Mercurial > hg > CbC > CbC_llvm
view lib/MC/MCAssembler.cpp @ 48:4b59af982ef3
create return function for continuation with the environment automatically, but it can return only int value and it's name is not unique now
author | Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 12 Jan 2014 19:15:16 +0900 |
parents | 95c75e76d11b |
children | 54457678186b |
line wrap: on
line source
//===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "assembler" #include "llvm/MC/MCAssembler.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/Twine.h" #include "llvm/MC/MCAsmBackend.h" #include "llvm/MC/MCAsmLayout.h" #include "llvm/MC/MCCodeEmitter.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCDwarf.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCFixupKindInfo.h" #include "llvm/MC/MCObjectWriter.h" #include "llvm/MC/MCSection.h" #include "llvm/MC/MCSymbol.h" #include "llvm/MC/MCValue.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/LEB128.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; namespace { namespace stats { STATISTIC(EmittedFragments, "Number of emitted assembler fragments - total"); STATISTIC(EmittedRelaxableFragments, "Number of emitted assembler fragments - relaxable"); STATISTIC(EmittedDataFragments, "Number of emitted assembler fragments - data"); STATISTIC(EmittedCompactEncodedInstFragments, "Number of emitted assembler fragments - compact encoded inst"); STATISTIC(EmittedAlignFragments, "Number of emitted assembler fragments - align"); STATISTIC(EmittedFillFragments, "Number of emitted assembler fragments - fill"); STATISTIC(EmittedOrgFragments, "Number of emitted assembler fragments - org"); STATISTIC(evaluateFixup, "Number of evaluated fixups"); STATISTIC(FragmentLayouts, "Number of fragment layouts"); STATISTIC(ObjectBytes, "Number of emitted object file bytes"); STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps"); STATISTIC(RelaxedInstructions, "Number of relaxed instructions"); } } // FIXME FIXME FIXME: There are number of places in this file where we convert // what is a 64-bit assembler value used for computation into a value in the // object file, which may truncate it. We should detect that truncation where // invalid and report errors back. /* *** */ MCAsmLayout::MCAsmLayout(MCAssembler &Asm) : Assembler(Asm), LastValidFragment() { // Compute the section layout order. Virtual sections must go last. for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it) if (!it->getSection().isVirtualSection()) SectionOrder.push_back(&*it); for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it) if (it->getSection().isVirtualSection()) SectionOrder.push_back(&*it); } bool MCAsmLayout::isFragmentValid(const MCFragment *F) const { const MCSectionData &SD = *F->getParent(); const MCFragment *LastValid = LastValidFragment.lookup(&SD); if (!LastValid) return false; assert(LastValid->getParent() == F->getParent()); return F->getLayoutOrder() <= LastValid->getLayoutOrder(); } void MCAsmLayout::invalidateFragmentsFrom(MCFragment *F) { // If this fragment wasn't already valid, we don't need to do anything. if (!isFragmentValid(F)) return; // Otherwise, reset the last valid fragment to the previous fragment // (if this is the first fragment, it will be NULL). const MCSectionData &SD = *F->getParent(); LastValidFragment[&SD] = F->getPrevNode(); } void MCAsmLayout::ensureValid(const MCFragment *F) const { MCSectionData &SD = *F->getParent(); MCFragment *Cur = LastValidFragment[&SD]; if (!Cur) Cur = &*SD.begin(); else Cur = Cur->getNextNode(); // Advance the layout position until the fragment is valid. while (!isFragmentValid(F)) { assert(Cur && "Layout bookkeeping error"); const_cast<MCAsmLayout*>(this)->layoutFragment(Cur); Cur = Cur->getNextNode(); } } uint64_t MCAsmLayout::getFragmentOffset(const MCFragment *F) const { ensureValid(F); assert(F->Offset != ~UINT64_C(0) && "Address not set!"); return F->Offset; } uint64_t MCAsmLayout::getSymbolOffset(const MCSymbolData *SD) const { const MCSymbol &S = SD->getSymbol(); // If this is a variable, then recursively evaluate now. if (S.isVariable()) { MCValue Target; if (!S.getVariableValue()->EvaluateAsRelocatable(Target, *this)) report_fatal_error("unable to evaluate offset for variable '" + S.getName() + "'"); // Verify that any used symbols are defined. if (Target.getSymA() && Target.getSymA()->getSymbol().isUndefined()) report_fatal_error("unable to evaluate offset to undefined symbol '" + Target.getSymA()->getSymbol().getName() + "'"); if (Target.getSymB() && Target.getSymB()->getSymbol().isUndefined()) report_fatal_error("unable to evaluate offset to undefined symbol '" + Target.getSymB()->getSymbol().getName() + "'"); uint64_t Offset = Target.getConstant(); if (Target.getSymA()) Offset += getSymbolOffset(&Assembler.getSymbolData( Target.getSymA()->getSymbol())); if (Target.getSymB()) Offset -= getSymbolOffset(&Assembler.getSymbolData( Target.getSymB()->getSymbol())); return Offset; } assert(SD->getFragment() && "Invalid getOffset() on undefined symbol!"); return getFragmentOffset(SD->getFragment()) + SD->getOffset(); } uint64_t MCAsmLayout::getSectionAddressSize(const MCSectionData *SD) const { // The size is the last fragment's end offset. const MCFragment &F = SD->getFragmentList().back(); return getFragmentOffset(&F) + getAssembler().computeFragmentSize(*this, F); } uint64_t MCAsmLayout::getSectionFileSize(const MCSectionData *SD) const { // Virtual sections have no file size. if (SD->getSection().isVirtualSection()) return 0; // Otherwise, the file size is the same as the address space size. return getSectionAddressSize(SD); } uint64_t MCAsmLayout::computeBundlePadding(const MCFragment *F, uint64_t FOffset, uint64_t FSize) { uint64_t BundleSize = Assembler.getBundleAlignSize(); assert(BundleSize > 0 && "computeBundlePadding should only be called if bundling is enabled"); uint64_t BundleMask = BundleSize - 1; uint64_t OffsetInBundle = FOffset & BundleMask; uint64_t EndOfFragment = OffsetInBundle + FSize; // There are two kinds of bundling restrictions: // // 1) For alignToBundleEnd(), add padding to ensure that the fragment will // *end* on a bundle boundary. // 2) Otherwise, check if the fragment would cross a bundle boundary. If it // would, add padding until the end of the bundle so that the fragment // will start in a new one. if (F->alignToBundleEnd()) { // Three possibilities here: // // A) The fragment just happens to end at a bundle boundary, so we're good. // B) The fragment ends before the current bundle boundary: pad it just // enough to reach the boundary. // C) The fragment ends after the current bundle boundary: pad it until it // reaches the end of the next bundle boundary. // // Note: this code could be made shorter with some modulo trickery, but it's // intentionally kept in its more explicit form for simplicity. if (EndOfFragment == BundleSize) return 0; else if (EndOfFragment < BundleSize) return BundleSize - EndOfFragment; else { // EndOfFragment > BundleSize return 2 * BundleSize - EndOfFragment; } } else if (EndOfFragment > BundleSize) return BundleSize - OffsetInBundle; else return 0; } /* *** */ MCFragment::MCFragment() : Kind(FragmentType(~0)) { } MCFragment::~MCFragment() { } MCFragment::MCFragment(FragmentType _Kind, MCSectionData *_Parent) : Kind(_Kind), Parent(_Parent), Atom(0), Offset(~UINT64_C(0)) { if (Parent) Parent->getFragmentList().push_back(this); } /* *** */ MCEncodedFragment::~MCEncodedFragment() { } /* *** */ MCEncodedFragmentWithFixups::~MCEncodedFragmentWithFixups() { } /* *** */ MCSectionData::MCSectionData() : Section(0) {} MCSectionData::MCSectionData(const MCSection &_Section, MCAssembler *A) : Section(&_Section), Ordinal(~UINT32_C(0)), Alignment(1), BundleLockState(NotBundleLocked), BundleGroupBeforeFirstInst(false), HasInstructions(false) { if (A) A->getSectionList().push_back(this); } MCSectionData::iterator MCSectionData::getSubsectionInsertionPoint(unsigned Subsection) { if (Subsection == 0 && SubsectionFragmentMap.empty()) return end(); SmallVectorImpl<std::pair<unsigned, MCFragment *> >::iterator MI = std::lower_bound(SubsectionFragmentMap.begin(), SubsectionFragmentMap.end(), std::make_pair(Subsection, (MCFragment *)0)); bool ExactMatch = false; if (MI != SubsectionFragmentMap.end()) { ExactMatch = MI->first == Subsection; if (ExactMatch) ++MI; } iterator IP; if (MI == SubsectionFragmentMap.end()) IP = end(); else IP = MI->second; if (!ExactMatch && Subsection != 0) { // The GNU as documentation claims that subsections have an alignment of 4, // although this appears not to be the case. MCFragment *F = new MCDataFragment(); SubsectionFragmentMap.insert(MI, std::make_pair(Subsection, F)); getFragmentList().insert(IP, F); F->setParent(this); } return IP; } /* *** */ MCSymbolData::MCSymbolData() : Symbol(0) {} MCSymbolData::MCSymbolData(const MCSymbol &_Symbol, MCFragment *_Fragment, uint64_t _Offset, MCAssembler *A) : Symbol(&_Symbol), Fragment(_Fragment), Offset(_Offset), IsExternal(false), IsPrivateExtern(false), CommonSize(0), SymbolSize(0), CommonAlign(0), Flags(0), Index(0) { if (A) A->getSymbolList().push_back(this); } /* *** */ MCAssembler::MCAssembler(MCContext &Context_, MCAsmBackend &Backend_, MCCodeEmitter &Emitter_, MCObjectWriter &Writer_, raw_ostream &OS_) : Context(Context_), Backend(Backend_), Emitter(Emitter_), Writer(Writer_), OS(OS_), BundleAlignSize(0), RelaxAll(false), NoExecStack(false), SubsectionsViaSymbols(false), ELFHeaderEFlags(0) { } MCAssembler::~MCAssembler() { } void MCAssembler::reset() { Sections.clear(); Symbols.clear(); SectionMap.clear(); SymbolMap.clear(); IndirectSymbols.clear(); DataRegions.clear(); ThumbFuncs.clear(); RelaxAll = false; NoExecStack = false; SubsectionsViaSymbols = false; ELFHeaderEFlags = 0; // reset objects owned by us getBackend().reset(); getEmitter().reset(); getWriter().reset(); } bool MCAssembler::isSymbolLinkerVisible(const MCSymbol &Symbol) const { // Non-temporary labels should always be visible to the linker. if (!Symbol.isTemporary()) return true; // Absolute temporary labels are never visible. if (!Symbol.isInSection()) return false; // Otherwise, check if the section requires symbols even for temporary labels. return getBackend().doesSectionRequireSymbols(Symbol.getSection()); } const MCSymbolData *MCAssembler::getAtom(const MCSymbolData *SD) const { // Linker visible symbols define atoms. if (isSymbolLinkerVisible(SD->getSymbol())) return SD; // Absolute and undefined symbols have no defining atom. if (!SD->getFragment()) return 0; // Non-linker visible symbols in sections which can't be atomized have no // defining atom. if (!getBackend().isSectionAtomizable( SD->getFragment()->getParent()->getSection())) return 0; // Otherwise, return the atom for the containing fragment. return SD->getFragment()->getAtom(); } bool MCAssembler::evaluateFixup(const MCAsmLayout &Layout, const MCFixup &Fixup, const MCFragment *DF, MCValue &Target, uint64_t &Value) const { ++stats::evaluateFixup; if (!Fixup.getValue()->EvaluateAsRelocatable(Target, Layout)) getContext().FatalError(Fixup.getLoc(), "expected relocatable expression"); bool IsPCRel = Backend.getFixupKindInfo( Fixup.getKind()).Flags & MCFixupKindInfo::FKF_IsPCRel; bool IsResolved; if (IsPCRel) { if (Target.getSymB()) { IsResolved = false; } else if (!Target.getSymA()) { IsResolved = false; } else { const MCSymbolRefExpr *A = Target.getSymA(); const MCSymbol &SA = A->getSymbol(); if (A->getKind() != MCSymbolRefExpr::VK_None || SA.AliasedSymbol().isUndefined()) { IsResolved = false; } else { const MCSymbolData &DataA = getSymbolData(SA); IsResolved = getWriter().IsSymbolRefDifferenceFullyResolvedImpl(*this, DataA, *DF, false, true); } } } else { IsResolved = Target.isAbsolute(); } Value = Target.getConstant(); if (const MCSymbolRefExpr *A = Target.getSymA()) { const MCSymbol &Sym = A->getSymbol().AliasedSymbol(); if (Sym.isDefined()) Value += Layout.getSymbolOffset(&getSymbolData(Sym)); } if (const MCSymbolRefExpr *B = Target.getSymB()) { const MCSymbol &Sym = B->getSymbol().AliasedSymbol(); if (Sym.isDefined()) Value -= Layout.getSymbolOffset(&getSymbolData(Sym)); } bool ShouldAlignPC = Backend.getFixupKindInfo(Fixup.getKind()).Flags & MCFixupKindInfo::FKF_IsAlignedDownTo32Bits; assert((ShouldAlignPC ? IsPCRel : true) && "FKF_IsAlignedDownTo32Bits is only allowed on PC-relative fixups!"); if (IsPCRel) { uint32_t Offset = Layout.getFragmentOffset(DF) + Fixup.getOffset(); // A number of ARM fixups in Thumb mode require that the effective PC // address be determined as the 32-bit aligned version of the actual offset. if (ShouldAlignPC) Offset &= ~0x3; Value -= Offset; } // Let the backend adjust the fixup value if necessary, including whether // we need a relocation. Backend.processFixupValue(*this, Layout, Fixup, DF, Target, Value, IsResolved); return IsResolved; } uint64_t MCAssembler::computeFragmentSize(const MCAsmLayout &Layout, const MCFragment &F) const { switch (F.getKind()) { case MCFragment::FT_Data: case MCFragment::FT_Relaxable: case MCFragment::FT_CompactEncodedInst: return cast<MCEncodedFragment>(F).getContents().size(); case MCFragment::FT_Fill: return cast<MCFillFragment>(F).getSize(); case MCFragment::FT_LEB: return cast<MCLEBFragment>(F).getContents().size(); case MCFragment::FT_Align: { const MCAlignFragment &AF = cast<MCAlignFragment>(F); unsigned Offset = Layout.getFragmentOffset(&AF); unsigned Size = OffsetToAlignment(Offset, AF.getAlignment()); // If we are padding with nops, force the padding to be larger than the // minimum nop size. if (Size > 0 && AF.hasEmitNops()) { while (Size % getBackend().getMinimumNopSize()) Size += AF.getAlignment(); } if (Size > AF.getMaxBytesToEmit()) return 0; return Size; } case MCFragment::FT_Org: { const MCOrgFragment &OF = cast<MCOrgFragment>(F); int64_t TargetLocation; if (!OF.getOffset().EvaluateAsAbsolute(TargetLocation, Layout)) report_fatal_error("expected assembly-time absolute expression"); // FIXME: We need a way to communicate this error. uint64_t FragmentOffset = Layout.getFragmentOffset(&OF); int64_t Size = TargetLocation - FragmentOffset; if (Size < 0 || Size >= 0x40000000) report_fatal_error("invalid .org offset '" + Twine(TargetLocation) + "' (at offset '" + Twine(FragmentOffset) + "')"); return Size; } case MCFragment::FT_Dwarf: return cast<MCDwarfLineAddrFragment>(F).getContents().size(); case MCFragment::FT_DwarfFrame: return cast<MCDwarfCallFrameFragment>(F).getContents().size(); } llvm_unreachable("invalid fragment kind"); } void MCAsmLayout::layoutFragment(MCFragment *F) { MCFragment *Prev = F->getPrevNode(); // We should never try to recompute something which is valid. assert(!isFragmentValid(F) && "Attempt to recompute a valid fragment!"); // We should never try to compute the fragment layout if its predecessor // isn't valid. assert((!Prev || isFragmentValid(Prev)) && "Attempt to compute fragment before its predecessor!"); ++stats::FragmentLayouts; // Compute fragment offset and size. if (Prev) F->Offset = Prev->Offset + getAssembler().computeFragmentSize(*this, *Prev); else F->Offset = 0; LastValidFragment[F->getParent()] = F; // If bundling is enabled and this fragment has instructions in it, it has to // obey the bundling restrictions. With padding, we'll have: // // // BundlePadding // ||| // ------------------------------------- // Prev |##########| F | // ------------------------------------- // ^ // | // F->Offset // // The fragment's offset will point to after the padding, and its computed // size won't include the padding. // if (Assembler.isBundlingEnabled() && F->hasInstructions()) { assert(isa<MCEncodedFragment>(F) && "Only MCEncodedFragment implementations have instructions"); uint64_t FSize = Assembler.computeFragmentSize(*this, *F); if (FSize > Assembler.getBundleAlignSize()) report_fatal_error("Fragment can't be larger than a bundle size"); uint64_t RequiredBundlePadding = computeBundlePadding(F, F->Offset, FSize); if (RequiredBundlePadding > UINT8_MAX) report_fatal_error("Padding cannot exceed 255 bytes"); F->setBundlePadding(static_cast<uint8_t>(RequiredBundlePadding)); F->Offset += RequiredBundlePadding; } } /// \brief Write the contents of a fragment to the given object writer. Expects /// a MCEncodedFragment. static void writeFragmentContents(const MCFragment &F, MCObjectWriter *OW) { const MCEncodedFragment &EF = cast<MCEncodedFragment>(F); OW->WriteBytes(EF.getContents()); } /// \brief Write the fragment \p F to the output file. static void writeFragment(const MCAssembler &Asm, const MCAsmLayout &Layout, const MCFragment &F) { MCObjectWriter *OW = &Asm.getWriter(); // FIXME: Embed in fragments instead? uint64_t FragmentSize = Asm.computeFragmentSize(Layout, F); // Should NOP padding be written out before this fragment? unsigned BundlePadding = F.getBundlePadding(); if (BundlePadding > 0) { assert(Asm.isBundlingEnabled() && "Writing bundle padding with disabled bundling"); assert(F.hasInstructions() && "Writing bundle padding for a fragment without instructions"); unsigned TotalLength = BundlePadding + static_cast<unsigned>(FragmentSize); if (F.alignToBundleEnd() && TotalLength > Asm.getBundleAlignSize()) { // If the padding itself crosses a bundle boundary, it must be emitted // in 2 pieces, since even nop instructions must not cross boundaries. // v--------------v <- BundleAlignSize // v---------v <- BundlePadding // ---------------------------- // | Prev |####|####| F | // ---------------------------- // ^-------------------^ <- TotalLength unsigned DistanceToBoundary = TotalLength - Asm.getBundleAlignSize(); if (!Asm.getBackend().writeNopData(DistanceToBoundary, OW)) report_fatal_error("unable to write NOP sequence of " + Twine(DistanceToBoundary) + " bytes"); BundlePadding -= DistanceToBoundary; } if (!Asm.getBackend().writeNopData(BundlePadding, OW)) report_fatal_error("unable to write NOP sequence of " + Twine(BundlePadding) + " bytes"); } // This variable (and its dummy usage) is to participate in the assert at // the end of the function. uint64_t Start = OW->getStream().tell(); (void) Start; ++stats::EmittedFragments; switch (F.getKind()) { case MCFragment::FT_Align: { ++stats::EmittedAlignFragments; const MCAlignFragment &AF = cast<MCAlignFragment>(F); assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!"); uint64_t Count = FragmentSize / AF.getValueSize(); // FIXME: This error shouldn't actually occur (the front end should emit // multiple .align directives to enforce the semantics it wants), but is // severe enough that we want to report it. How to handle this? if (Count * AF.getValueSize() != FragmentSize) report_fatal_error("undefined .align directive, value size '" + Twine(AF.getValueSize()) + "' is not a divisor of padding size '" + Twine(FragmentSize) + "'"); // See if we are aligning with nops, and if so do that first to try to fill // the Count bytes. Then if that did not fill any bytes or there are any // bytes left to fill use the Value and ValueSize to fill the rest. // If we are aligning with nops, ask that target to emit the right data. if (AF.hasEmitNops()) { if (!Asm.getBackend().writeNopData(Count, OW)) report_fatal_error("unable to write nop sequence of " + Twine(Count) + " bytes"); break; } // Otherwise, write out in multiples of the value size. for (uint64_t i = 0; i != Count; ++i) { switch (AF.getValueSize()) { default: llvm_unreachable("Invalid size!"); case 1: OW->Write8 (uint8_t (AF.getValue())); break; case 2: OW->Write16(uint16_t(AF.getValue())); break; case 4: OW->Write32(uint32_t(AF.getValue())); break; case 8: OW->Write64(uint64_t(AF.getValue())); break; } } break; } case MCFragment::FT_Data: ++stats::EmittedDataFragments; writeFragmentContents(F, OW); break; case MCFragment::FT_Relaxable: ++stats::EmittedRelaxableFragments; writeFragmentContents(F, OW); break; case MCFragment::FT_CompactEncodedInst: ++stats::EmittedCompactEncodedInstFragments; writeFragmentContents(F, OW); break; case MCFragment::FT_Fill: { ++stats::EmittedFillFragments; const MCFillFragment &FF = cast<MCFillFragment>(F); assert(FF.getValueSize() && "Invalid virtual align in concrete fragment!"); for (uint64_t i = 0, e = FF.getSize() / FF.getValueSize(); i != e; ++i) { switch (FF.getValueSize()) { default: llvm_unreachable("Invalid size!"); case 1: OW->Write8 (uint8_t (FF.getValue())); break; case 2: OW->Write16(uint16_t(FF.getValue())); break; case 4: OW->Write32(uint32_t(FF.getValue())); break; case 8: OW->Write64(uint64_t(FF.getValue())); break; } } break; } case MCFragment::FT_LEB: { const MCLEBFragment &LF = cast<MCLEBFragment>(F); OW->WriteBytes(LF.getContents().str()); break; } case MCFragment::FT_Org: { ++stats::EmittedOrgFragments; const MCOrgFragment &OF = cast<MCOrgFragment>(F); for (uint64_t i = 0, e = FragmentSize; i != e; ++i) OW->Write8(uint8_t(OF.getValue())); break; } case MCFragment::FT_Dwarf: { const MCDwarfLineAddrFragment &OF = cast<MCDwarfLineAddrFragment>(F); OW->WriteBytes(OF.getContents().str()); break; } case MCFragment::FT_DwarfFrame: { const MCDwarfCallFrameFragment &CF = cast<MCDwarfCallFrameFragment>(F); OW->WriteBytes(CF.getContents().str()); break; } } assert(OW->getStream().tell() - Start == FragmentSize && "The stream should advance by fragment size"); } void MCAssembler::writeSectionData(const MCSectionData *SD, const MCAsmLayout &Layout) const { // Ignore virtual sections. if (SD->getSection().isVirtualSection()) { assert(Layout.getSectionFileSize(SD) == 0 && "Invalid size for section!"); // Check that contents are only things legal inside a virtual section. for (MCSectionData::const_iterator it = SD->begin(), ie = SD->end(); it != ie; ++it) { switch (it->getKind()) { default: llvm_unreachable("Invalid fragment in virtual section!"); case MCFragment::FT_Data: { // Check that we aren't trying to write a non-zero contents (or fixups) // into a virtual section. This is to support clients which use standard // directives to fill the contents of virtual sections. const MCDataFragment &DF = cast<MCDataFragment>(*it); assert(DF.fixup_begin() == DF.fixup_end() && "Cannot have fixups in virtual section!"); for (unsigned i = 0, e = DF.getContents().size(); i != e; ++i) assert(DF.getContents()[i] == 0 && "Invalid data value for virtual section!"); break; } case MCFragment::FT_Align: // Check that we aren't trying to write a non-zero value into a virtual // section. assert((cast<MCAlignFragment>(it)->getValueSize() == 0 || cast<MCAlignFragment>(it)->getValue() == 0) && "Invalid align in virtual section!"); break; case MCFragment::FT_Fill: assert((cast<MCFillFragment>(it)->getValueSize() == 0 || cast<MCFillFragment>(it)->getValue() == 0) && "Invalid fill in virtual section!"); break; } } return; } uint64_t Start = getWriter().getStream().tell(); (void)Start; for (MCSectionData::const_iterator it = SD->begin(), ie = SD->end(); it != ie; ++it) writeFragment(*this, Layout, *it); assert(getWriter().getStream().tell() - Start == Layout.getSectionAddressSize(SD)); } uint64_t MCAssembler::handleFixup(const MCAsmLayout &Layout, MCFragment &F, const MCFixup &Fixup) { // Evaluate the fixup. MCValue Target; uint64_t FixedValue; if (!evaluateFixup(Layout, Fixup, &F, Target, FixedValue)) { // The fixup was unresolved, we need a relocation. Inform the object // writer of the relocation, and give it an opportunity to adjust the // fixup value if need be. getWriter().RecordRelocation(*this, Layout, &F, Fixup, Target, FixedValue); } return FixedValue; } void MCAssembler::Finish() { DEBUG_WITH_TYPE("mc-dump", { llvm::errs() << "assembler backend - pre-layout\n--\n"; dump(); }); // Create the layout object. MCAsmLayout Layout(*this); // Create dummy fragments and assign section ordinals. unsigned SectionIndex = 0; for (MCAssembler::iterator it = begin(), ie = end(); it != ie; ++it) { // Create dummy fragments to eliminate any empty sections, this simplifies // layout. if (it->getFragmentList().empty()) new MCDataFragment(it); it->setOrdinal(SectionIndex++); } // Assign layout order indices to sections and fragments. for (unsigned i = 0, e = Layout.getSectionOrder().size(); i != e; ++i) { MCSectionData *SD = Layout.getSectionOrder()[i]; SD->setLayoutOrder(i); unsigned FragmentIndex = 0; for (MCSectionData::iterator iFrag = SD->begin(), iFragEnd = SD->end(); iFrag != iFragEnd; ++iFrag) iFrag->setLayoutOrder(FragmentIndex++); } // Layout until everything fits. while (layoutOnce(Layout)) continue; DEBUG_WITH_TYPE("mc-dump", { llvm::errs() << "assembler backend - post-relaxation\n--\n"; dump(); }); // Finalize the layout, including fragment lowering. finishLayout(Layout); DEBUG_WITH_TYPE("mc-dump", { llvm::errs() << "assembler backend - final-layout\n--\n"; dump(); }); uint64_t StartOffset = OS.tell(); // Allow the object writer a chance to perform post-layout binding (for // example, to set the index fields in the symbol data). getWriter().ExecutePostLayoutBinding(*this, Layout); // Evaluate and apply the fixups, generating relocation entries as necessary. for (MCAssembler::iterator it = begin(), ie = end(); it != ie; ++it) { for (MCSectionData::iterator it2 = it->begin(), ie2 = it->end(); it2 != ie2; ++it2) { MCEncodedFragmentWithFixups *F = dyn_cast<MCEncodedFragmentWithFixups>(it2); if (F) { for (MCEncodedFragmentWithFixups::fixup_iterator it3 = F->fixup_begin(), ie3 = F->fixup_end(); it3 != ie3; ++it3) { MCFixup &Fixup = *it3; uint64_t FixedValue = handleFixup(Layout, *F, Fixup); getBackend().applyFixup(Fixup, F->getContents().data(), F->getContents().size(), FixedValue); } } } } // Write the object file. getWriter().WriteObject(*this, Layout); stats::ObjectBytes += OS.tell() - StartOffset; } bool MCAssembler::fixupNeedsRelaxation(const MCFixup &Fixup, const MCRelaxableFragment *DF, const MCAsmLayout &Layout) const { // If we cannot resolve the fixup value, it requires relaxation. MCValue Target; uint64_t Value; if (!evaluateFixup(Layout, Fixup, DF, Target, Value)) return true; return getBackend().fixupNeedsRelaxation(Fixup, Value, DF, Layout); } bool MCAssembler::fragmentNeedsRelaxation(const MCRelaxableFragment *F, const MCAsmLayout &Layout) const { // If this inst doesn't ever need relaxation, ignore it. This occurs when we // are intentionally pushing out inst fragments, or because we relaxed a // previous instruction to one that doesn't need relaxation. if (!getBackend().mayNeedRelaxation(F->getInst())) return false; for (MCRelaxableFragment::const_fixup_iterator it = F->fixup_begin(), ie = F->fixup_end(); it != ie; ++it) if (fixupNeedsRelaxation(*it, F, Layout)) return true; return false; } bool MCAssembler::relaxInstruction(MCAsmLayout &Layout, MCRelaxableFragment &F) { if (!fragmentNeedsRelaxation(&F, Layout)) return false; ++stats::RelaxedInstructions; // FIXME-PERF: We could immediately lower out instructions if we can tell // they are fully resolved, to avoid retesting on later passes. // Relax the fragment. MCInst Relaxed; getBackend().relaxInstruction(F.getInst(), Relaxed); // Encode the new instruction. // // FIXME-PERF: If it matters, we could let the target do this. It can // probably do so more efficiently in many cases. SmallVector<MCFixup, 4> Fixups; SmallString<256> Code; raw_svector_ostream VecOS(Code); getEmitter().EncodeInstruction(Relaxed, VecOS, Fixups); VecOS.flush(); // Update the fragment. F.setInst(Relaxed); F.getContents() = Code; F.getFixups() = Fixups; return true; } bool MCAssembler::relaxLEB(MCAsmLayout &Layout, MCLEBFragment &LF) { int64_t Value = 0; uint64_t OldSize = LF.getContents().size(); bool IsAbs = LF.getValue().EvaluateAsAbsolute(Value, Layout); (void)IsAbs; assert(IsAbs); SmallString<8> &Data = LF.getContents(); Data.clear(); raw_svector_ostream OSE(Data); if (LF.isSigned()) encodeSLEB128(Value, OSE); else encodeULEB128(Value, OSE); OSE.flush(); return OldSize != LF.getContents().size(); } bool MCAssembler::relaxDwarfLineAddr(MCAsmLayout &Layout, MCDwarfLineAddrFragment &DF) { MCContext &Context = Layout.getAssembler().getContext(); int64_t AddrDelta = 0; uint64_t OldSize = DF.getContents().size(); bool IsAbs = DF.getAddrDelta().EvaluateAsAbsolute(AddrDelta, Layout); (void)IsAbs; assert(IsAbs); int64_t LineDelta; LineDelta = DF.getLineDelta(); SmallString<8> &Data = DF.getContents(); Data.clear(); raw_svector_ostream OSE(Data); MCDwarfLineAddr::Encode(Context, LineDelta, AddrDelta, OSE); OSE.flush(); return OldSize != Data.size(); } bool MCAssembler::relaxDwarfCallFrameFragment(MCAsmLayout &Layout, MCDwarfCallFrameFragment &DF) { MCContext &Context = Layout.getAssembler().getContext(); int64_t AddrDelta = 0; uint64_t OldSize = DF.getContents().size(); bool IsAbs = DF.getAddrDelta().EvaluateAsAbsolute(AddrDelta, Layout); (void)IsAbs; assert(IsAbs); SmallString<8> &Data = DF.getContents(); Data.clear(); raw_svector_ostream OSE(Data); MCDwarfFrameEmitter::EncodeAdvanceLoc(Context, AddrDelta, OSE); OSE.flush(); return OldSize != Data.size(); } bool MCAssembler::layoutSectionOnce(MCAsmLayout &Layout, MCSectionData &SD) { // Holds the first fragment which needed relaxing during this layout. It will // remain NULL if none were relaxed. // When a fragment is relaxed, all the fragments following it should get // invalidated because their offset is going to change. MCFragment *FirstRelaxedFragment = NULL; // Attempt to relax all the fragments in the section. for (MCSectionData::iterator I = SD.begin(), IE = SD.end(); I != IE; ++I) { // Check if this is a fragment that needs relaxation. bool RelaxedFrag = false; switch(I->getKind()) { default: break; case MCFragment::FT_Relaxable: assert(!getRelaxAll() && "Did not expect a MCRelaxableFragment in RelaxAll mode"); RelaxedFrag = relaxInstruction(Layout, *cast<MCRelaxableFragment>(I)); break; case MCFragment::FT_Dwarf: RelaxedFrag = relaxDwarfLineAddr(Layout, *cast<MCDwarfLineAddrFragment>(I)); break; case MCFragment::FT_DwarfFrame: RelaxedFrag = relaxDwarfCallFrameFragment(Layout, *cast<MCDwarfCallFrameFragment>(I)); break; case MCFragment::FT_LEB: RelaxedFrag = relaxLEB(Layout, *cast<MCLEBFragment>(I)); break; } if (RelaxedFrag && !FirstRelaxedFragment) FirstRelaxedFragment = I; } if (FirstRelaxedFragment) { Layout.invalidateFragmentsFrom(FirstRelaxedFragment); return true; } return false; } bool MCAssembler::layoutOnce(MCAsmLayout &Layout) { ++stats::RelaxationSteps; bool WasRelaxed = false; for (iterator it = begin(), ie = end(); it != ie; ++it) { MCSectionData &SD = *it; while (layoutSectionOnce(Layout, SD)) WasRelaxed = true; } return WasRelaxed; } void MCAssembler::finishLayout(MCAsmLayout &Layout) { // The layout is done. Mark every fragment as valid. for (unsigned int i = 0, n = Layout.getSectionOrder().size(); i != n; ++i) { Layout.getFragmentOffset(&*Layout.getSectionOrder()[i]->rbegin()); } } // Debugging methods namespace llvm { raw_ostream &operator<<(raw_ostream &OS, const MCFixup &AF) { OS << "<MCFixup" << " Offset:" << AF.getOffset() << " Value:" << *AF.getValue() << " Kind:" << AF.getKind() << ">"; return OS; } } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) void MCFragment::dump() { raw_ostream &OS = llvm::errs(); OS << "<"; switch (getKind()) { case MCFragment::FT_Align: OS << "MCAlignFragment"; break; case MCFragment::FT_Data: OS << "MCDataFragment"; break; case MCFragment::FT_CompactEncodedInst: OS << "MCCompactEncodedInstFragment"; break; case MCFragment::FT_Fill: OS << "MCFillFragment"; break; case MCFragment::FT_Relaxable: OS << "MCRelaxableFragment"; break; case MCFragment::FT_Org: OS << "MCOrgFragment"; break; case MCFragment::FT_Dwarf: OS << "MCDwarfFragment"; break; case MCFragment::FT_DwarfFrame: OS << "MCDwarfCallFrameFragment"; break; case MCFragment::FT_LEB: OS << "MCLEBFragment"; break; } OS << "<MCFragment " << (void*) this << " LayoutOrder:" << LayoutOrder << " Offset:" << Offset << " HasInstructions:" << hasInstructions() << " BundlePadding:" << static_cast<unsigned>(getBundlePadding()) << ">"; switch (getKind()) { case MCFragment::FT_Align: { const MCAlignFragment *AF = cast<MCAlignFragment>(this); if (AF->hasEmitNops()) OS << " (emit nops)"; OS << "\n "; OS << " Alignment:" << AF->getAlignment() << " Value:" << AF->getValue() << " ValueSize:" << AF->getValueSize() << " MaxBytesToEmit:" << AF->getMaxBytesToEmit() << ">"; break; } case MCFragment::FT_Data: { const MCDataFragment *DF = cast<MCDataFragment>(this); OS << "\n "; OS << " Contents:["; const SmallVectorImpl<char> &Contents = DF->getContents(); for (unsigned i = 0, e = Contents.size(); i != e; ++i) { if (i) OS << ","; OS << hexdigit((Contents[i] >> 4) & 0xF) << hexdigit(Contents[i] & 0xF); } OS << "] (" << Contents.size() << " bytes)"; if (DF->fixup_begin() != DF->fixup_end()) { OS << ",\n "; OS << " Fixups:["; for (MCDataFragment::const_fixup_iterator it = DF->fixup_begin(), ie = DF->fixup_end(); it != ie; ++it) { if (it != DF->fixup_begin()) OS << ",\n "; OS << *it; } OS << "]"; } break; } case MCFragment::FT_CompactEncodedInst: { const MCCompactEncodedInstFragment *CEIF = cast<MCCompactEncodedInstFragment>(this); OS << "\n "; OS << " Contents:["; const SmallVectorImpl<char> &Contents = CEIF->getContents(); for (unsigned i = 0, e = Contents.size(); i != e; ++i) { if (i) OS << ","; OS << hexdigit((Contents[i] >> 4) & 0xF) << hexdigit(Contents[i] & 0xF); } OS << "] (" << Contents.size() << " bytes)"; break; } case MCFragment::FT_Fill: { const MCFillFragment *FF = cast<MCFillFragment>(this); OS << " Value:" << FF->getValue() << " ValueSize:" << FF->getValueSize() << " Size:" << FF->getSize(); break; } case MCFragment::FT_Relaxable: { const MCRelaxableFragment *F = cast<MCRelaxableFragment>(this); OS << "\n "; OS << " Inst:"; F->getInst().dump_pretty(OS); break; } case MCFragment::FT_Org: { const MCOrgFragment *OF = cast<MCOrgFragment>(this); OS << "\n "; OS << " Offset:" << OF->getOffset() << " Value:" << OF->getValue(); break; } case MCFragment::FT_Dwarf: { const MCDwarfLineAddrFragment *OF = cast<MCDwarfLineAddrFragment>(this); OS << "\n "; OS << " AddrDelta:" << OF->getAddrDelta() << " LineDelta:" << OF->getLineDelta(); break; } case MCFragment::FT_DwarfFrame: { const MCDwarfCallFrameFragment *CF = cast<MCDwarfCallFrameFragment>(this); OS << "\n "; OS << " AddrDelta:" << CF->getAddrDelta(); break; } case MCFragment::FT_LEB: { const MCLEBFragment *LF = cast<MCLEBFragment>(this); OS << "\n "; OS << " Value:" << LF->getValue() << " Signed:" << LF->isSigned(); break; } } OS << ">"; } void MCSectionData::dump() { raw_ostream &OS = llvm::errs(); OS << "<MCSectionData"; OS << " Alignment:" << getAlignment() << " Fragments:[\n "; for (iterator it = begin(), ie = end(); it != ie; ++it) { if (it != begin()) OS << ",\n "; it->dump(); } OS << "]>"; } void MCSymbolData::dump() { raw_ostream &OS = llvm::errs(); OS << "<MCSymbolData Symbol:" << getSymbol() << " Fragment:" << getFragment() << " Offset:" << getOffset() << " Flags:" << getFlags() << " Index:" << getIndex(); if (isCommon()) OS << " (common, size:" << getCommonSize() << " align: " << getCommonAlignment() << ")"; if (isExternal()) OS << " (external)"; if (isPrivateExtern()) OS << " (private extern)"; OS << ">"; } void MCAssembler::dump() { raw_ostream &OS = llvm::errs(); OS << "<MCAssembler\n"; OS << " Sections:[\n "; for (iterator it = begin(), ie = end(); it != ie; ++it) { if (it != begin()) OS << ",\n "; it->dump(); } OS << "],\n"; OS << " Symbols:["; for (symbol_iterator it = symbol_begin(), ie = symbol_end(); it != ie; ++it) { if (it != symbol_begin()) OS << ",\n "; it->dump(); } OS << "]>\n"; } #endif // anchors for MC*Fragment vtables void MCEncodedFragment::anchor() { } void MCEncodedFragmentWithFixups::anchor() { } void MCDataFragment::anchor() { } void MCCompactEncodedInstFragment::anchor() { } void MCRelaxableFragment::anchor() { } void MCAlignFragment::anchor() { } void MCFillFragment::anchor() { } void MCOrgFragment::anchor() { } void MCLEBFragment::anchor() { } void MCDwarfLineAddrFragment::anchor() { } void MCDwarfCallFrameFragment::anchor() { }