy->getNumElements(); unsigned NumSrcElt = cast<VectorType>(C->getType())->getNumElements(); if (NumDstElt == NumSrcElt) return ConstantExpr::getBitCast(C, DestTy); Type *SrcEltTy = cast<VectorType>(C->getType())->getElementType(); Type *DstEltTy = DestVTy->getElementType(); // Otherwise, we're changing the number of elements in a vector, which // requires endianness information to do the right thing. For example, // bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>) // folds to (little endian): // <4 x i32> <i32 0, i32 0, i32 1, i32 0> // and to (big endian): // <4 x i32> <i32 0, i32 0, i32 0, i32 1> // First thing is first. We only want to think about integer here, so if // we have something in FP form, recast it as integer. if (DstEltTy->isFloatingPointTy()) { // Fold to an vector of integers with same size as our FP type. unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits(); Type *DestIVTy = VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt); // Recursively handle this integer conversion, if possible. C = FoldBitCast(C, DestIVTy, DL); // Finally, IR can handle this now that #elts line up. return ConstantExpr::getBitCast(C, DestTy); } // Okay, we know the destination is integer, if the input is FP, convert // it to integer first. if (SrcEltTy->isFloatingPointTy()) { unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits(); Type *SrcIVTy = VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt); // Ask IR to do the conversion now that #elts line up. C = ConstantExpr::getBitCast(C, SrcIVTy); // If IR wasn't able to fold it, bail out. if (!isa<ConstantVector>(C) && // FIXME: Remove ConstantVector. !isa<ConstantDataVector>(C)) return C; } // Now we know that the input and output vectors are both integer vectors // of the same size, and that their #elements is not the same. Do the // conversion here, which depends on whether the input or output has // more elements. bool isLittleEndian = DL.isLittleEndian(); SmallVector<Constant*, 32> Result; if (NumDstElt < NumSrcElt) { // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>) Constant *Zero = Constant::getNullValue(DstEltTy); unsigned Ratio = NumSrcElt/NumDstElt; unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits(); unsigned SrcElt = 0; for (unsigned i = 0; i != NumDstElt; ++i) { // Build each element of the result. Constant *Elt = Zero; unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1); for (unsigned j = 0; j != Ratio; ++j) { Constant *Src = C->getAggregateElement(SrcElt++); if (Src && isa<UndefValue>(Src)) Src = Constant::getNullValue( cast<VectorType>(C->getType())->getElementType()); else Src = dyn_cast_or_null<ConstantInt>(Src); if (!Src) // Reject constantexpr elements. return ConstantExpr::getBitCast(C, DestTy); // Zero extend the element to the right size. Src = ConstantExpr::getZExt(Src, Elt->getType()); // Shift it to the right place, depending on endianness. Src = ConstantExpr::getShl(Src, ConstantInt::get(Src->getType(), ShiftAmt)); ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize; // Mix it in. Elt = ConstantExpr::getOr(Elt, Src); } Result.push_back(Elt); } return ConstantVector::get(Result); } // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>) unsigned Ratio = NumDstElt/NumSrcElt; unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy); // Loop over each source value, expanding into multiple results. for (unsigned i = 0; i != NumSrcElt; ++i) { auto *Element = C->getAggregateElement(i); if (!Element) // Reject constantexpr elements. return ConstantExpr::getBitCast(C, DestTy); if (isa<UndefValue>(Element)) { // Correctly Propagate undef values. Result.append(Ratio, UndefValue::get(DstEltTy)); continue; } auto *Src = dyn_cast<ConstantInt>(Element); if (!Src) return ConstantExpr::getBitCast(C, DestTy); unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1); for (unsigned j = 0; j != Ratio; ++j) { // Shift the piece of the value into the right place, depending on // endianness. Constant *Elt = ConstantExpr::getLShr(Src, ConstantInt::get(Src->getType(), ShiftAmt)); ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize; // Truncate the element to an integer with the same pointer size and // convert the element back to a pointer using a inttoptr. if (DstEltTy->isPointerTy()) { IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize); Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy); Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy)); continue; } // Truncate and remember this piece. Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy)); } } return ConstantVector::get(Result); } } // end anonymous namespace /// If this constant is a constant offset from a global, return the global and /// the constant. Because of constantexprs, this function is recursive. bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV, APInt &Offset, const DataLayout &DL) { // Trivial case, constant is the global. if ((GV = dyn_cast<GlobalValue>(C))) { unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType()); Offset = APInt(BitWidth, 0); return true; } // Otherwise, if this isn't a constant expr, bail out. auto *CE = dyn_cast<ConstantExpr>(C); if (!CE) return false; // Look through ptr->int and ptr->ptr casts. if (CE->getOpcode() == Instruction::PtrToInt || CE->getOpcode() == Instruction::BitCast) return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL); // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5) auto *GEP = dyn_cast<GEPOperator>(CE); if (!GEP) return false; unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType()); APInt TmpOffset(BitWidth, 0); // If the base isn't a global+constant, we aren't either. if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL)) return false; // Otherwise, add any offset that our operands provide. if (!GEP->accumulateConstantOffset(DL, TmpOffset)) return false; Offset = TmpOffset; return true; } Constant *llvm::ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy, const DataLayout &DL) { do { Type *SrcTy = C->getType(); // If the type sizes are the same and a cast is legal, just directly // cast the constant. if (DL.getTypeSizeInBits(DestTy) == DL.getTypeSizeInBits(SrcTy)) { Instruction::CastOps Cast = Instruction::BitCast; // If we are going from a pointer to int or vice versa, we spell the cast // differently. if (SrcTy->isIntegerTy() && DestTy->isPointerTy()) Cast = Instruction::IntToPtr; else if (SrcTy->isPointerTy() && DestTy->isIntegerTy()) Cast = Instruction::PtrToInt; if (CastInst::castIsValid(Cast, C, DestTy)) return ConstantExpr::getCast(Cast, C, DestTy); } // If this isn't an aggregate type, there is nothing we can do to drill down // and find a bitcastable constant. if (!SrcTy->isAggregateType()) return nullptr; // We're simulating a load through a pointer that was bitcast to point to // a different type, so we can try to walk down through the initial // elements of an aggregate to see if some part of the aggregate is // castable to implement the "load" semantic model. if (SrcTy->isStructTy()) { // Struct types might have leading zero-length elements like [0 x i32], // which are certainly not what we are looking for, so skip them. unsigned Elem = 0; Constant *ElemC; do { ElemC = C->getAggregateElement(Elem++); } while (ElemC && DL.getTypeSizeInBits(ElemC->getType()).isZero()); C = ElemC; } else { C = C->getAggregateElement(0u); } } while (C); return nullptr; } namespace { /// Recursive helper to read bits out of global. C is the constant being copied /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy /// results into and BytesLeft is the number of bytes left in /// the CurPtr buffer. DL is the DataLayout. bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr, unsigned BytesLeft, const DataLayout &DL) { assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) && "Out of range access"); // If this element is zero or undefined, we can just return since *CurPtr is // zero initialized. if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) return true; if (auto *CI = dyn_cast<ConstantInt>(C)) { if (CI->getBitWidth() > 64 || (CI->getBitWidth() & 7) != 0) return false; uint64_t Val = CI->getZExtValue(); unsigned IntBytes = unsigned(CI->getBitWidth()/8); for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) { int n = ByteOffset; if (!DL.isLittleEndian()) n = IntBytes - n - 1; CurPtr[i] = (unsigned char)(Val >> (n * 8)); ++ByteOffset; } return true; } if (auto *CFP = dyn_cast<ConstantFP>(C)) { if (CFP->getType()->isDoubleTy()) { C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL); return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); } if (CFP->getType()->isFloatTy()){ C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL); return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); } if (CFP->getType()->isHalfTy()){ C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL); return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); } return false; } if (auto *CS = dyn_cast<ConstantStruct>(C)) { const StructLayout *SL = DL.getStructLayout(CS->getType()); unsigned Index = SL->getElementContainingOffset(ByteOffset); uint64_t CurEltOffset = SL->getElementOffset(Index); ByteOffset -= CurEltOffset; while (true) { // If the element access is to the element itself and not to tail padding, // read the bytes from the element. uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType()); if (ByteOffset < EltSize && !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr, BytesLeft, DL)) return false; ++Index; // Check to see if we read from the last struct element, if so we're done. if (Index == CS->getType()->getNumElements()) return true; // If we read all of the bytes we needed from this element we're done. uint64_t NextEltOffset = SL->getElementOffset(Index); if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset) return true; // Move to the next element of the struct. CurPtr += NextEltOffset - CurEltOffset - ByteOffset; BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset; ByteOffset = 0; CurEltOffset = NextEltOffset; } // not reached. } if (isa<ConstantArray>(C) || isa<ConstantVector>(C) || isa<ConstantDataSequential>(C)) { uint64_t NumElts; Type *EltTy; if (auto *AT = dyn_cast<ArrayType>(C->getType())) { NumElts = AT->getNumElements(); EltTy = AT->getElementType(); } else { NumElts = cast<VectorType>(C->getType())->getNumElements(); EltTy = cast<VectorType>(C->getType())->getElementType(); } uint64_t EltSize = DL.getTypeAllocSize(EltTy); uint64_t Index = ByteOffset / EltSize; uint64_t Offset = ByteOffset - Index * EltSize; for (; Index != NumElts; ++Index) { if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr, BytesLeft, DL)) return false; uint64_t BytesWritten = EltSize - Offset; assert(BytesWritten <= EltSize && "Not indexing into this element?"); if (BytesWritten >= BytesLeft) return true; Offset = 0; BytesLeft -= BytesWritten; CurPtr += BytesWritten; } return true; } if (auto *CE = dyn_cast<ConstantExpr>(C)) { if (CE->getOpcode() == Instruction::IntToPtr && CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) { return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr, BytesLeft, DL); } } // Otherwise, unknown initializer type. return false; } Constant *FoldReinterpretLoadFromConstPtr(Constant *C, Type *LoadTy, const DataLayout &DL) { // Bail out early. Not expect to load from scalable global variable. if (isa<ScalableVectorType>(LoadTy)) return nullptr; auto *PTy = cast<PointerType>(C->getType()); auto *IntType = dyn_cast<IntegerType>(LoadTy); // If this isn't an integer load we can't fold it directly. if (!IntType) { unsigned AS = PTy->getAddressSpace(); // If this is a float/double load, we can try folding it as an int32/64 load // and then bitcast the result. This can be useful for union cases. Note // that address spaces don't matter here since we're not going to result in // an actual new load. Type *MapTy; if (LoadTy->isHalfTy()) MapTy = Type::getInt16Ty(C->getContext()); else if (LoadTy->isFloatTy()) MapTy = Type::getInt32Ty(C->getContext()); else if (LoadTy->isDoubleTy()) MapTy = Type::getInt64Ty(C->getContext()); else if (LoadTy->isVectorTy()) { MapTy = PointerType::getIntNTy( C->getContext(), DL.getTypeSizeInBits(LoadTy).getFixedSize()); } else return nullptr; C = FoldBitCast(C, MapTy->getPointerTo(AS), DL); if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, MapTy, DL)) { if (Res->isNullValue() && !LoadTy->isX86_MMXTy()) // Materializing a zero can be done trivially without a bitcast return Constant::getNullValue(LoadTy); Type *CastTy = LoadTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(LoadTy) : LoadTy; Res = FoldBitCast(Res, CastTy, DL); if (LoadTy->isPtrOrPtrVectorTy()) { // For vector of pointer, we needed to first convert to a vector of integer, then do vector inttoptr if (Res->isNullValue() && !LoadTy->isX86_MMXTy()) return Constant::getNullValue(LoadTy); if (DL.isNonIntegralPointerType(LoadTy->getScalarType())) // Be careful not to replace a load of an addrspace value with an inttoptr here return nullptr; Res = ConstantExpr::getCast(Instruction::IntToPtr, Res, LoadTy); } return Res; } return nullptr; } unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8; if (BytesLoaded > 32 || BytesLoaded == 0) return nullptr; GlobalValue *GVal; APInt OffsetAI; if (!IsConstantOffsetFromGlobal(C, GVal, OffsetAI, DL)) return nullptr; auto *GV = dyn_cast<GlobalVariable>(GVal); if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || !GV->getInitializer()->getType()->isSized()) return nullptr; int64_t Offset = OffsetAI.getSExtValue(); int64_t InitializerSize = DL.getTypeAllocSize(GV->getInitializer()->getType()).getFixedSize(); // If we're not accessing anything in this constant, the result is undefined. if (Offset <= -1 * static_cast<int64_t>(BytesLoaded)) return UndefValue::get(IntType); // If we're not accessing anything in this constant, the result is undefined. if (Offset >= InitializerSize) return UndefValue::get(IntType); unsigned char RawBytes[32] = {0}; unsigned char *CurPtr = RawBytes; unsigned BytesLeft = BytesLoaded; // If we're loading off the beginning of the global, some bytes may be valid. if (Offset < 0) { CurPtr += -Offset; BytesLeft += Offset; Offset = 0; } if (!ReadDataFromGlobal(GV->getInitializer(), Offset, CurPtr, BytesLeft, DL)) return nullptr; APInt ResultVal = APInt(IntType->getBitWidth(), 0); if (DL.isLittleEndian()) { ResultVal = RawBytes[BytesLoaded - 1]; for (unsigned i = 1; i != BytesLoaded; ++i) { ResultVal <<= 8; ResultVal |= RawBytes[BytesLoaded - 1 - i]; } } else { ResultVal = RawBytes[0]; for (unsigned i = 1; i != BytesLoaded; ++i) { ResultVal <<= 8; ResultVal |= RawBytes[i]; } } return ConstantInt::get(IntType->getContext(), ResultVal); } Constant *ConstantFoldLoadThroughBitcastExpr(ConstantExpr *CE, Type *DestTy, const DataLayout &DL) { auto *SrcPtr = CE->getOperand(0); auto *SrcPtrTy = dyn_cast<PointerType>(SrcPtr->getType()); if (!SrcPtrTy) return nullptr; Type *SrcTy = SrcPtrTy->getPointerElementType(); Constant *C = ConstantFoldLoadFromConstPtr(SrcPtr, SrcTy, DL); if (!C) return nullptr; return llvm::ConstantFoldLoadThroughBitcast(C, DestTy, DL); } } // end anonymous namespace Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, const DataLayout &DL) { // First, try the easy cases: if (auto *GV = dyn_cast<GlobalVariable>(C)) if (GV->isConstant() && GV->hasDefinitiveInitializer()) return GV->getInitializer(); if (auto *GA = dyn_cast<GlobalAlias>(C)) if (GA->getAliasee() && !GA->isInterposable()) return ConstantFoldLoadFromConstPtr(GA->getAliasee(), Ty, DL); // If the loaded value isn't a constant expr, we can't handle it. auto *CE = dyn_cast<ConstantExpr>(C); if (!CE) return nullptr; if (CE->getOpcode() == Instruction::GetElementPtr) { if (auto *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) { if (GV->isConstant() && GV->hasDefinitiveInitializer()) { if (Constant *V = ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE)) return V; } } } if (CE->getOpcode() == Instruction::BitCast) if (Constant *LoadedC = ConstantFoldLoadThroughBitcastExpr(CE, Ty, DL)) return LoadedC; // Instead of loading constant c string, use corresponding integer value // directly if string length is small enough. StringRef Str; if (getConstantStringInfo(CE, Str) && !Str.empty()) { size_t StrLen = Str.size(); unsigned NumBits = Ty->getPrimitiveSizeInBits(); // Replace load with immediate integer if the result is an integer or fp // value. if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 && (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) { APInt StrVal(NumBits, 0); APInt SingleChar(NumBits, 0); if (DL.isLittleEndian()) { for (unsigned char C : reverse(Str.bytes())) { SingleChar = static_cast<uint64_t>(C); StrVal = (StrVal << 8) | SingleChar; } } else { for (unsigned char C : Str.bytes()) { SingleChar = static_cast<uint64_t>(C); StrVal = (StrVal << 8) | SingleChar; } // Append NULL at the end. SingleChar = 0; StrVal = (StrVal << 8) | SingleChar; } Constant *Res = ConstantInt::get(CE->getContext(), StrVal); if (Ty->isFloatingPointTy()) Res = ConstantExpr::getBitCast(Res, Ty); return Res; } } // If this load comes from anywhere in a constant global, and if the global // is all undef or zero, we know what it loads. if (auto *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, DL))) { if (GV->isConstant() && GV->hasDefinitiveInitializer()) { if (GV->getInitializer()->isNullValue()) return Constant::getNullValue(Ty); if (isa<UndefValue>(GV->getInitializer())) return UndefValue::get(Ty); } } // Try hard to fold loads from bitcasted strange and non-type-safe things. return FoldReinterpretLoadFromConstPtr(CE, Ty, DL); } namespace { Constant *ConstantFoldLoadInst(const LoadInst *LI, const DataLayout &DL) { if (LI->isVolatile()) return nullptr; if (auto *C = dyn_cast<Constant>(LI->getOperand(0))) return ConstantFoldLoadFromConstPtr(C, LI->getType(), DL); return nullptr; } /// One of Op0/Op1 is a constant expression. /// Attempt to symbolically evaluate the result of a binary operator merging /// these together. If target data info is available, it is provided as DL, /// otherwise DL is null. Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1, const DataLayout &DL) { // SROA // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl. // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute // bits. if (Opc == Instruction::And) { KnownBits Known0 = computeKnownBits(Op0, DL); KnownBits Known1 = computeKnownBits(Op1, DL); if ((Known1.One | Known0.Zero).isAllOnesValue()) { // All the bits of Op0 that the 'and' could be masking are already zero. return Op0; } if ((Known0.One | Known1.Zero).isAllOnesValue()) { // All the bits of Op1 that the 'and' could be masking are already zero. return Op1; } Known0 &= Known1; if (Known0.isConstant()) return ConstantInt::get(Op0->getType(), Known0.getConstant()); } // If the constant expr is something like &A[123] - &A[4].f, fold this into a // constant. This happens frequently when iterating over a global array. if (Opc == Instruction::Sub) { GlobalValue *GV1, *GV2; APInt Offs1, Offs2; if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL)) if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) { unsigned OpSize = DL.getTypeSizeInBits(Op0->getType()); // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow. // PtrToInt may change the bitwidth so we have convert to the right size // first. return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) - Offs2.zextOrTrunc(OpSize)); } } return nullptr; } /// If array indices are not pointer-sized integers, explicitly cast them so /// that they aren't implicitly casted by the getelementptr. Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops, Type *ResultTy, Optional<unsigned> InRangeIndex, const DataLayout &DL, const TargetLibraryInfo *TLI) { Type *IntIdxTy = DL.getIndexType(ResultTy); Type *IntIdxScalarTy = IntIdxTy->getScalarType(); bool Any = false; SmallVector<Constant*, 32> NewIdxs; for (unsigned i = 1, e = Ops.size(); i != e; ++i) { if ((i == 1 || !isa<StructType>(GetElementPtrInst::getIndexedType( SrcElemTy, Ops.slice(1, i - 1)))) && Ops[i]->getType()->getScalarType() != IntIdxScalarTy) { Any = true; Type *NewType = Ops[i]->getType()->isVectorTy() ? IntIdxTy : IntIdxScalarTy; NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i], true, NewType, true), Ops[i], NewType)); } else NewIdxs.push_back(Ops[i]); } if (!Any) return nullptr; Constant *C = ConstantExpr::getGetElementPtr( SrcElemTy, Ops[0], NewIdxs, /*InBounds=*/false, InRangeIndex); return ConstantFoldConstant(C, DL, TLI); } /// Strip the pointer casts, but preserve the address space information. Constant *StripPtrCastKeepAS(Constant *Ptr, Type *&ElemTy) { assert(Ptr->getType()->isPointerTy() && "Not a pointer type"); auto *OldPtrTy = cast<PointerType>(Ptr->getType()); Ptr = cast<Constant>(Ptr->stripPointerCasts()); auto *NewPtrTy = cast<PointerType>(Ptr->getType()); ElemTy = NewPtrTy->getPointerElementType(); // Preserve the address space number of the pointer. if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) { NewPtrTy = ElemTy->getPointerTo(OldPtrTy->getAddressSpace()); Ptr = ConstantExpr::getPointerCast(Ptr, NewPtrTy); } return Ptr; } /// If we can symbolically evaluate the GEP constant expression, do so. Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP, ArrayRef<Constant *> Ops, const DataLayout &DL, const TargetLibraryInfo *TLI) { const GEPOperator *InnermostGEP = GEP; bool InBounds = GEP->isInBounds(); Type *SrcElemTy = GEP->getSourceElementType(); Type *ResElemTy = GEP->getResultElementType(); Type *ResTy = GEP->getType(); if (!SrcElemTy->isSized() || isa<ScalableVectorType>(SrcElemTy)) return nullptr; if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy, GEP->getInRangeIndex(), DL, TLI)) return C; Constant *Ptr = Ops[0]; if (!Ptr->getType()->isPointerTy()) return nullptr; Type *IntIdxTy = DL.getIndexType(Ptr->getType()); // If this is a constant expr gep that is effectively computing an // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12' for (unsigned i = 1, e = Ops.size(); i != e; ++i) if (!isa<ConstantInt>(Ops[i])) { // If this is "gep i8* Ptr, (sub 0, V)", fold this as: // "inttoptr (sub (ptrtoint Ptr), V)" if (Ops.size() == 2 && ResElemTy->isIntegerTy(8)) { auto *CE = dyn_cast<ConstantExpr>(Ops[1]); assert((!CE || CE->getType() == IntIdxTy) && "CastGEPIndices didn't canonicalize index types!"); if (CE && CE->getOpcode() == Instruction::Sub && CE->getOperand(0)->isNullValue()) { Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType()); Res = ConstantExpr::getSub(Res, CE->getOperand(1)); Res = ConstantExpr::getIntToPtr(Res, ResTy); return ConstantFoldConstant(Res, DL, TLI); } } return nullptr; } unsigned BitWidth = DL.getTypeSizeInBits(IntIdxTy); APInt Offset = APInt(BitWidth, DL.getIndexedOffsetInType( SrcElemTy, makeArrayRef((Value * const *)Ops.data() + 1, Ops.size() - 1))); Ptr = StripPtrCastKeepAS(Ptr, SrcElemTy); // If this is a GEP of a GEP, fold it all into a single GEP. while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) { InnermostGEP = GEP; InBounds &= GEP->isInBounds(); SmallVector<Value *, 4> NestedOps(GEP->op_begin() + 1, GEP->op_end()); // Do not try the incorporate the sub-GEP if some index is not a number. bool AllConstantInt = true; for (Value *NestedOp : NestedOps) if (!isa<ConstantInt>(NestedOp)) { AllConstantInt = false; break; } if (!AllConstantInt) break; Ptr = cast<Constant>(GEP->getOperand(0)); SrcElemTy = GEP->getSourceElementType(); Offset += APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps)); Ptr = StripPtrCastKeepAS(Ptr, SrcElemTy); } // If the base value for this address is a literal integer value, fold the // getelementptr to the resulting integer value casted to the pointer type. APInt BasePtr(BitWidth, 0); if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) { if (CE->getOpcode() == Instruction::IntToPtr) { if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0))) BasePtr = Base->getValue().zextOrTrunc(BitWidth); } } auto *PTy = cast<PointerType>(Ptr->getType()); if ((Ptr->isNullValue() || BasePtr != 0) && !DL.isNonIntegralPointerType(PTy)) { Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr); return ConstantExpr::getIntToPtr(C, ResTy); } // Otherwise form a regular getelementptr. Recompute the indices so that // we eliminate over-indexing of the notional static type array bounds. // This makes it easy to determine if the getelementptr is "inbounds". // Also, this helps GlobalOpt do SROA on GlobalVariables. Type *Ty = PTy; SmallVector<Constant *, 32> NewIdxs; do { if (!Ty->isStructTy()) { if (Ty->isPointerTy()) { // The only pointer indexing we'll do is on the first index of the GEP. if (!NewIdxs.empty()) break; Ty = SrcElemTy; // Only handle pointers to sized types, not pointers to functions. if (!Ty->isSized()) return nullptr; } else { Type *NextTy = GetElementPtrInst::getTypeAtIndex(Ty, (uint64_t)0); if (!NextTy) break; Ty = NextTy; } // Determine which element of the array the offset points into. APInt ElemSize(BitWidth, DL.getTypeAllocSize(Ty)); if (ElemSize == 0) { // The element size is 0. This may be [0 x Ty]*, so just use a zero // index for this level and proceed to the next level to see if it can // accommodate the offset. NewIdxs.push_back(ConstantInt::get(IntIdxTy, 0)); } else { // The element size is non-zero divide the offset by the element // size (rounding down), to compute the index at this level. bool Overflow; APInt NewIdx = Offset.sdiv_ov(ElemSize, Overflow); if (Overflow) break; Offset -= NewIdx * ElemSize; NewIdxs.push_back(ConstantInt::get(IntIdxTy, NewIdx)); } } else { auto *STy = cast<StructType>(Ty); // If we end up with an offset that isn't valid for this struct type, we // can't re-form this GEP in a regular form, so bail out. The pointer // operand likely went through casts that are necessary to make the GEP // sensible. const StructLayout &SL = *DL.getStructLayout(STy); if (Offset.isNegative() || Offset.uge(SL.getSizeInBytes())) break; // Determine which field of the struct the offset points into. The // getZExtValue is fine as we've already ensured that the offset is // within the range representable by the StructLayout API. unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue()); NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx)); Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx)); Ty = STy->getTypeAtIndex(ElIdx); } } while (Ty != ResElemTy); // If we haven't used up the entire offset by descending the static // type, then the offset is pointing into the middle of an indivisible // member, so we can't simplify it. if (Offset != 0) return nullptr; // Preserve the inrange index from the innermost GEP if possible. We must // have calculated the same indices up to and including the inrange index. Optional<unsigned> InRangeIndex; if (Optional<unsigned> LastIRIndex = InnermostGEP->getInRangeIndex()) if (SrcElemTy == InnermostGEP->getSourceElementType() && NewIdxs.size() > *LastIRIndex) { InRangeIndex = LastIRIndex; for (unsigned I = 0; I <= *LastIRIndex; ++I) if (NewIdxs[I] != InnermostGEP->getOperand(I + 1)) return nullptr; } // Create a GEP. Constant *C = ConstantExpr::getGetElementPtr(SrcElemTy, Ptr, NewIdxs, InBounds, InRangeIndex); assert(C->getType()->getPointerElementType() == Ty && "Computed GetElementPtr has unexpected type!"); // If we ended up indexing a member with a type that doesn't match // the type of what the original indices indexed, add a cast. if (Ty != ResElemTy) C = FoldBitCast(C, ResTy, DL); return C; } /// Attempt to constant fold an instruction with the /// specified opcode and operands. If successful, the constant result is /// returned, if not, null is returned. Note that this function can fail when /// attempting to fold instructions like loads and stores, which have no /// constant expression form. Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode, ArrayRef<Constant *> Ops, const DataLayout &DL, const TargetLibraryInfo *TLI) { Type *DestTy = InstOrCE->getType(); if (Instruction::isUnaryOp(Opcode)) return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL); if (Instruction::isBinaryOp(Opcode)) return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL); if (Instruction::isCast(Opcode)) return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL); if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) { if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI)) return C; return ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), Ops[0], Ops.slice(1), GEP->isInBounds(), GEP->getInRangeIndex()); } if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE)) return CE->getWithOperands(Ops); switch (Opcode) { default: return nullptr; case Instruction::ICmp: case Instruction::FCmp: llvm_unreachable("Invalid for compares"); case Instruction::Call: if (auto *F = dyn_cast<Function>(Ops.back())) { const auto *Call = cast<CallBase>(InstOrCE); if (canConstantFoldCallTo(Call, F)) return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI); } return nullptr; case Instruction::Select: return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]); case Instruction::ExtractElement: return ConstantExpr::getExtractElement(Ops[0], Ops[1]); case Instruction::ExtractValue: return ConstantExpr::getExtractValue( Ops[0], cast<ExtractValueInst>(InstOrCE)->getIndices()); case Instruction::InsertElement: return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]); case Instruction::ShuffleVector: return ConstantExpr::getShuffleVector( Ops[0], Ops[1], cast<ShuffleVectorInst>(InstOrCE)->getShuffleMask()); } } } // end anonymous namespace //===----------------------------------------------------------------------===// // Constant Folding public APIs //===----------------------------------------------------------------------===// namespace { Constant * ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL, const TargetLibraryInfo *TLI, SmallDenseMap<Constant *, Constant *> &FoldedOps) { if (!isa<ConstantVector>(C) && !isa<ConstantExpr>(C)) return const_cast<Constant *>(C); SmallVector<Constant *, 8> Ops; for (const Use &OldU : C->operands()) { Constant *OldC = cast<Constant>(&OldU); Constant *NewC = OldC; // Recursively fold the ConstantExpr's operands. If we have already folded // a ConstantExpr, we don't have to process it again. if (isa<ConstantVector>(OldC) || isa<ConstantExpr>(OldC)) { auto It = FoldedOps.find(OldC); if (It == FoldedOps.end()) { NewC = ConstantFoldConstantImpl(OldC, DL, TLI, FoldedOps); FoldedOps.insert({OldC, NewC}); } else { NewC = It->second; } } Ops.push_back(NewC); } if (auto *CE = dyn_cast<ConstantExpr>(C)) { if (CE->isCompare()) return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1], DL, TLI); return ConstantFoldInstOperandsImpl(CE, CE->getOpcode(), Ops, DL, TLI); } assert(isa<ConstantVector>(C)); return ConstantVector::get(Ops); } } // end anonymous namespace Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL, const TargetLibraryInfo *TLI) { // Handle PHI nodes quickly here... if (auto *PN = dyn_cast<PHINode>(I)) { Constant *CommonValue = nullptr; SmallDenseMap<Constant *, Constant *> FoldedOps; for (Value *Incoming : PN->incoming_values()) { // If the incoming value is undef then skip it. Note that while we could // skip the value if it is equal to the phi node itself we choose not to // because that would break the rule that constant folding only applies if // all operands are constants. if (isa<UndefValue>(Incoming)) continue; // If the incoming value is not a constant, then give up. auto *C = dyn_cast<Constant>(Incoming); if (!C) return nullptr; // Fold the PHI's operands. C = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps); // If the incoming value is a different constant to // the one we saw previously, then give up. if (CommonValue && C != CommonValue) return nullptr; CommonValue = C; } // If we reach here, all incoming values are the same constant or undef. return CommonValue ? CommonValue : UndefValue::get(PN->getType()); } // Scan the operand list, checking to see if they are all constants, if so, // hand off to ConstantFoldInstOperandsImpl. if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); })) return nullptr; SmallDenseMap<Constant *, Constant *> FoldedOps; SmallVector<Constant *, 8> Ops; for (const Use &OpU : I->operands()) { auto *Op = cast<Constant>(&OpU); // Fold the Instruction's operands. Op = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps); Ops.push_back(Op); } if (const auto *CI = dyn_cast<CmpInst>(I)) return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1], DL, TLI); if (const auto *LI = dyn_cast<LoadInst>(I)) return ConstantFoldLoadInst(LI, DL); if (auto *IVI = dyn_cast<InsertValueInst>(I)) { return ConstantExpr::getInsertValue( cast<Constant>(IVI->getAggregateOperand()), cast<Constant>(IVI->getInsertedValueOperand()), IVI->getIndices()); } if (auto *EVI = dyn_cast<ExtractValueInst>(I)) { return ConstantExpr::getExtractValue( cast<Constant>(EVI->getAggregateOperand()), EVI->getIndices()); } return ConstantFoldInstOperands(I, Ops, DL, TLI); } Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL, const TargetLibraryInfo *TLI) { SmallDenseMap<Constant *, Constant *> FoldedOps; return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps); } Constant *llvm::ConstantFoldInstOperands(Instruction *I, ArrayRef<Constant *> Ops, const DataLayout &DL, const TargetLibraryInfo *TLI) { return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI); } Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate, Constant *Ops0, Constant *Ops1, const DataLayout &DL, const TargetLibraryInfo *TLI) { // fold: icmp (inttoptr x), null -> icmp x, 0 // fold: icmp null, (inttoptr x) -> icmp 0, x // fold: icmp (ptrtoint x), 0 -> icmp x, null // fold: icmp 0, (ptrtoint x) -> icmp null, x // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y // // FIXME: The following comment is out of data and the DataLayout is here now. // ConstantExpr::getCompare cannot do this, because it doesn't have DL // around to know if bit truncation is happening. if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) { if (Ops1->isNullValue()) { if (CE0->getOpcode() == Instruction::IntToPtr) { Type *IntPtrTy = DL.getIntPtrType(CE0->getType()); // Convert the integer value to the right size to ensure we get the // proper extension or truncation. Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0), IntPtrTy, false); Constant *Null = Constant::getNullValue(C->getType()); return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI); } // Only do this transformation if the int is intptrty in size, otherwise // there is a truncation or extension that we aren't modeling. if (CE0->getOpcode() == Instruction::PtrToInt) { Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType()); if (CE0->getType() == IntPtrTy) { Constant *C = CE0->getOperand(0); Constant *Null = Constant::getNullValue(C->getType()); return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI); } } } if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) { if (CE0->getOpcode() == CE1->getOpcode()) { if (CE0->getOpcode() == Instruction::IntToPtr) { Type *IntPtrTy = DL.getIntPtrType(CE0->getType()); // Convert the integer value to the right size to ensure we get the // proper extension or truncation. Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0), IntPtrTy, false); Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0), IntPtrTy, false); return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI); } // Only do this transformation if the int is intptrty in size, otherwise // there is a truncation or extension that we aren't modeling. if (CE0->getOpcode() == Instruction::PtrToInt) { Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType()); if (CE0->getType() == IntPtrTy && CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) { return ConstantFoldCompareInstOperands( Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI); } } } } // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0) // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0) if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) && CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) { Constant *LHS = ConstantFoldCompareInstOperands( Predicate, CE0->getOperand(0), Ops1, DL, TLI); Constant *RHS = ConstantFoldCompareInstOperands( Predicate, CE0->getOperand(1), Ops1, DL, TLI); unsigned OpC = Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; return ConstantFoldBinaryOpOperands(OpC, LHS, RHS, DL); } } else if (isa<ConstantExpr>(Ops1)) { // If RHS is a constant expression, but the left side isn't, swap the // operands and try again. Predicate = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)Predicate); return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI); } return ConstantExpr::getCompare(Predicate, Ops0, Ops1); } Constant *llvm::ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op, const DataLayout &DL) { assert(Instruction::isUnaryOp(Opcode)); return ConstantExpr::get(Opcode, Op); } Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL) { assert(Instruction::isBinaryOp(Opcode)); if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS)) if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL)) return C; return ConstantExpr::get(Opcode, LHS, RHS); } Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL) { assert(Instruction::isCast(Opcode)); switch (Opcode) { default: llvm_unreachable("Missing case"); case Instruction::PtrToInt: // If the input is a inttoptr, eliminate the pair. This requires knowing // the width of a pointer, so it can't be done in ConstantExpr::getCast. if (auto *CE = dyn_cast<ConstantExpr>(C)) { if (CE->getOpcode() == Instruction::IntToPtr) { Constant *Input = CE->getOperand(0); unsigned InWidth = Input->getType()->getScalarSizeInBits(); unsigned PtrWidth = DL.getPointerTypeSizeInBits(CE->getType()); if (PtrWidth < InWidth) { Constant *Mask = ConstantInt::get(CE->getContext(), APInt::getLowBitsSet(InWidth, PtrWidth)); Input = ConstantExpr::getAnd(Input, Mask); } // Do a zext or trunc to get to the dest size. return ConstantExpr::getIntegerCast(Input, DestTy, false); } } return ConstantExpr::getCast(Opcode, C, DestTy); case Instruction::IntToPtr: // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if // the int size is >= the ptr size and the address spaces are the same. // This requires knowing the width of a pointer, so it can't be done in // ConstantExpr::getCast. if (auto *CE = dyn_cast<ConstantExpr>(C)) { if (CE->getOpcode() == Instruction::PtrToInt) { Constant *SrcPtr = CE->getOperand(0); unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType()); unsigned MidIntSize = CE->getType()->getScalarSizeInBits(); if (MidIntSize >= SrcPtrSize) { unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace(); if (SrcAS == DestTy->getPointerAddressSpace()) return FoldBitCast(CE->getOperand(0), DestTy, DL); } } } return ConstantExpr::getCast(Opcode, C, DestTy); case Instruction::Trunc: case Instruction::ZExt: case Instruction::SExt: case Instruction::FPTrunc: case Instruction::FPExt: case Instruction::UIToFP: case Instruction::SIToFP: case Instruction::FPToUI: case Instruction::FPToSI: case Instruction::AddrSpaceCast: return ConstantExpr::getCast(Opcode, C, DestTy); case Instruction::BitCast: return FoldBitCast(C, DestTy, DL); } } Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C, ConstantExpr *CE) { if (!CE->getOperand(1)->isNullValue()) return nullptr; // Do not allow stepping over the value! // Loop over all of the operands, tracking down which value we are // addressing. for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) { C = C->getAggregateElement(CE->getOperand(i)); if (!C) return nullptr; } return C; } Constant * llvm::ConstantFoldLoadThroughGEPIndices(Constant *C, ArrayRef<Constant *> Indices) { // Loop over all of the operands, tracking down which value we are // addressing. for (Constant *Index : Indices) { C = C->getAggregateElement(Index); if (!C) return nullptr; } return C; } //===----------------------------------------------------------------------===// // Constant Folding for Calls // bool llvm::canConstantFoldCallTo(const CallBase *Call, const Function *F) { if (Call->isNoBuiltin()) return false; switch (F->getIntrinsicID()) { // Operations that do not operate floating-point numbers and do not depend on // FP environment can be folded even in strictfp functions. case Intrinsic::bswap: case Intrinsic::ctpop: case Intrinsic::ctlz: case Intrinsic::cttz: case Intrinsic::fshl: case Intrinsic::fshr: case Intrinsic::launder_invariant_group: case Intrinsic::strip_invariant_group: case Intrinsic::masked_load: case Intrinsic::sadd_with_overflow: case Intrinsic::uadd_with_overflow: case Intrinsic::ssub_with_overflow: case Intrinsic::usub_with_overflow: case Intrinsic::smul_with_overflow: case Intrinsic::umul_with_overflow: case Intrinsic::sadd_sat: case Intrinsic::uadd_sat: case Intrinsic::ssub_sat: case Intrinsic::usub_sat: case Intrinsic::smul_fix: case Intrinsic::smul_fix_sat: case Intrinsic::bitreverse: case Intrinsic::is_constant: return true; // Floating point operations cannot be folded in strictfp functions in // general case. They can be folded if FP environment is known to compiler. case Intrinsic::minnum: case Intrinsic::maxnum: case Intrinsic::minimum: case Intrinsic::maximum: case Intrinsic::log: case Intrinsic::log2: case Intrinsic::log10: case Intrinsic::exp: case Intrinsic::exp2: case Intrinsic::sqrt: case Intrinsic::sin: case Intrinsic::cos: case Intrinsic::pow: case Intrinsic::powi: case Intrinsic::fma: case Intrinsic::fmuladd: case Intrinsic::convert_from_fp16: case Intrinsic::convert_to_fp16: // The intrinsics below depend on rounding mode in MXCSR. case Intrinsic::amdgcn_cubeid: case Intrinsic::amdgcn_cubema: case Intrinsic::amdgcn_cubesc: case Intrinsic::amdgcn_cubetc: case Intrinsic::amdgcn_fmul_legacy: case Intrinsic::amdgcn_fract: case Intrinsic::amdgcn_ldexp: case Intrinsic::x86_sse_cvtss2si: case Intrinsic::x86_sse_cvtss2si64: case Intrinsic::x86_sse_cvttss2si: case Intrinsic::x86_sse_cvttss2si64: case Intrinsic::x86_sse2_cvtsd2si: case Intrinsic::x86_sse2_cvtsd2si64: case Intrinsic::x86_sse2_cvttsd2si: case Intrinsic::x86_sse2_cvttsd2si64: case Intrinsic::x86_avx512_vcvtss2si32: case Intrinsic::x86_avx512_vcvtss2si64: case Intrinsic::x86_avx512_cvttss2si: case Intrinsic::x86_avx512_cvttss2si64: case Intrinsic::x86_avx512_vcvtsd2si32: case Intrinsic::x86_avx512_vcvtsd2si64: case Intrinsic::x86_avx512_cvttsd2si: case Intrinsic::x86_avx512_cvttsd2si64: case Intrinsic::x86_avx512_vcvtss2usi32: case Intrinsic::x86_avx512_vcvtss2usi64: case Intrinsic::x86_avx512_cvttss2usi: case Intrinsic::x86_avx512_cvttss2usi64: case Intrinsic::x86_avx512_vcvtsd2usi32: case Intrinsic::x86_avx512_vcvtsd2usi64: case Intrinsic::x86_avx512_cvttsd2usi: case Intrinsic::x86_avx512_cvttsd2usi64: return !Call->isStrictFP(); // Sign operations are actually bitwise operations, they do not raise // exceptions even for SNANs. case Intrinsic::fabs: case Intrinsic::copysign: // Non-constrained variants of rounding operations means default FP // environment, they can be folded in any case. case Intrinsic::ceil: case Intrinsic::floor: case Intrinsic::round: case Intrinsic::trunc: case Intrinsic::nearbyint: case Intrinsic::rint: // Constrained intrinsics can be folded if FP environment is known // to compiler. case Intrinsic::experimental_constrained_ceil: case Intrinsic::experimental_constrained_floor: case Intrinsic::experimental_constrained_round: case Intrinsic::experimental_constrained_trunc: case Intrinsic::experimental_constrained_nearbyint: case Intrinsic::experimental_constrained_rint: return true; default: return false; case Intrinsic::not_intrinsic: break; } if (!F->hasName() || Call->isStrictFP()) return false; // In these cases, the check of the length is required. We don't want to // return true for a name like "cos\0blah" which strcmp would return equal to // "cos", but has length 8. StringRef Name = F->getName(); switch (Name[0]) { default: return false; case 'a': return Name == "acos" || Name == "acosf" || Name == "asin" || Name == "asinf" || Name == "atan" || Name == "atanf" || Name == "atan2" || Name == "atan2f"; case 'c': return Name == "ceil" || Name == "ceilf" || Name == "cos" || Name == "cosf" || Name == "cosh" || Name == "coshf"; case 'e': return Name == "exp" || Name == "expf" || Name == "exp2" || Name == "exp2f"; case 'f': return Name == "fabs" || Name == "fabsf" || Name == "floor" || Name == "floorf" || Name == "fmod" || Name == "fmodf"; case 'l': return Name == "log" || Name == "logf" || Name == "log2" || Name == "log2f" || Name == "log10" || Name == "log10f"; case 'n': return Name == "nearbyint" || Name == "nearbyintf"; case 'p': return Name == "pow" || Name == "powf"; case 'r': return Name == "remainder" || Name == "remainderf" || Name == "rint" || Name == "rintf" || Name == "round" || Name == "roundf"; case 's': return Name == "sin" || Name == "sinf" || Name == "sinh" || Name == "sinhf" || Name == "sqrt" || Name == "sqrtf"; case 't': return Name == "tan" || Name == "tanf" || Name == "tanh" || Name == "tanhf" || Name == "trunc" || Name == "truncf"; case '_': // Check for various function names that get used for the math functions // when the header files are preprocessed with the macro // __FINITE_MATH_ONLY__ enabled. // The '12' here is the length of the shortest name that can match. // We need to check the size before looking at Name[1] and Name[2] // so we may as well check a limit that will eliminate mismatches. if (Name.size() < 12 || Name[1] != '_') return false; switch (Name[2]) { default: return false; case 'a': return Name == "__acos_finite" || Name == "__acosf_finite" || Name == "__asin_finite" || Name == "__asinf_finite" || Name == "__atan2_finite" || Name == "__atan2f_finite"; case 'c': return Name == "__cosh_finite" || Name == "__coshf_finite"; case 'e': return Name == "__exp_finite" || Name == "__expf_finite" || Name == "__exp2_finite" || Name == "__exp2f_finite"; case 'l': return Name == "__log_finite" || Name == "__logf_finite" || Name == "__log10_finite" || Name == "__log10f_finite"; case 'p': return Name == "__pow_finite" || Name == "__powf_finite"; case 's': return Name == "__sinh_finite" || Name == "__sinhf_finite"; } } } namespace { Constant *GetConstantFoldFPValue(double V, Type *Ty) { if (Ty->isHalfTy() || Ty->isFloatTy()) { APFloat APF(V); bool unused; APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused); return ConstantFP::get(Ty->getContext(), APF); } if (Ty->isDoubleTy()) return ConstantFP::get(Ty->getContext(), APFloat(V)); llvm_unreachable("Can only constant fold half/float/double"); } /// Clear the floating-point exception state. inline void llvm_fenv_clearexcept() { #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT feclearexcept(FE_ALL_EXCEPT); #endif errno = 0; } /// Test if a floating-point exception was raised. inline bool llvm_fenv_testexcept() { int errno_val = errno; if (errno_val == ERANGE || errno_val == EDOM) return true; #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT)) return true; #endif return false; } Constant *ConstantFoldFP(double (*NativeFP)(double), double V, Type *Ty) { llvm_fenv_clearexcept(); V = NativeFP(V); if (llvm_fenv_testexcept()) { llvm_fenv_clearexcept(); return nullptr; } return GetConstantFoldFPValue(V, Ty); } Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double), double V, double W, Type *Ty) { llvm_fenv_clearexcept(); V = NativeFP(V, W); if (llvm_fenv_testexcept()) { llvm_fenv_clearexcept(); return nullptr; } return GetConstantFoldFPValue(V, Ty); } /// Attempt to fold an SSE floating point to integer conversion of a constant /// floating point. If roundTowardZero is false, the default IEEE rounding is /// used (toward nearest, ties to even). This matches the behavior of the /// non-truncating SSE instructions in the default rounding mode. The desired /// integer type Ty is used to select how many bits are available for the /// result. Returns null if the conversion cannot be performed, otherwise /// returns the Constant value resulting from the conversion. Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero, Type *Ty, bool IsSigned) { // All of these conversion intrinsics form an integer of at most 64bits. unsigned ResultWidth = Ty->getIntegerBitWidth(); assert(ResultWidth <= 64 && "Can only constant fold conversions to 64 and 32 bit ints"); uint64_t UIntVal; bool isExact = false; APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero : APFloat::rmNearestTiesToEven; APFloat::opStatus status = Val.convertToInteger(makeMutableArrayRef(UIntVal), ResultWidth, IsSigned, mode, &isExact); if (status != APFloat::opOK && (!roundTowardZero || status != APFloat::opInexact)) return nullptr; return ConstantInt::get(Ty, UIntVal, IsSigned); } double getValueAsDouble(ConstantFP *Op) { Type *Ty = Op->getType(); if (Ty->isFloatTy()) return Op->getValueAPF().convertToFloat(); if (Ty->isDoubleTy()) return Op->getValueAPF().convertToDouble(); bool unused; APFloat APF = Op->getValueAPF(); APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &unused); return APF.convertToDouble(); } static bool isManifestConstant(const Constant *c) { if (isa<ConstantData>(c)) { return true; } else if (isa<ConstantAggregate>(c) || isa<ConstantExpr>(c)) { for (const Value *subc : c->operand_values()) { if (!isManifestConstant(cast<Constant>(subc))) return false; } return true; } return false; } static bool getConstIntOrUndef(Value *Op, const APInt *&C) { if (auto *CI = dyn_cast<ConstantInt>(Op)) { C = &CI->getValue(); return true; } if (isa<UndefValue>(Op)) { C = nullptr; return true; } return false; } static Constant *ConstantFoldScalarCall1(StringRef Name, Intrinsic::ID IntrinsicID, Type *Ty, ArrayRef<Constant *> Operands, const TargetLibraryInfo *TLI, const CallBase *Call) { assert(Operands.size() == 1 && "Wrong number of operands."); if (IntrinsicID == Intrinsic::is_constant) { // We know we have a "Constant" argument. But we want to only // return true for manifest constants, not those that depend on // constants with unknowable values, e.g. GlobalValue or BlockAddress. if (isManifestConstant(Operands[0])) return ConstantInt::getTrue(Ty->getContext()); return nullptr; } if (isa<UndefValue>(Operands[0])) { // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN. // ctpop() is between 0 and bitwidth, pick 0 for undef. if (IntrinsicID == Intrinsic::cos || IntrinsicID == Intrinsic::ctpop) return Constant::getNullValue(Ty); if (IntrinsicID == Intrinsic::bswap || IntrinsicID == Intrinsic::bitreverse || IntrinsicID == Intrinsic::launder_invariant_group || IntrinsicID == Intrinsic::strip_invariant_group) return Operands[0]; } if (isa<ConstantPointerNull>(Operands[0])) { // launder(null) == null == strip(null) iff in addrspace 0 if (IntrinsicID == Intrinsic::launder_invariant_group || IntrinsicID == Intrinsic::strip_invariant_group) { // If instruction is not yet put in a basic block (e.g. when cloning // a function during inlining), Call's caller may not be available. // So check Call's BB first before querying Call->getCaller. const Function *Caller = Call->getParent() ? Call->getCaller() : nullptr; if (Caller && !NullPointerIsDefined( Caller, Operands[0]->getType()->getPointerAddressSpace())) { return Operands[0]; } return nullptr; } } if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) { if (IntrinsicID == Intrinsic::convert_to_fp16) { APFloat Val(Op->getValueAPF()); bool lost = false; Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &lost); return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt()); } if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy()) return nullptr; // Use internal versions of these intrinsics. APFloat U = Op->getValueAPF(); if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) { U.roundToIntegral(APFloat::rmNearestTiesToEven); return ConstantFP::get(Ty->getContext(), U); } if (IntrinsicID == Intrinsic::round) { U.roundToIntegral(APFloat::rmNearestTiesToAway); return ConstantFP::get(Ty->getContext(), U); } if (IntrinsicID == Intrinsic::ceil) { U.roundToIntegral(APFloat::rmTowardPositive); return ConstantFP::get(Ty->getContext(), U); } if (IntrinsicID == Intrinsic::floor) { U.roundToIntegral(APFloat::rmTowardNegative); return ConstantFP::get(Ty->getContext(), U); } if (IntrinsicID == Intrinsic::trunc) { U.roundToIntegral(APFloat::rmTowardZero); return ConstantFP::get(Ty->getContext(), U); } if (IntrinsicID == Intrinsic::fabs) { U.clearSign(); return ConstantFP::get(Ty->getContext(), U); } if (IntrinsicID == Intrinsic::amdgcn_fract) { // The v_fract instruction behaves like the OpenCL spec, which defines // fract(x) as fmin(x - floor(x), 0x1.fffffep-1f): "The min() operator is // there to prevent fract(-small) from returning 1.0. It returns the // largest positive floating-point number less than 1.0." APFloat FloorU(U); FloorU.roundToIntegral(APFloat::rmTowardNegative); APFloat FractU(U - FloorU); APFloat AlmostOne(U.getSemantics(), 1); AlmostOne.next(/*nextDown*/ true); return ConstantFP::get(Ty->getContext(), minimum(FractU, AlmostOne)); } // Rounding operations (floor, trunc, ceil, round and nearbyint) do not // raise FP exceptions, unless the argument is signaling NaN. Optional<APFloat::roundingMode> RM; switch (IntrinsicID) { default: break; case Intrinsic::experimental_constrained_nearbyint: case Intrinsic::experimental_constrained_rint: { auto CI = cast<ConstrainedFPIntrinsic>(Call); RM = CI->getRoundingMode(); if (!RM || RM.getValue() == RoundingMode::Dynamic) return nullptr; break; } case Intrinsic::experimental_constrained_round: RM = APFloat::rmNearestTiesToAway; break; case Intrinsic::experimental_constrained_ceil: RM = APFloat::rmTowardPositive; break; case Intrinsic::experimental_constrained_floor: RM = APFloat::rmTowardNegative; break; case Intrinsic::experimental_constrained_trunc: RM = APFloat::rmTowardZero; break; } if (RM) { auto CI = cast<ConstrainedFPIntrinsic>(Call); if (U.isFinite()) { APFloat::opStatus St = U.roundToIntegral(*RM); if (IntrinsicID == Intrinsic::experimental_constrained_rint && St == APFloat::opInexact) { Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior(); if (EB && *EB == fp::ebStrict) return nullptr; } } else if (U.isSignaling()) { Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior(); if (EB && *EB != fp::ebIgnore) return nullptr; U = APFloat::getQNaN(U.getSemantics()); } return ConstantFP::get(Ty->getContext(), U); } /// We only fold functions with finite arguments. Folding NaN and inf is /// likely to be aborted with an exception anyway, and some host libms /// have known errors raising exceptions. if (!U.isFinite()) return nullptr; /// Currently APFloat versions of these functions do not exist, so we use /// the host native double versions. Float versions are not called /// directly but for all these it is true (float)(f((double)arg)) == /// f(arg). Long double not supported yet. double V = getValueAsDouble(Op); switch (IntrinsicID) { default: break; case Intrinsic::log: return ConstantFoldFP(log, V, Ty); case Intrinsic::log2: // TODO: What about hosts that lack a C99 library? return ConstantFoldFP(Log2, V, Ty); case Intrinsic::log10: // TODO: What about hosts that lack a C99 library? return ConstantFoldFP(log10, V, Ty); case Intrinsic::exp: return ConstantFoldFP(exp, V, Ty); case Intrinsic::exp2: // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library. return ConstantFoldBinaryFP(pow, 2.0, V, Ty); case Intrinsic::sin: return ConstantFoldFP(sin, V, Ty); case Intrinsic::cos: return ConstantFoldFP(cos, V, Ty); case Intrinsic::sqrt: return ConstantFoldFP(sqrt, V, Ty); } if (!TLI) return nullptr; LibFunc Func = NotLibFunc; TLI->getLibFunc(Name, Func); switch (Func) { default: break; case LibFunc_acos: case LibFunc_acosf: case LibFunc_acos_finite: case LibFunc_acosf_finite: if (TLI->has(Func)) return ConstantFoldFP(acos, V, Ty); break; case LibFunc_asin: case LibFunc_asinf: case LibFunc_asin_finite: case LibFunc_asinf_finite: if (TLI->has(Func)) return ConstantFoldFP(asin, V, Ty); break; case LibFunc_atan: case LibFunc_atanf: if (TLI->has(Func)) return ConstantFoldFP(atan, V, Ty); break; case LibFunc_ceil: case LibFunc_ceilf: if (TLI->has(Func)) { U.roundToIntegral(APFloat::rmTowardPositive); return ConstantFP::get(Ty->getContext(), U); } break; case LibFunc_cos: case LibFunc_cosf: if (TLI->has(Func)) return ConstantFoldFP(cos, V, Ty); break; case LibFunc_cosh: case LibFunc_coshf: case LibFunc_cosh_finite: case LibFunc_coshf_finite: if (TLI->has(Func)) return ConstantFoldFP(cosh, V, Ty); break; case LibFunc_exp: case LibFunc_expf: case LibFunc_exp_finite: case LibFunc_expf_finite: if (TLI->has(Func)) return ConstantFoldFP(exp, V, Ty); break; case LibFunc_exp2: case LibFunc_exp2f: case LibFunc_exp2_finite: case LibFunc_exp2f_finite: if (TLI->has(Func)) // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library. return ConstantFoldBinaryFP(pow, 2.0, V, Ty); break; case LibFunc_fabs: case LibFunc_fabsf: if (TLI->has(Func)) { U.clearSign(); return ConstantFP::get(Ty->getContext(), U); } break; case LibFunc_floor: case LibFunc_floorf: if (TLI->has(Func)) { U.roundToIntegral(APFloat::rmTowardNegative); return ConstantFP::get(Ty->getContext(), U); } break; case LibFunc_log: case LibFunc_logf: case LibFunc_log_finite: case LibFunc_logf_finite: if (V > 0.0 && TLI->has(Func)) return ConstantFoldFP(log, V, Ty); break; case LibFunc_log2: case LibFunc_log2f: case LibFunc_log2_finite: case LibFunc_log2f_finite: if (V > 0.0 && TLI->has(Func)) // TODO: What about hosts that lack a C99 library? return ConstantFoldFP(Log2, V, Ty); break; case LibFunc_log10: case LibFunc_log10f: case LibFunc_log10_finite: case LibFunc_log10f_finite: if (V > 0.0 && TLI->has(Func)) // TODO: What about hosts that lack a C99 library? return ConstantFoldFP(log10, V, Ty); break; case LibFunc_nearbyint: case LibFunc_nearbyintf: case LibFunc_rint: case LibFunc_rintf: if (TLI->has(Func)) { U.roundToIntegral(APFloat::rmNearestTiesToEven); return ConstantFP::get(Ty->getContext(), U); } break; case LibFunc_round: case LibFunc_roundf: if (TLI->has(Func)) { U.roundToIntegral(APFloat::rmNearestTiesToAway); return ConstantFP::get(Ty->getContext(), U); } break; case LibFunc_sin: case LibFunc_sinf: if (TLI->has(Func)) return ConstantFoldFP(sin, V, Ty); break; case LibFunc_sinh: case LibFunc_sinhf: case LibFunc_sinh_finite: case LibFunc_sinhf_finite: if (TLI->has(Func)) return ConstantFoldFP(sinh, V, Ty); break; case LibFunc_sqrt: case LibFunc_sqrtf: if (V >= 0.0 && TLI->has(Func)) return ConstantFoldFP(sqrt, V, Ty); break; case LibFunc_tan: case LibFunc_tanf: if (TLI->has(Func)) return ConstantFoldFP(tan, V, Ty); break; case LibFunc_tanh: case LibFunc_tanhf: if (TLI->has(Func)) return ConstantFoldFP(tanh, V, Ty); break; case LibFunc_trunc: case LibFunc_truncf: if (TLI->has(Func)) { U.roundToIntegral(APFloat::rmTowardZero); return ConstantFP::get(Ty->getContext(), U); } break; } return nullptr; } if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) { switch (IntrinsicID) { case Intrinsic::bswap: return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap()); case Intrinsic::ctpop: return ConstantInt::get(Ty, Op->getValue().countPopulation()); case Intrinsic::bitreverse: return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits()); case Intrinsic::convert_from_fp16: { APFloat Val(APFloat::IEEEhalf(), Op->getValue()); bool lost = false; APFloat::opStatus status = Val.convert( Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost); // Conversion is always precise. (void)status; assert(status == APFloat::opOK && !lost && "Precision lost during fp16 constfolding"); return ConstantFP::get(Ty->getContext(), Val); } default: return nullptr; } } // Support ConstantVector in case we have an Undef in the top. if (isa<ConstantVector>(Operands[0]) || isa<ConstantDataVector>(Operands[0])) { auto *Op = cast<Constant>(Operands[0]); switch (IntrinsicID) { default: break; case Intrinsic::x86_sse_cvtss2si: case Intrinsic::x86_sse_cvtss2si64: case Intrinsic::x86_sse2_cvtsd2si: case Intrinsic::x86_sse2_cvtsd2si64: if (ConstantFP *FPOp = dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), /*roundTowardZero=*/false, Ty, /*IsSigned*/true); break; case Intrinsic::x86_sse_cvttss2si: case Intrinsic::x86_sse_cvttss2si64: case Intrinsic::x86_sse2_cvttsd2si: case Intrinsic::x86_sse2_cvttsd2si64: if (ConstantFP *FPOp = dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), /*roundTowardZero=*/true, Ty, /*IsSigned*/true); break; } } return nullptr; } static Constant *ConstantFoldScalarCall2(StringRef Name, Intrinsic::ID IntrinsicID, Type *Ty, ArrayRef<Constant *> Operands, const TargetLibraryInfo *TLI, const CallBase *Call) { assert(Operands.size() == 2 && "Wrong number of operands."); if (auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) { if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy()) return nullptr; double Op1V = getValueAsDouble(Op1); if (auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) { if (Op2->getType() != Op1->getType()) return nullptr; double Op2V = getValueAsDouble(Op2); if (IntrinsicID == Intrinsic::pow) { return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty); } if (IntrinsicID == Intrinsic::copysign) { APFloat V1 = Op1->getValueAPF(); const APFloat &V2 = Op2->getValueAPF(); V1.copySign(V2); return ConstantFP::get(Ty->getContext(), V1); } if (IntrinsicID == Intrinsic::minnum) { const APFloat &C1 = Op1->getValueAPF(); const APFloat &C2 = Op2->getValueAPF(); return ConstantFP::get(Ty->getContext(), minnum(C1, C2)); } if (IntrinsicID == Intrinsic::maxnum) { const APFloat &C1 = Op1->getValueAPF(); const APFloat &C2 = Op2->getValueAPF(); return ConstantFP::get(Ty->getContext(), maxnum(C1, C2)); } if (IntrinsicID == Intrinsic::minimum) { const APFloat &C1 = Op1->getValueAPF(); const APFloat &C2 = Op2->getValueAPF(); return ConstantFP::get(Ty->getContext(), minimum(C1, C2)); } if (IntrinsicID == Intrinsic::maximum) { const APFloat &C1 = Op1->getValueAPF(); const APFloat &C2 = Op2->getValueAPF(); return ConstantFP::get(Ty->getContext(), maximum(C1, C2)); } if (IntrinsicID == Intrinsic::amdgcn_fmul_legacy) { const APFloat &C1 = Op1->getValueAPF(); const APFloat &C2 = Op2->getValueAPF(); // The legacy behaviour is that multiplying zero by anything, even NaN // or infinity, gives +0.0. if (C1.isZero() || C2.isZero()) return ConstantFP::getNullValue(Ty); return ConstantFP::get(Ty->getContext(), C1 * C2); } if (!TLI) return nullptr; LibFunc Func = NotLibFunc; TLI->getLibFunc(Name, Func); switch (Func) { default: break; case LibFunc_pow: case LibFunc_powf: case LibFunc_pow_finite: case LibFunc_powf_finite: if (TLI->has(Func)) return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty); break; case LibFunc_fmod: case LibFunc_fmodf: if (TLI->has(Func)) { APFloat V = Op1->getValueAPF(); if (APFloat::opStatus::opOK == V.mod(Op2->getValueAPF())) return ConstantFP::get(Ty->getContext(), V); } break; case LibFunc_remainder: case LibFunc_remainderf: if (TLI->has(Func)) { APFloat V = Op1->getValueAPF(); if (APFloat::opStatus::opOK == V.remainder(Op2->getValueAPF())) return ConstantFP::get(Ty->getContext(), V); } break; case LibFunc_atan2: case LibFunc_atan2f: case LibFunc_atan2_finite: case LibFunc_atan2f_finite: if (TLI->has(Func)) return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty); break; } } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) { if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy()) return ConstantFP::get(Ty->getContext(), APFloat((float)std::pow((float)Op1V, (int)Op2C->getZExtValue()))); if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy()) return ConstantFP::get(Ty->getContext(), APFloat((float)std::pow((float)Op1V, (int)Op2C->getZExtValue()))); if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy()) return ConstantFP::get(Ty->getContext(), APFloat((double)std::pow((double)Op1V, (int)Op2C->getZExtValue()))); if (IntrinsicID == Intrinsic::amdgcn_ldexp) { // FIXME: Should flush denorms depending on FP mode, but that's ignored // everywhere else. // scalbn is equivalent to ldexp with float radix 2 APFloat Result = scalbn(Op1->getValueAPF(), Op2C->getSExtValue(), APFloat::rmNearestTiesToEven); return ConstantFP::get(Ty->getContext(), Result); } } return nullptr; } if (Operands[0]->getType()->isIntegerTy() && Operands[1]->getType()->isIntegerTy()) { const APInt *C0, *C1; if (!getConstIntOrUndef(Operands[0], C0) || !getConstIntOrUndef(Operands[1], C1)) return nullptr; switch (IntrinsicID) { default: break; case Intrinsic::usub_with_overflow: case Intrinsic::ssub_with_overflow: case Intrinsic::uadd_with_overflow: case Intrinsic::sadd_with_overflow: // X - undef -> { undef, false } // undef - X -> { undef, false } // X + undef -> { undef, false } // undef + x -> { undef, false } if (!C0 || !C1) { return ConstantStruct::get( cast<StructType>(Ty), {UndefValue::get(Ty->getStructElementType(0)), Constant::getNullValue(Ty->getStructElementType(1))}); } LLVM_FALLTHROUGH; case Intrinsic::smul_with_overflow: case Intrinsic::umul_with_overflow: { // undef * X -> { 0, false } // X * undef -> { 0, false } if (!C0 || !C1) return Constant::getNullValue(Ty); APInt Res; bool Overflow; switch (IntrinsicID) { default: llvm_unreachable("Invalid case"); case Intrinsic::sadd_with_overflow: Res = C0->sadd_ov(*C1, Overflow); break; case Intrinsic::uadd_with_overflow: Res = C0->uadd_ov(*C1, Overflow); break; case Intrinsic::ssub_with_overflow: Res = C0->ssub_ov(*C1, Overflow); break; case Intrinsic::usub_with_overflow: Res = C0->usub_ov(*C1, Overflow); break; case Intrinsic::smul_with_overflow: Res = C0->smul_ov(*C1, Overflow); break; case Intrinsic::umul_with_overflow: Res = C0->umul_ov(*C1, Overflow); break; } Constant *Ops[] = { ConstantInt::get(Ty->getContext(), Res), ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow) }; return ConstantStruct::get(cast<StructType>(Ty), Ops); } case Intrinsic::uadd_sat: case Intrinsic::sadd_sat: if (!C0 && !C1) return UndefValue::get(Ty); if (!C0 || !C1) return Constant::getAllOnesValue(Ty); if (IntrinsicID == Intrinsic::uadd_sat) return ConstantInt::get(Ty, C0->uadd_sat(*C1)); else return ConstantInt::get(Ty, C0->sadd_sat(*C1)); case Intrinsic::usub_sat: case Intrinsic::ssub_sat: if (!C0 && !C1) return UndefValue::get(Ty); if (!C0 || !C1) return Constant::getNullValue(Ty); if (IntrinsicID == Intrinsic::usub_sat) return ConstantInt::get(Ty, C0->usub_sat(*C1)); else return ConstantInt::get(Ty, C0->ssub_sat(*C1)); case Intrinsic::cttz: case Intrinsic::ctlz: assert(C1 && "Must be constant int"); // cttz(0, 1) and ctlz(0, 1) are undef. if (C1->isOneValue() && (!C0 || C0->isNullValue())) return UndefValue::get(Ty); if (!C0) return Constant::getNullValue(Ty); if (IntrinsicID == Intrinsic::cttz) return ConstantInt::get(Ty, C0->countTrailingZeros()); else return ConstantInt::get(Ty, C0->countLeadingZeros()); } return nullptr; } // Support ConstantVector in case we have an Undef in the top. if ((isa<ConstantVector>(Operands[0]) || isa<ConstantDataVector>(Operands[0])) && // Check for default rounding mode. // FIXME: Support other rounding modes? isa<ConstantInt>(Operands[1]) && cast<ConstantInt>(Operands[1])->getValue() == 4) { auto *Op = cast<Constant>(Operands[0]); switch (IntrinsicID) { default: break; case Intrinsic::x86_avx512_vcvtss2si32: case Intrinsic::x86_avx512_vcvtss2si64: case Intrinsic::x86_avx512_vcvtsd2si32: case Intrinsic::x86_avx512_vcvtsd2si64: if (ConstantFP *FPOp = dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), /*roundTowardZero=*/false, Ty, /*IsSigned*/true); break; case Intrinsic::x86_avx512_vcvtss2usi32: case Intrinsic::x86_avx512_vcvtss2usi64: case Intrinsic::x86_avx512_vcvtsd2usi32: case Intrinsic::x86_avx512_vcvtsd2usi64: if (ConstantFP *FPOp = dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), /*roundTowardZero=*/false, Ty, /*IsSigned*/false); break; case Intrinsic::x86_avx512_cvttss2si: case Intrinsic::x86_avx512_cvttss2si64: case Intrinsic::x86_avx512_cvttsd2si: case Intrinsic::x86_avx512_cvttsd2si64: if (ConstantFP *FPOp = dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), /*roundTowardZero=*/true, Ty, /*IsSigned*/true); break; case Intrinsic::x86_avx512_cvttss2usi: case Intrinsic::x86_avx512_cvttss2usi64: case Intrinsic::x86_avx512_cvttsd2usi: case Intrinsic::x86_avx512_cvttsd2usi64: if (ConstantFP *FPOp = dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), /*roundTowardZero=*/true, Ty, /*IsSigned*/false); break; } } return nullptr; } static APFloat ConstantFoldAMDGCNCubeIntrinsic(Intrinsic::ID IntrinsicID, const APFloat &S0, const APFloat &S1, const APFloat &S2) { unsigned ID; const fltSemantics &Sem = S0.getSemantics(); APFloat MA(Sem), SC(Sem), TC(Sem); if (abs(S2) >= abs(S0) && abs(S2) >= abs(S1)) { if (S2.isNegative() && S2.isNonZero() && !S2.isNaN()) { // S2 < 0 ID = 5; SC = -S0; } else { ID = 4; SC = S0; } MA = S2; TC = -S1; } else if (abs(S1) >= abs(S0)) { if (S1.isNegative() && S1.isNonZero() && !S1.isNaN()) { // S1 < 0 ID = 3; TC = -S2; } else { ID = 2; TC = S2; } MA = S1; SC = S0; } else { if (S0.isNegative() && S0.isNonZero() && !S0.isNaN()) { // S0 < 0 ID = 1; SC = S2; } else { ID = 0; SC = -S2; } MA = S0; TC = -S1; } switch (IntrinsicID) { default: llvm_unreachable("unhandled amdgcn cube intrinsic"); case Intrinsic::amdgcn_cubeid: return APFloat(Sem, ID); case Intrinsic::amdgcn_cubema: return MA + MA; case Intrinsic::amdgcn_cubesc: return SC; case Intrinsic::amdgcn_cubetc: return TC; } } static Constant *ConstantFoldScalarCall3(StringRef Name, Intrinsic::ID IntrinsicID, Type *Ty, ArrayRef<Constant *> Operands, const TargetLibraryInfo *TLI, const CallBase *Call) { assert(Operands.size() == 3 && "Wrong number of operands."); if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) { if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) { if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) { switch (IntrinsicID) { default: break; case Intrinsic::fma: case Intrinsic::fmuladd: { APFloat V = Op1->getValueAPF(); V.fusedMultiplyAdd(Op2->getValueAPF(), Op3->getValueAPF(), APFloat::rmNearestTiesToEven); return ConstantFP::get(Ty->getContext(), V); } case Intrinsic::amdgcn_cubeid: case Intrinsic::amdgcn_cubema: case Intrinsic::amdgcn_cubesc: case Intrinsic::amdgcn_cubetc: { APFloat V = ConstantFoldAMDGCNCubeIntrinsic( IntrinsicID, Op1->getValueAPF(), Op2->getValueAPF(), Op3->getValueAPF()); return ConstantFP::get(Ty->getContext(), V); } } } } } if (const auto *Op1 = dyn_cast<ConstantInt>(Operands[0])) { if (const auto *Op2 = dyn_cast<ConstantInt>(Operands[1])) { if (const auto *Op3 = dyn_cast<ConstantInt>(Operands[2])) { switch (IntrinsicID) { default: break; case Intrinsic::smul_fix: case Intrinsic::smul_fix_sat: { // This code performs rounding towards negative infinity in case the // result cannot be represented exactly for the given scale. Targets // that do care about rounding should use a target hook for specifying // how rounding should be done, and provide their own folding to be // consistent with rounding. This is the same approach as used by // DAGTypeLegalizer::ExpandIntRes_MULFIX. APInt Lhs = Op1->getValue(); APInt Rhs = Op2->getValue(); unsigned Scale = Op3->getValue().getZExtValue(); unsigned Width = Lhs.getBitWidth(); assert(Scale < Width && "Illegal scale."); unsigned ExtendedWidth = Width * 2; APInt Product = (Lhs.sextOrSelf(ExtendedWidth) * Rhs.sextOrSelf(ExtendedWidth)).ashr(Scale); if (IntrinsicID == Intrinsic::smul_fix_sat) { APInt MaxValue = APInt::getSignedMaxValue(Width).sextOrSelf(ExtendedWidth); APInt MinValue = APInt::getSignedMinValue(Width).sextOrSelf(ExtendedWidth); Product = APIntOps::smin(Product, MaxValue); Product = APIntOps::smax(Product, MinValue); } return ConstantInt::get(Ty->getContext(), Product.sextOrTrunc(Width)); } } } } } if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) { const APInt *C0, *C1, *C2; if (!getConstIntOrUndef(Operands[0], C0) || !getConstIntOrUndef(Operands[1], C1) || !getConstIntOrUndef(Operands[2], C2)) return nullptr; bool IsRight = IntrinsicID == Intrinsic::fshr; if (!C2) return Operands[IsRight ? 1 : 0]; if (!C0 && !C1) return UndefValue::get(Ty); // The shift amount is interpreted as modulo the bitwidth. If the shift // amount is effectively 0, avoid UB due to oversized inverse shift below. unsigned BitWidth = C2->getBitWidth(); unsigned ShAmt = C2->urem(BitWidth); if (!ShAmt) return Operands[IsRight ? 1 : 0]; // (C0 << ShlAmt) | (C1 >> LshrAmt) unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt; unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt; if (!C0) return ConstantInt::get(Ty, C1->lshr(LshrAmt)); if (!C1) return ConstantInt::get(Ty, C0->shl(ShlAmt)); return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt)); } return nullptr; } static Constant *ConstantFoldScalarCall(StringRef Name, Intrinsic::ID IntrinsicID, Type *Ty, ArrayRef<Constant *> Operands, const TargetLibraryInfo *TLI, const CallBase *Call) { if (Operands.size() == 1) return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call); if (Operands.size() == 2) return ConstantFoldScalarCall2(Name, IntrinsicID, Ty, Operands, TLI, Call); if (Operands.size() == 3) return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call); return nullptr; } static Constant *ConstantFoldVectorCall(StringRef Name, Intrinsic::ID IntrinsicID, VectorType *VTy, ArrayRef<Constant *> Operands, const DataLayout &DL, const TargetLibraryInfo *TLI, const CallBase *Call) { SmallVector<Constant *, 4> Result(VTy->getNumElements()); SmallVector<Constant *, 4> Lane(Operands.size()); Type *Ty = VTy->getElementType(); // Do not iterate on scalable vector. The number of elements is unknown at // compile-time. if (isa<ScalableVectorType>(VTy)) return nullptr; if (IntrinsicID == Intrinsic::masked_load) { auto *SrcPtr = Operands[0]; auto *Mask = Operands[2]; auto *Passthru = Operands[3]; Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, VTy, DL); SmallVector<Constant *, 32> NewElements; for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) { auto *MaskElt = Mask->getAggregateElement(I); if (!MaskElt) break; auto *PassthruElt = Passthru->getAggregateElement(I); auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr; if (isa<UndefValue>(MaskElt)) { if (PassthruElt) NewElements.push_back(PassthruElt); else if (VecElt) NewElements.push_back(VecElt); else return nullptr; } if (MaskElt->isNullValue()) { if (!PassthruElt) return nullptr; NewElements.push_back(PassthruElt); } else if (MaskElt->isOneValue()) { if (!VecElt) return nullptr; NewElements.push_back(VecElt); } else { return nullptr; } } if (NewElements.size() != VTy->getNumElements()) return nullptr; return ConstantVector::get(NewElements); } for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) { // Gather a column of constants. for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) { // Some intrinsics use a scalar type for certain arguments. if (hasVectorInstrinsicScalarOpd(IntrinsicID, J)) { Lane[J] = Operands[J]; continue; } Constant *Agg = Operands[J]->getAggregateElement(I); if (!Agg) return nullptr; Lane[J] = Agg; } // Use the regular scalar folding to simplify this column. Constant *Folded = ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call); if (!Folded) return nullptr; Result[I] = Folded; } return ConstantVector::get(Result); } } // end anonymous namespace Constant *llvm::ConstantFoldCall(const CallBase *Call, Function *F, ArrayRef<Constant *> Operands, const TargetLibraryInfo *TLI) { if (Call->isNoBuiltin()) return nullptr; if (!F->hasName()) return nullptr; StringRef Name = F->getName(); Type *Ty = F->getReturnType(); if (auto *VTy = dyn_cast<VectorType>(Ty)) return ConstantFoldVectorCall(Name, F->getIntrinsicID(), VTy, Operands, F->getParent()->getDataLayout(), TLI, Call); return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI, Call); } bool llvm::isMathLibCallNoop(const CallBase *Call, const TargetLibraryInfo *TLI) { // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap // (and to some extent ConstantFoldScalarCall). if (Call->isNoBuiltin() || Call->isStrictFP()) return false; Function *F = Call->getCalledFunction(); if (!F) return false; LibFunc Func; if (!TLI || !TLI->getLibFunc(*F, Func)) return false; if (Call->getNumArgOperands() == 1) { if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) { const APFloat &Op = OpC->getValueAPF(); switch (Func) { case LibFunc_logl: case LibFunc_log: case LibFunc_logf: case LibFunc_log2l: case LibFunc_log2: case LibFunc_log2f: case LibFunc_log10l: case LibFunc_log10: case LibFunc_log10f: return Op.isNaN() || (!Op.isZero() && !Op.isNegative()); case LibFunc_expl: case LibFunc_exp: case LibFunc_expf: // FIXME: These boundaries are slightly conservative. if (OpC->getType()->isDoubleTy()) return !(Op < APFloat(-745.0) || Op > APFloat(709.0)); if (OpC->getType()->isFloatTy()) return !(Op < APFloat(-103.0f) || Op > APFloat(88.0f)); break; case LibFunc_exp2l: case LibFunc_exp2: case LibFunc_exp2f: // FIXME: These boundaries are slightly conservative. if (OpC->getType()->isDoubleTy()) return !(Op < APFloat(-1074.0) || Op > APFloat(1023.0)); if (OpC->getType()->isFloatTy()) return !(Op < APFloat(-149.0f) || Op > APFloat(127.0f)); break; case LibFunc_sinl: case LibFunc_sin: case LibFunc_sinf: case LibFunc_cosl: case LibFunc_cos: case LibFunc_cosf: return !Op.isInfinity(); case LibFunc_tanl: case LibFunc_tan: case LibFunc_tanf: { // FIXME: Stop using the host math library. // FIXME: The computation isn't done in the right precision. Type *Ty = OpC->getType(); if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) { double OpV = getValueAsDouble(OpC); return ConstantFoldFP(tan, OpV, Ty) != nullptr; } break; } case LibFunc_asinl: case LibFunc_asin: case LibFunc_asinf: case LibFunc_acosl: case LibFunc_acos: case LibFunc_acosf: return !(Op < APFloat(Op.getSemantics(), "-1") || Op > APFloat(Op.getSemantics(), "1")); case LibFunc_sinh: case LibFunc_cosh: case LibFunc_sinhf: case LibFunc_coshf: case LibFunc_sinhl: case LibFunc_coshl: // FIXME: These boundaries are slightly conservative. if (OpC->getType()->isDoubleTy()) return !(Op < APFloat(-710.0) || Op > APFloat(710.0)); if (OpC->getType()->isFloatTy()) return !(Op < APFloat(-89.0f) || Op > APFloat(89.0f)); break; case LibFunc_sqrtl: case LibFunc_sqrt: case LibFunc_sqrtf: return Op.isNaN() || Op.isZero() || !Op.isNegative(); // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p, // maybe others? default: break; } } } if (Call->getNumArgOperands() == 2) { ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0)); ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1)); if (Op0C && Op1C) { const APFloat &Op0 = Op0C->getValueAPF(); const APFloat &Op1 = Op1C->getValueAPF(); switch (Func) { case LibFunc_powl: case LibFunc_pow: case LibFunc_powf: { // FIXME: Stop using the host math library. // FIXME: The computation isn't done in the right precision. Type *Ty = Op0C->getType(); if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) { if (Ty == Op1C->getType()) { double Op0V = getValueAsDouble(Op0C); double Op1V = getValueAsDouble(Op1C); return ConstantFoldBinaryFP(pow, Op0V, Op1V, Ty) != nullptr; } } break; } case LibFunc_fmodl: case LibFunc_fmod: case LibFunc_fmodf: case LibFunc_remainderl: case LibFunc_remainder: case LibFunc_remainderf: return Op0.isNaN() || Op1.isNaN() || (!Op0.isInfinity() && !Op1.isZero()); default: break; } } } return false; } void TargetFolder::anchor() {}