Mercurial > hg > CbC > CbC_llvm
view llvm/lib/Analysis/MemoryBuiltins.cpp @ 220:42394fc6a535
Added tag llvm12 for changeset 0572611fdcc8
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 15 Jun 2021 19:13:43 +0900 |
parents | 0572611fdcc8 |
children | 2e18cbf3894f |
line wrap: on
line source
//===- MemoryBuiltins.cpp - Identify calls to memory builtins -------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This family of functions identifies calls to builtin functions that allocate // or free memory. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/MemoryBuiltins.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/None.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringRef.h" #include "llvm/Analysis/TargetFolder.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/Utils/Local.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/Argument.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalAlias.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Operator.h" #include "llvm/IR/Type.h" #include "llvm/IR/Value.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Debug.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include <cassert> #include <cstdint> #include <iterator> #include <utility> using namespace llvm; #define DEBUG_TYPE "memory-builtins" enum AllocType : uint8_t { OpNewLike = 1<<0, // allocates; never returns null MallocLike = 1<<1 | OpNewLike, // allocates; may return null AlignedAllocLike = 1<<2, // allocates with alignment; may return null CallocLike = 1<<3, // allocates + bzero ReallocLike = 1<<4, // reallocates StrDupLike = 1<<5, MallocOrCallocLike = MallocLike | CallocLike | AlignedAllocLike, AllocLike = MallocOrCallocLike | StrDupLike, AnyAlloc = AllocLike | ReallocLike }; struct AllocFnsTy { AllocType AllocTy; unsigned NumParams; // First and Second size parameters (or -1 if unused) int FstParam, SndParam; }; // FIXME: certain users need more information. E.g., SimplifyLibCalls needs to // know which functions are nounwind, noalias, nocapture parameters, etc. static const std::pair<LibFunc, AllocFnsTy> AllocationFnData[] = { {LibFunc_malloc, {MallocLike, 1, 0, -1}}, {LibFunc_valloc, {MallocLike, 1, 0, -1}}, {LibFunc_Znwj, {OpNewLike, 1, 0, -1}}, // new(unsigned int) {LibFunc_ZnwjRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new(unsigned int, nothrow) {LibFunc_ZnwjSt11align_val_t, {OpNewLike, 2, 0, -1}}, // new(unsigned int, align_val_t) {LibFunc_ZnwjSt11align_val_tRKSt9nothrow_t, // new(unsigned int, align_val_t, nothrow) {MallocLike, 3, 0, -1}}, {LibFunc_Znwm, {OpNewLike, 1, 0, -1}}, // new(unsigned long) {LibFunc_ZnwmRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new(unsigned long, nothrow) {LibFunc_ZnwmSt11align_val_t, {OpNewLike, 2, 0, -1}}, // new(unsigned long, align_val_t) {LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t, // new(unsigned long, align_val_t, nothrow) {MallocLike, 3, 0, -1}}, {LibFunc_Znaj, {OpNewLike, 1, 0, -1}}, // new[](unsigned int) {LibFunc_ZnajRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new[](unsigned int, nothrow) {LibFunc_ZnajSt11align_val_t, {OpNewLike, 2, 0, -1}}, // new[](unsigned int, align_val_t) {LibFunc_ZnajSt11align_val_tRKSt9nothrow_t, // new[](unsigned int, align_val_t, nothrow) {MallocLike, 3, 0, -1}}, {LibFunc_Znam, {OpNewLike, 1, 0, -1}}, // new[](unsigned long) {LibFunc_ZnamRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new[](unsigned long, nothrow) {LibFunc_ZnamSt11align_val_t, {OpNewLike, 2, 0, -1}}, // new[](unsigned long, align_val_t) {LibFunc_ZnamSt11align_val_tRKSt9nothrow_t, // new[](unsigned long, align_val_t, nothrow) {MallocLike, 3, 0, -1}}, {LibFunc_msvc_new_int, {OpNewLike, 1, 0, -1}}, // new(unsigned int) {LibFunc_msvc_new_int_nothrow, {MallocLike, 2, 0, -1}}, // new(unsigned int, nothrow) {LibFunc_msvc_new_longlong, {OpNewLike, 1, 0, -1}}, // new(unsigned long long) {LibFunc_msvc_new_longlong_nothrow, {MallocLike, 2, 0, -1}}, // new(unsigned long long, nothrow) {LibFunc_msvc_new_array_int, {OpNewLike, 1, 0, -1}}, // new[](unsigned int) {LibFunc_msvc_new_array_int_nothrow, {MallocLike, 2, 0, -1}}, // new[](unsigned int, nothrow) {LibFunc_msvc_new_array_longlong, {OpNewLike, 1, 0, -1}}, // new[](unsigned long long) {LibFunc_msvc_new_array_longlong_nothrow, {MallocLike, 2, 0, -1}}, // new[](unsigned long long, nothrow) {LibFunc_aligned_alloc, {AlignedAllocLike, 2, 1, -1}}, {LibFunc_calloc, {CallocLike, 2, 0, 1}}, {LibFunc_realloc, {ReallocLike, 2, 1, -1}}, {LibFunc_reallocf, {ReallocLike, 2, 1, -1}}, {LibFunc_strdup, {StrDupLike, 1, -1, -1}}, {LibFunc_strndup, {StrDupLike, 2, 1, -1}} // TODO: Handle "int posix_memalign(void **, size_t, size_t)" }; static const Function *getCalledFunction(const Value *V, bool LookThroughBitCast, bool &IsNoBuiltin) { // Don't care about intrinsics in this case. if (isa<IntrinsicInst>(V)) return nullptr; if (LookThroughBitCast) V = V->stripPointerCasts(); const auto *CB = dyn_cast<CallBase>(V); if (!CB) return nullptr; IsNoBuiltin = CB->isNoBuiltin(); if (const Function *Callee = CB->getCalledFunction()) return Callee; return nullptr; } /// Returns the allocation data for the given value if it's either a call to a /// known allocation function, or a call to a function with the allocsize /// attribute. static Optional<AllocFnsTy> getAllocationDataForFunction(const Function *Callee, AllocType AllocTy, const TargetLibraryInfo *TLI) { // Make sure that the function is available. StringRef FnName = Callee->getName(); LibFunc TLIFn; if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn)) return None; const auto *Iter = find_if( AllocationFnData, [TLIFn](const std::pair<LibFunc, AllocFnsTy> &P) { return P.first == TLIFn; }); if (Iter == std::end(AllocationFnData)) return None; const AllocFnsTy *FnData = &Iter->second; if ((FnData->AllocTy & AllocTy) != FnData->AllocTy) return None; // Check function prototype. int FstParam = FnData->FstParam; int SndParam = FnData->SndParam; FunctionType *FTy = Callee->getFunctionType(); if (FTy->getReturnType() == Type::getInt8PtrTy(FTy->getContext()) && FTy->getNumParams() == FnData->NumParams && (FstParam < 0 || (FTy->getParamType(FstParam)->isIntegerTy(32) || FTy->getParamType(FstParam)->isIntegerTy(64))) && (SndParam < 0 || FTy->getParamType(SndParam)->isIntegerTy(32) || FTy->getParamType(SndParam)->isIntegerTy(64))) return *FnData; return None; } static Optional<AllocFnsTy> getAllocationData(const Value *V, AllocType AllocTy, const TargetLibraryInfo *TLI, bool LookThroughBitCast = false) { bool IsNoBuiltinCall; if (const Function *Callee = getCalledFunction(V, LookThroughBitCast, IsNoBuiltinCall)) if (!IsNoBuiltinCall) return getAllocationDataForFunction(Callee, AllocTy, TLI); return None; } static Optional<AllocFnsTy> getAllocationData(const Value *V, AllocType AllocTy, function_ref<const TargetLibraryInfo &(Function &)> GetTLI, bool LookThroughBitCast = false) { bool IsNoBuiltinCall; if (const Function *Callee = getCalledFunction(V, LookThroughBitCast, IsNoBuiltinCall)) if (!IsNoBuiltinCall) return getAllocationDataForFunction( Callee, AllocTy, &GetTLI(const_cast<Function &>(*Callee))); return None; } static Optional<AllocFnsTy> getAllocationSize(const Value *V, const TargetLibraryInfo *TLI) { bool IsNoBuiltinCall; const Function *Callee = getCalledFunction(V, /*LookThroughBitCast=*/false, IsNoBuiltinCall); if (!Callee) return None; // Prefer to use existing information over allocsize. This will give us an // accurate AllocTy. if (!IsNoBuiltinCall) if (Optional<AllocFnsTy> Data = getAllocationDataForFunction(Callee, AnyAlloc, TLI)) return Data; Attribute Attr = Callee->getFnAttribute(Attribute::AllocSize); if (Attr == Attribute()) return None; std::pair<unsigned, Optional<unsigned>> Args = Attr.getAllocSizeArgs(); AllocFnsTy Result; // Because allocsize only tells us how many bytes are allocated, we're not // really allowed to assume anything, so we use MallocLike. Result.AllocTy = MallocLike; Result.NumParams = Callee->getNumOperands(); Result.FstParam = Args.first; Result.SndParam = Args.second.getValueOr(-1); return Result; } static bool hasNoAliasAttr(const Value *V, bool LookThroughBitCast) { const auto *CB = dyn_cast<CallBase>(LookThroughBitCast ? V->stripPointerCasts() : V); return CB && CB->hasRetAttr(Attribute::NoAlias); } /// Tests if a value is a call or invoke to a library function that /// allocates or reallocates memory (either malloc, calloc, realloc, or strdup /// like). bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI, bool LookThroughBitCast) { return getAllocationData(V, AnyAlloc, TLI, LookThroughBitCast).hasValue(); } bool llvm::isAllocationFn( const Value *V, function_ref<const TargetLibraryInfo &(Function &)> GetTLI, bool LookThroughBitCast) { return getAllocationData(V, AnyAlloc, GetTLI, LookThroughBitCast).hasValue(); } /// Tests if a value is a call or invoke to a function that returns a /// NoAlias pointer (including malloc/calloc/realloc/strdup-like functions). bool llvm::isNoAliasFn(const Value *V, const TargetLibraryInfo *TLI, bool LookThroughBitCast) { // it's safe to consider realloc as noalias since accessing the original // pointer is undefined behavior return isAllocationFn(V, TLI, LookThroughBitCast) || hasNoAliasAttr(V, LookThroughBitCast); } /// Tests if a value is a call or invoke to a library function that /// allocates uninitialized memory (such as malloc). bool llvm::isMallocLikeFn(const Value *V, const TargetLibraryInfo *TLI, bool LookThroughBitCast) { return getAllocationData(V, MallocLike, TLI, LookThroughBitCast).hasValue(); } bool llvm::isMallocLikeFn( const Value *V, function_ref<const TargetLibraryInfo &(Function &)> GetTLI, bool LookThroughBitCast) { return getAllocationData(V, MallocLike, GetTLI, LookThroughBitCast) .hasValue(); } /// Tests if a value is a call or invoke to a library function that /// allocates uninitialized memory with alignment (such as aligned_alloc). bool llvm::isAlignedAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI, bool LookThroughBitCast) { return getAllocationData(V, AlignedAllocLike, TLI, LookThroughBitCast) .hasValue(); } bool llvm::isAlignedAllocLikeFn( const Value *V, function_ref<const TargetLibraryInfo &(Function &)> GetTLI, bool LookThroughBitCast) { return getAllocationData(V, AlignedAllocLike, GetTLI, LookThroughBitCast) .hasValue(); } /// Tests if a value is a call or invoke to a library function that /// allocates zero-filled memory (such as calloc). bool llvm::isCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI, bool LookThroughBitCast) { return getAllocationData(V, CallocLike, TLI, LookThroughBitCast).hasValue(); } /// Tests if a value is a call or invoke to a library function that /// allocates memory similar to malloc or calloc. bool llvm::isMallocOrCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI, bool LookThroughBitCast) { return getAllocationData(V, MallocOrCallocLike, TLI, LookThroughBitCast).hasValue(); } /// Tests if a value is a call or invoke to a library function that /// allocates memory (either malloc, calloc, or strdup like). bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI, bool LookThroughBitCast) { return getAllocationData(V, AllocLike, TLI, LookThroughBitCast).hasValue(); } /// Tests if a value is a call or invoke to a library function that /// reallocates memory (e.g., realloc). bool llvm::isReallocLikeFn(const Value *V, const TargetLibraryInfo *TLI, bool LookThroughBitCast) { return getAllocationData(V, ReallocLike, TLI, LookThroughBitCast).hasValue(); } /// Tests if a functions is a call or invoke to a library function that /// reallocates memory (e.g., realloc). bool llvm::isReallocLikeFn(const Function *F, const TargetLibraryInfo *TLI) { return getAllocationDataForFunction(F, ReallocLike, TLI).hasValue(); } /// Tests if a value is a call or invoke to a library function that /// allocates memory and throws if an allocation failed (e.g., new). bool llvm::isOpNewLikeFn(const Value *V, const TargetLibraryInfo *TLI, bool LookThroughBitCast) { return getAllocationData(V, OpNewLike, TLI, LookThroughBitCast).hasValue(); } /// Tests if a value is a call or invoke to a library function that /// allocates memory (strdup, strndup). bool llvm::isStrdupLikeFn(const Value *V, const TargetLibraryInfo *TLI, bool LookThroughBitCast) { return getAllocationData(V, StrDupLike, TLI, LookThroughBitCast).hasValue(); } /// extractMallocCall - Returns the corresponding CallInst if the instruction /// is a malloc call. Since CallInst::CreateMalloc() only creates calls, we /// ignore InvokeInst here. const CallInst *llvm::extractMallocCall( const Value *I, function_ref<const TargetLibraryInfo &(Function &)> GetTLI) { return isMallocLikeFn(I, GetTLI) ? dyn_cast<CallInst>(I) : nullptr; } static Value *computeArraySize(const CallInst *CI, const DataLayout &DL, const TargetLibraryInfo *TLI, bool LookThroughSExt = false) { if (!CI) return nullptr; // The size of the malloc's result type must be known to determine array size. Type *T = getMallocAllocatedType(CI, TLI); if (!T || !T->isSized()) return nullptr; unsigned ElementSize = DL.getTypeAllocSize(T); if (StructType *ST = dyn_cast<StructType>(T)) ElementSize = DL.getStructLayout(ST)->getSizeInBytes(); // If malloc call's arg can be determined to be a multiple of ElementSize, // return the multiple. Otherwise, return NULL. Value *MallocArg = CI->getArgOperand(0); Value *Multiple = nullptr; if (ComputeMultiple(MallocArg, ElementSize, Multiple, LookThroughSExt)) return Multiple; return nullptr; } /// getMallocType - Returns the PointerType resulting from the malloc call. /// The PointerType depends on the number of bitcast uses of the malloc call: /// 0: PointerType is the calls' return type. /// 1: PointerType is the bitcast's result type. /// >1: Unique PointerType cannot be determined, return NULL. PointerType *llvm::getMallocType(const CallInst *CI, const TargetLibraryInfo *TLI) { assert(isMallocLikeFn(CI, TLI) && "getMallocType and not malloc call"); PointerType *MallocType = nullptr; unsigned NumOfBitCastUses = 0; // Determine if CallInst has a bitcast use. for (Value::const_user_iterator UI = CI->user_begin(), E = CI->user_end(); UI != E;) if (const BitCastInst *BCI = dyn_cast<BitCastInst>(*UI++)) { MallocType = cast<PointerType>(BCI->getDestTy()); NumOfBitCastUses++; } // Malloc call has 1 bitcast use, so type is the bitcast's destination type. if (NumOfBitCastUses == 1) return MallocType; // Malloc call was not bitcast, so type is the malloc function's return type. if (NumOfBitCastUses == 0) return cast<PointerType>(CI->getType()); // Type could not be determined. return nullptr; } /// getMallocAllocatedType - Returns the Type allocated by malloc call. /// The Type depends on the number of bitcast uses of the malloc call: /// 0: PointerType is the malloc calls' return type. /// 1: PointerType is the bitcast's result type. /// >1: Unique PointerType cannot be determined, return NULL. Type *llvm::getMallocAllocatedType(const CallInst *CI, const TargetLibraryInfo *TLI) { PointerType *PT = getMallocType(CI, TLI); return PT ? PT->getElementType() : nullptr; } /// getMallocArraySize - Returns the array size of a malloc call. If the /// argument passed to malloc is a multiple of the size of the malloced type, /// then return that multiple. For non-array mallocs, the multiple is /// constant 1. Otherwise, return NULL for mallocs whose array size cannot be /// determined. Value *llvm::getMallocArraySize(CallInst *CI, const DataLayout &DL, const TargetLibraryInfo *TLI, bool LookThroughSExt) { assert(isMallocLikeFn(CI, TLI) && "getMallocArraySize and not malloc call"); return computeArraySize(CI, DL, TLI, LookThroughSExt); } /// extractCallocCall - Returns the corresponding CallInst if the instruction /// is a calloc call. const CallInst *llvm::extractCallocCall(const Value *I, const TargetLibraryInfo *TLI) { return isCallocLikeFn(I, TLI) ? cast<CallInst>(I) : nullptr; } /// isLibFreeFunction - Returns true if the function is a builtin free() bool llvm::isLibFreeFunction(const Function *F, const LibFunc TLIFn) { unsigned ExpectedNumParams; if (TLIFn == LibFunc_free || TLIFn == LibFunc_ZdlPv || // operator delete(void*) TLIFn == LibFunc_ZdaPv || // operator delete[](void*) TLIFn == LibFunc_msvc_delete_ptr32 || // operator delete(void*) TLIFn == LibFunc_msvc_delete_ptr64 || // operator delete(void*) TLIFn == LibFunc_msvc_delete_array_ptr32 || // operator delete[](void*) TLIFn == LibFunc_msvc_delete_array_ptr64) // operator delete[](void*) ExpectedNumParams = 1; else if (TLIFn == LibFunc_ZdlPvj || // delete(void*, uint) TLIFn == LibFunc_ZdlPvm || // delete(void*, ulong) TLIFn == LibFunc_ZdlPvRKSt9nothrow_t || // delete(void*, nothrow) TLIFn == LibFunc_ZdlPvSt11align_val_t || // delete(void*, align_val_t) TLIFn == LibFunc_ZdaPvj || // delete[](void*, uint) TLIFn == LibFunc_ZdaPvm || // delete[](void*, ulong) TLIFn == LibFunc_ZdaPvRKSt9nothrow_t || // delete[](void*, nothrow) TLIFn == LibFunc_ZdaPvSt11align_val_t || // delete[](void*, align_val_t) TLIFn == LibFunc_msvc_delete_ptr32_int || // delete(void*, uint) TLIFn == LibFunc_msvc_delete_ptr64_longlong || // delete(void*, ulonglong) TLIFn == LibFunc_msvc_delete_ptr32_nothrow || // delete(void*, nothrow) TLIFn == LibFunc_msvc_delete_ptr64_nothrow || // delete(void*, nothrow) TLIFn == LibFunc_msvc_delete_array_ptr32_int || // delete[](void*, uint) TLIFn == LibFunc_msvc_delete_array_ptr64_longlong || // delete[](void*, ulonglong) TLIFn == LibFunc_msvc_delete_array_ptr32_nothrow || // delete[](void*, nothrow) TLIFn == LibFunc_msvc_delete_array_ptr64_nothrow) // delete[](void*, nothrow) ExpectedNumParams = 2; else if (TLIFn == LibFunc_ZdaPvSt11align_val_tRKSt9nothrow_t || // delete(void*, align_val_t, nothrow) TLIFn == LibFunc_ZdlPvSt11align_val_tRKSt9nothrow_t) // delete[](void*, align_val_t, nothrow) ExpectedNumParams = 3; else return false; // Check free prototype. // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin // attribute will exist. FunctionType *FTy = F->getFunctionType(); if (!FTy->getReturnType()->isVoidTy()) return false; if (FTy->getNumParams() != ExpectedNumParams) return false; if (FTy->getParamType(0) != Type::getInt8PtrTy(F->getContext())) return false; return true; } /// isFreeCall - Returns non-null if the value is a call to the builtin free() const CallInst *llvm::isFreeCall(const Value *I, const TargetLibraryInfo *TLI) { bool IsNoBuiltinCall; const Function *Callee = getCalledFunction(I, /*LookThroughBitCast=*/false, IsNoBuiltinCall); if (Callee == nullptr || IsNoBuiltinCall) return nullptr; StringRef FnName = Callee->getName(); LibFunc TLIFn; if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn)) return nullptr; return isLibFreeFunction(Callee, TLIFn) ? dyn_cast<CallInst>(I) : nullptr; } //===----------------------------------------------------------------------===// // Utility functions to compute size of objects. // static APInt getSizeWithOverflow(const SizeOffsetType &Data) { if (Data.second.isNegative() || Data.first.ult(Data.second)) return APInt(Data.first.getBitWidth(), 0); return Data.first - Data.second; } /// Compute the size of the object pointed by Ptr. Returns true and the /// object size in Size if successful, and false otherwise. /// If RoundToAlign is true, then Size is rounded up to the alignment of /// allocas, byval arguments, and global variables. bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL, const TargetLibraryInfo *TLI, ObjectSizeOpts Opts) { ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(), Opts); SizeOffsetType Data = Visitor.compute(const_cast<Value*>(Ptr)); if (!Visitor.bothKnown(Data)) return false; Size = getSizeWithOverflow(Data).getZExtValue(); return true; } Value *llvm::lowerObjectSizeCall(IntrinsicInst *ObjectSize, const DataLayout &DL, const TargetLibraryInfo *TLI, bool MustSucceed) { assert(ObjectSize->getIntrinsicID() == Intrinsic::objectsize && "ObjectSize must be a call to llvm.objectsize!"); bool MaxVal = cast<ConstantInt>(ObjectSize->getArgOperand(1))->isZero(); ObjectSizeOpts EvalOptions; // Unless we have to fold this to something, try to be as accurate as // possible. if (MustSucceed) EvalOptions.EvalMode = MaxVal ? ObjectSizeOpts::Mode::Max : ObjectSizeOpts::Mode::Min; else EvalOptions.EvalMode = ObjectSizeOpts::Mode::Exact; EvalOptions.NullIsUnknownSize = cast<ConstantInt>(ObjectSize->getArgOperand(2))->isOne(); auto *ResultType = cast<IntegerType>(ObjectSize->getType()); bool StaticOnly = cast<ConstantInt>(ObjectSize->getArgOperand(3))->isZero(); if (StaticOnly) { // FIXME: Does it make sense to just return a failure value if the size won't // fit in the output and `!MustSucceed`? uint64_t Size; if (getObjectSize(ObjectSize->getArgOperand(0), Size, DL, TLI, EvalOptions) && isUIntN(ResultType->getBitWidth(), Size)) return ConstantInt::get(ResultType, Size); } else { LLVMContext &Ctx = ObjectSize->getFunction()->getContext(); ObjectSizeOffsetEvaluator Eval(DL, TLI, Ctx, EvalOptions); SizeOffsetEvalType SizeOffsetPair = Eval.compute(ObjectSize->getArgOperand(0)); if (SizeOffsetPair != ObjectSizeOffsetEvaluator::unknown()) { IRBuilder<TargetFolder> Builder(Ctx, TargetFolder(DL)); Builder.SetInsertPoint(ObjectSize); // If we've outside the end of the object, then we can always access // exactly 0 bytes. Value *ResultSize = Builder.CreateSub(SizeOffsetPair.first, SizeOffsetPair.second); Value *UseZero = Builder.CreateICmpULT(SizeOffsetPair.first, SizeOffsetPair.second); ResultSize = Builder.CreateZExtOrTrunc(ResultSize, ResultType); return Builder.CreateSelect(UseZero, ConstantInt::get(ResultType, 0), ResultSize); } } if (!MustSucceed) return nullptr; return ConstantInt::get(ResultType, MaxVal ? -1ULL : 0); } STATISTIC(ObjectVisitorArgument, "Number of arguments with unsolved size and offset"); STATISTIC(ObjectVisitorLoad, "Number of load instructions with unsolved size and offset"); APInt ObjectSizeOffsetVisitor::align(APInt Size, uint64_t Alignment) { if (Options.RoundToAlign && Alignment) return APInt(IntTyBits, alignTo(Size.getZExtValue(), Align(Alignment))); return Size; } ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout &DL, const TargetLibraryInfo *TLI, LLVMContext &Context, ObjectSizeOpts Options) : DL(DL), TLI(TLI), Options(Options) { // Pointer size must be rechecked for each object visited since it could have // a different address space. } SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) { IntTyBits = DL.getIndexTypeSizeInBits(V->getType()); Zero = APInt::getNullValue(IntTyBits); V = V->stripPointerCasts(); if (Instruction *I = dyn_cast<Instruction>(V)) { // If we have already seen this instruction, bail out. Cycles can happen in // unreachable code after constant propagation. if (!SeenInsts.insert(I).second) return unknown(); if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) return visitGEPOperator(*GEP); return visit(*I); } if (Argument *A = dyn_cast<Argument>(V)) return visitArgument(*A); if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V)) return visitConstantPointerNull(*P); if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) return visitGlobalAlias(*GA); if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) return visitGlobalVariable(*GV); if (UndefValue *UV = dyn_cast<UndefValue>(V)) return visitUndefValue(*UV); if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { if (CE->getOpcode() == Instruction::IntToPtr) return unknown(); // clueless if (CE->getOpcode() == Instruction::GetElementPtr) return visitGEPOperator(cast<GEPOperator>(*CE)); } LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: " << *V << '\n'); return unknown(); } /// When we're compiling N-bit code, and the user uses parameters that are /// greater than N bits (e.g. uint64_t on a 32-bit build), we can run into /// trouble with APInt size issues. This function handles resizing + overflow /// checks for us. Check and zext or trunc \p I depending on IntTyBits and /// I's value. bool ObjectSizeOffsetVisitor::CheckedZextOrTrunc(APInt &I) { // More bits than we can handle. Checking the bit width isn't necessary, but // it's faster than checking active bits, and should give `false` in the // vast majority of cases. if (I.getBitWidth() > IntTyBits && I.getActiveBits() > IntTyBits) return false; if (I.getBitWidth() != IntTyBits) I = I.zextOrTrunc(IntTyBits); return true; } SizeOffsetType ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) { if (!I.getAllocatedType()->isSized()) return unknown(); if (isa<ScalableVectorType>(I.getAllocatedType())) return unknown(); APInt Size(IntTyBits, DL.getTypeAllocSize(I.getAllocatedType())); if (!I.isArrayAllocation()) return std::make_pair(align(Size, I.getAlignment()), Zero); Value *ArraySize = I.getArraySize(); if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) { APInt NumElems = C->getValue(); if (!CheckedZextOrTrunc(NumElems)) return unknown(); bool Overflow; Size = Size.umul_ov(NumElems, Overflow); return Overflow ? unknown() : std::make_pair(align(Size, I.getAlignment()), Zero); } return unknown(); } SizeOffsetType ObjectSizeOffsetVisitor::visitArgument(Argument &A) { // No interprocedural analysis is done at the moment. if (!A.hasPassPointeeByValueAttr()) { ++ObjectVisitorArgument; return unknown(); } PointerType *PT = cast<PointerType>(A.getType()); APInt Size(IntTyBits, DL.getTypeAllocSize(PT->getElementType())); return std::make_pair(align(Size, A.getParamAlignment()), Zero); } SizeOffsetType ObjectSizeOffsetVisitor::visitCallBase(CallBase &CB) { Optional<AllocFnsTy> FnData = getAllocationSize(&CB, TLI); if (!FnData) return unknown(); // Handle strdup-like functions separately. if (FnData->AllocTy == StrDupLike) { APInt Size(IntTyBits, GetStringLength(CB.getArgOperand(0))); if (!Size) return unknown(); // Strndup limits strlen. if (FnData->FstParam > 0) { ConstantInt *Arg = dyn_cast<ConstantInt>(CB.getArgOperand(FnData->FstParam)); if (!Arg) return unknown(); APInt MaxSize = Arg->getValue().zextOrSelf(IntTyBits); if (Size.ugt(MaxSize)) Size = MaxSize + 1; } return std::make_pair(Size, Zero); } ConstantInt *Arg = dyn_cast<ConstantInt>(CB.getArgOperand(FnData->FstParam)); if (!Arg) return unknown(); APInt Size = Arg->getValue(); if (!CheckedZextOrTrunc(Size)) return unknown(); // Size is determined by just 1 parameter. if (FnData->SndParam < 0) return std::make_pair(Size, Zero); Arg = dyn_cast<ConstantInt>(CB.getArgOperand(FnData->SndParam)); if (!Arg) return unknown(); APInt NumElems = Arg->getValue(); if (!CheckedZextOrTrunc(NumElems)) return unknown(); bool Overflow; Size = Size.umul_ov(NumElems, Overflow); return Overflow ? unknown() : std::make_pair(Size, Zero); // TODO: handle more standard functions (+ wchar cousins): // - strdup / strndup // - strcpy / strncpy // - strcat / strncat // - memcpy / memmove // - strcat / strncat // - memset } SizeOffsetType ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull& CPN) { // If null is unknown, there's nothing we can do. Additionally, non-zero // address spaces can make use of null, so we don't presume to know anything // about that. // // TODO: How should this work with address space casts? We currently just drop // them on the floor, but it's unclear what we should do when a NULL from // addrspace(1) gets casted to addrspace(0) (or vice-versa). if (Options.NullIsUnknownSize || CPN.getType()->getAddressSpace()) return unknown(); return std::make_pair(Zero, Zero); } SizeOffsetType ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst&) { return unknown(); } SizeOffsetType ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst&) { // Easy cases were already folded by previous passes. return unknown(); } SizeOffsetType ObjectSizeOffsetVisitor::visitGEPOperator(GEPOperator &GEP) { SizeOffsetType PtrData = compute(GEP.getPointerOperand()); APInt Offset(DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()), 0); if (!bothKnown(PtrData) || !GEP.accumulateConstantOffset(DL, Offset)) return unknown(); return std::make_pair(PtrData.first, PtrData.second + Offset); } SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) { if (GA.isInterposable()) return unknown(); return compute(GA.getAliasee()); } SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV){ if (!GV.hasDefinitiveInitializer()) return unknown(); APInt Size(IntTyBits, DL.getTypeAllocSize(GV.getValueType())); return std::make_pair(align(Size, GV.getAlignment()), Zero); } SizeOffsetType ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst&) { // clueless return unknown(); } SizeOffsetType ObjectSizeOffsetVisitor::visitLoadInst(LoadInst&) { ++ObjectVisitorLoad; return unknown(); } SizeOffsetType ObjectSizeOffsetVisitor::visitPHINode(PHINode&) { // too complex to analyze statically. return unknown(); } SizeOffsetType ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) { SizeOffsetType TrueSide = compute(I.getTrueValue()); SizeOffsetType FalseSide = compute(I.getFalseValue()); if (bothKnown(TrueSide) && bothKnown(FalseSide)) { if (TrueSide == FalseSide) { return TrueSide; } APInt TrueResult = getSizeWithOverflow(TrueSide); APInt FalseResult = getSizeWithOverflow(FalseSide); if (TrueResult == FalseResult) { return TrueSide; } if (Options.EvalMode == ObjectSizeOpts::Mode::Min) { if (TrueResult.slt(FalseResult)) return TrueSide; return FalseSide; } if (Options.EvalMode == ObjectSizeOpts::Mode::Max) { if (TrueResult.sgt(FalseResult)) return TrueSide; return FalseSide; } } return unknown(); } SizeOffsetType ObjectSizeOffsetVisitor::visitUndefValue(UndefValue&) { return std::make_pair(Zero, Zero); } SizeOffsetType ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) { LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I << '\n'); return unknown(); } ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator( const DataLayout &DL, const TargetLibraryInfo *TLI, LLVMContext &Context, ObjectSizeOpts EvalOpts) : DL(DL), TLI(TLI), Context(Context), Builder(Context, TargetFolder(DL), IRBuilderCallbackInserter( [&](Instruction *I) { InsertedInstructions.insert(I); })), EvalOpts(EvalOpts) { // IntTy and Zero must be set for each compute() since the address space may // be different for later objects. } SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute(Value *V) { // XXX - Are vectors of pointers possible here? IntTy = cast<IntegerType>(DL.getIndexType(V->getType())); Zero = ConstantInt::get(IntTy, 0); SizeOffsetEvalType Result = compute_(V); if (!bothKnown(Result)) { // Erase everything that was computed in this iteration from the cache, so // that no dangling references are left behind. We could be a bit smarter if // we kept a dependency graph. It's probably not worth the complexity. for (const Value *SeenVal : SeenVals) { CacheMapTy::iterator CacheIt = CacheMap.find(SeenVal); // non-computable results can be safely cached if (CacheIt != CacheMap.end() && anyKnown(CacheIt->second)) CacheMap.erase(CacheIt); } // Erase any instructions we inserted as part of the traversal. for (Instruction *I : InsertedInstructions) { I->replaceAllUsesWith(UndefValue::get(I->getType())); I->eraseFromParent(); } } SeenVals.clear(); InsertedInstructions.clear(); return Result; } SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute_(Value *V) { ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, EvalOpts); SizeOffsetType Const = Visitor.compute(V); if (Visitor.bothKnown(Const)) return std::make_pair(ConstantInt::get(Context, Const.first), ConstantInt::get(Context, Const.second)); V = V->stripPointerCasts(); // Check cache. CacheMapTy::iterator CacheIt = CacheMap.find(V); if (CacheIt != CacheMap.end()) return CacheIt->second; // Always generate code immediately before the instruction being // processed, so that the generated code dominates the same BBs. BuilderTy::InsertPointGuard Guard(Builder); if (Instruction *I = dyn_cast<Instruction>(V)) Builder.SetInsertPoint(I); // Now compute the size and offset. SizeOffsetEvalType Result; // Record the pointers that were handled in this run, so that they can be // cleaned later if something fails. We also use this set to break cycles that // can occur in dead code. if (!SeenVals.insert(V).second) { Result = unknown(); } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { Result = visitGEPOperator(*GEP); } else if (Instruction *I = dyn_cast<Instruction>(V)) { Result = visit(*I); } else if (isa<Argument>(V) || (isa<ConstantExpr>(V) && cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) || isa<GlobalAlias>(V) || isa<GlobalVariable>(V)) { // Ignore values where we cannot do more than ObjectSizeVisitor. Result = unknown(); } else { LLVM_DEBUG( dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: " << *V << '\n'); Result = unknown(); } // Don't reuse CacheIt since it may be invalid at this point. CacheMap[V] = Result; return Result; } SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) { if (!I.getAllocatedType()->isSized()) return unknown(); // must be a VLA assert(I.isArrayAllocation()); Value *ArraySize = I.getArraySize(); Value *Size = ConstantInt::get(ArraySize->getType(), DL.getTypeAllocSize(I.getAllocatedType())); Size = Builder.CreateMul(Size, ArraySize); return std::make_pair(Size, Zero); } SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitCallBase(CallBase &CB) { Optional<AllocFnsTy> FnData = getAllocationSize(&CB, TLI); if (!FnData) return unknown(); // Handle strdup-like functions separately. if (FnData->AllocTy == StrDupLike) { // TODO return unknown(); } Value *FirstArg = CB.getArgOperand(FnData->FstParam); FirstArg = Builder.CreateZExtOrTrunc(FirstArg, IntTy); if (FnData->SndParam < 0) return std::make_pair(FirstArg, Zero); Value *SecondArg = CB.getArgOperand(FnData->SndParam); SecondArg = Builder.CreateZExtOrTrunc(SecondArg, IntTy); Value *Size = Builder.CreateMul(FirstArg, SecondArg); return std::make_pair(Size, Zero); // TODO: handle more standard functions (+ wchar cousins): // - strdup / strndup // - strcpy / strncpy // - strcat / strncat // - memcpy / memmove // - strcat / strncat // - memset } SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst&) { return unknown(); } SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst&) { return unknown(); } SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) { SizeOffsetEvalType PtrData = compute_(GEP.getPointerOperand()); if (!bothKnown(PtrData)) return unknown(); Value *Offset = EmitGEPOffset(&Builder, DL, &GEP, /*NoAssumptions=*/true); Offset = Builder.CreateAdd(PtrData.second, Offset); return std::make_pair(PtrData.first, Offset); } SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst&) { // clueless return unknown(); } SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst&) { return unknown(); } SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) { // Create 2 PHIs: one for size and another for offset. PHINode *SizePHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues()); PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues()); // Insert right away in the cache to handle recursive PHIs. CacheMap[&PHI] = std::make_pair(SizePHI, OffsetPHI); // Compute offset/size for each PHI incoming pointer. for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) { Builder.SetInsertPoint(&*PHI.getIncomingBlock(i)->getFirstInsertionPt()); SizeOffsetEvalType EdgeData = compute_(PHI.getIncomingValue(i)); if (!bothKnown(EdgeData)) { OffsetPHI->replaceAllUsesWith(UndefValue::get(IntTy)); OffsetPHI->eraseFromParent(); InsertedInstructions.erase(OffsetPHI); SizePHI->replaceAllUsesWith(UndefValue::get(IntTy)); SizePHI->eraseFromParent(); InsertedInstructions.erase(SizePHI); return unknown(); } SizePHI->addIncoming(EdgeData.first, PHI.getIncomingBlock(i)); OffsetPHI->addIncoming(EdgeData.second, PHI.getIncomingBlock(i)); } Value *Size = SizePHI, *Offset = OffsetPHI; if (Value *Tmp = SizePHI->hasConstantValue()) { Size = Tmp; SizePHI->replaceAllUsesWith(Size); SizePHI->eraseFromParent(); InsertedInstructions.erase(SizePHI); } if (Value *Tmp = OffsetPHI->hasConstantValue()) { Offset = Tmp; OffsetPHI->replaceAllUsesWith(Offset); OffsetPHI->eraseFromParent(); InsertedInstructions.erase(OffsetPHI); } return std::make_pair(Size, Offset); } SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) { SizeOffsetEvalType TrueSide = compute_(I.getTrueValue()); SizeOffsetEvalType FalseSide = compute_(I.getFalseValue()); if (!bothKnown(TrueSide) || !bothKnown(FalseSide)) return unknown(); if (TrueSide == FalseSide) return TrueSide; Value *Size = Builder.CreateSelect(I.getCondition(), TrueSide.first, FalseSide.first); Value *Offset = Builder.CreateSelect(I.getCondition(), TrueSide.second, FalseSide.second); return std::make_pair(Size, Offset); } SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) { LLVM_DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I << '\n'); return unknown(); }