Mercurial > hg > CbC > CbC_llvm
view mlir/test/Dialect/traits.mlir @ 187:4680e0f68448
AST is generated in RetCS
SelectionDAG failed
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 05 Jun 2020 18:34:26 +0900 |
parents | 1d019706d866 |
children | 5f17cb93ff66 |
line wrap: on
line source
// RUN: mlir-opt %s -split-input-file -verify-diagnostics // Verify that ops with broadcastable trait verifies operand and result type // combinations and emits an error for invalid combinations. func @broadcast_scalar_scalar_scalar(tensor<i32>, tensor<i32>) -> tensor<i32> { ^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>): %0 = "test.broadcastable"(%arg0, %arg1) : (tensor<i32>, tensor<i32>) -> tensor<i32> return %0 : tensor<i32> } // ----- func @broadcast_tensor_scalar_tensor(tensor<4xi32>, tensor<i32>) -> tensor<4xi32> { ^bb0(%arg0: tensor<4xi32>, %arg1: tensor<i32>): %0 = "test.broadcastable"(%arg0, %arg1) : (tensor<4xi32>, tensor<i32>) -> tensor<4xi32> return %0 : tensor<4xi32> } // ----- // Check only one dimension has size 1 func @broadcast_tensor_tensor_tensor(tensor<4x3x2xi32>, tensor<3x1xi32>) -> tensor<4x3x2xi32> { ^bb0(%arg0: tensor<4x3x2xi32>, %arg1: tensor<3x1xi32>): %0 = "test.broadcastable"(%arg0, %arg1) : (tensor<4x3x2xi32>, tensor<3x1xi32>) -> tensor<4x3x2xi32> return %0 : tensor<4x3x2xi32> } // ----- // Check multiple dimensions have size 1 func @broadcast_tensor_tensor_tensor(tensor<8x1x6x1xi32>, tensor<7x1x5xi32>) -> tensor<8x7x6x5xi32> { ^bb0(%arg0: tensor<8x1x6x1xi32>, %arg1: tensor<7x1x5xi32>): %0 = "test.broadcastable"(%arg0, %arg1) : (tensor<8x1x6x1xi32>, tensor<7x1x5xi32>) -> tensor<8x7x6x5xi32> return %0 : tensor<8x7x6x5xi32> } // ----- // Check leading unknown dimension func @broadcast_tensor_tensor_tensor(tensor<?x1x6x1xi32>, tensor<7x1x5xi32>) -> tensor<?x7x6x5xi32> { ^bb0(%arg0: tensor<?x1x6x1xi32>, %arg1: tensor<7x1x5xi32>): %0 = "test.broadcastable"(%arg0, %arg1) : (tensor<?x1x6x1xi32>, tensor<7x1x5xi32>) -> tensor<?x7x6x5xi32> return %0 : tensor<?x7x6x5xi32> } // ----- // Check unknown dimension in the middle func @broadcast_tensor_tensor_tensor(tensor<8x1x?x1xi32>, tensor<7x1x5xi32>) -> tensor<8x7x?x5xi32> { ^bb0(%arg0: tensor<8x1x?x1xi32>, %arg1: tensor<7x1x5xi32>): %0 = "test.broadcastable"(%arg0, %arg1) : (tensor<8x1x?x1xi32>, tensor<7x1x5xi32>) -> tensor<8x7x?x5xi32> return %0 : tensor<8x7x?x5xi32> } // ----- // Check incompatible vector and tensor result type func @broadcast_scalar_vector_vector(tensor<4xf32>, tensor<4xf32>) -> vector<4xf32> { ^bb0(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>): // expected-error @+1 {{cannot broadcast vector with tensor}} %0 = "test.broadcastable"(%arg0, %arg1) : (tensor<4xf32>, tensor<4xf32>) -> vector<4xf32> return %0 : vector<4xf32> } // ----- // Check incompatible operand types with known dimension func @broadcast_tensor_tensor_tensor(tensor<4x3x2xi32>, tensor<3x3xi32>) -> tensor<4x3x2xi32> { ^bb0(%arg0: tensor<4x3x2xi32>, %arg1: tensor<3x3xi32>): // expected-error @+1 {{operands don't have broadcast-compatible shapes}} %0 = "test.broadcastable"(%arg0, %arg1) : (tensor<4x3x2xi32>, tensor<3x3xi32>) -> tensor<4x3x2xi32> return %0 : tensor<4x3x2xi32> } // ----- // Check incompatible result type with known dimension func @broadcast_tensor_tensor_tensor(tensor<4x3x2xi32>, tensor<3x1xi32>) -> tensor<4x3x3xi32> { ^bb0(%arg0: tensor<4x3x2xi32>, %arg1: tensor<3x1xi32>): // expected-error @+1 {{op result type '4x3x3' not broadcast compatible with broadcasted operands's shapes '4x3x2'}} %0 = "test.broadcastable"(%arg0, %arg1) : (tensor<4x3x2xi32>, tensor<3x1xi32>) -> tensor<4x3x3xi32> return %0 : tensor<4x3x3xi32> } // ----- // Check incompatible result type with known dimension func @broadcast_tensor_tensor_tensor(tensor<8x1x6x1xi32>, tensor<7x1x5xi32>) -> tensor<8x7x6x1xi32> { ^bb0(%arg0: tensor<8x1x6x1xi32>, %arg1: tensor<7x1x5xi32>): // expected-error @+1 {{op result type '8x7x6x1' not broadcast compatible with broadcasted operands's shapes '8x7x6x5'}} %0 = "test.broadcastable"(%arg0, %arg1) : (tensor<8x1x6x1xi32>, tensor<7x1x5xi32>) -> tensor<8x7x6x1xi32> return %0 : tensor<8x7x6x1xi32> } // ----- func @broadcast_tensor_tensor_tensor(tensor<2xi32>, tensor<2xi32>) -> tensor<*xi32> { ^bb0(%arg0: tensor<2xi32>, %arg1: tensor<2xi32>): %0 = "test.broadcastable"(%arg0, %arg1) : (tensor<2xi32>, tensor<2xi32>) -> tensor<*xi32> return %0 : tensor<*xi32> } // ----- func @broadcast_tensor_tensor_tensor(tensor<4x3x2xi32>, tensor<?xi32>) -> tensor<4x3x2xi32> { ^bb0(%arg0: tensor<4x3x2xi32>, %arg1: tensor<?xi32>): %0 = "test.broadcastable"(%arg0, %arg1) : (tensor<4x3x2xi32>, tensor<?xi32>) -> tensor<4x3x2xi32> return %0 : tensor<4x3x2xi32> } // ----- // Unranked operands but ranked result func @broadcast_tensor_tensor_tensor(tensor<*xi32>, tensor<*xi32>) -> tensor<2xi32> { ^bb0(%arg0: tensor<*xi32>, %arg1: tensor<*xi32>): %0 = "test.broadcastable"(%arg0, %arg1) : (tensor<*xi32>, tensor<*xi32>) -> tensor<2xi32> return %0 : tensor<2xi32> } // ----- // Unranked operand and compatible ranked result func @broadcast_tensor_tensor_tensor(tensor<3x2xi32>, tensor<*xi32>) -> tensor<4x3x2xi32> { ^bb0(%arg0: tensor<3x2xi32>, %arg1: tensor<*xi32>): %0 = "test.broadcastable"(%arg0, %arg0, %arg1) : (tensor<3x2xi32>, tensor<3x2xi32>, tensor<*xi32>) -> tensor<4x3x2xi32> return %0 : tensor<4x3x2xi32> } // ----- func @broadcast_tensor_tensor_tensor(tensor<3x2xi32>, tensor<*xi32>) -> tensor<2xi32> { ^bb0(%arg0: tensor<3x2xi32>, %arg1: tensor<*xi32>): // expected-error @+1 {{op result type '2' not broadcast compatible with broadcasted operands's shapes '3x2'}} %0 = "test.broadcastable"(%arg0, %arg1) : (tensor<3x2xi32>, tensor<*xi32>) -> tensor<2xi32> return %0 : tensor<2xi32> } // ----- func @broadcast_tensor_tensor_tensor(tensor<?x1x6x1xi32>, tensor<7x1x5xi32>) -> tensor<8x7x6x5xi32> { ^bb0(%arg0: tensor<?x1x6x1xi32>, %arg1: tensor<7x1x5xi32>): %0 = "test.broadcastable"(%arg0, %arg1) : (tensor<?x1x6x1xi32>, tensor<7x1x5xi32>) -> tensor<8x7x6x5xi32> return %0 : tensor<8x7x6x5xi32> } // ----- func @broadcastDifferentResultType(tensor<4xi32>, tensor<4xi32>) -> tensor<4xi1> { ^bb0(%arg0: tensor<4xi32>, %arg1: tensor<4xi32>): %0 = "test.broadcastable"(%arg0, %arg1) : (tensor<4xi32>, tensor<4xi32>) -> tensor<4xi1> return %0 : tensor<4xi1> }