Mercurial > hg > CbC > CbC_llvm
view llvm/lib/Transforms/IPO/PassManagerBuilder.cpp @ 165:597b3f1c2c93
fix call createTailCallEliminationPass
author | anatofuz |
---|---|
date | Tue, 24 Mar 2020 15:30:52 +0900 |
parents | f7e988d3e4cc |
children | 3a3539a2fb79 |
line wrap: on
line source
//===- PassManagerBuilder.cpp - Build Standard Pass -----------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the PassManagerBuilder class, which is used to set up a // "standard" optimization sequence suitable for languages like C and C++. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/IPO/PassManagerBuilder.h" #include "llvm-c/Transforms/PassManagerBuilder.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Analysis/BasicAliasAnalysis.h" #include "llvm/Analysis/CFLAndersAliasAnalysis.h" #include "llvm/Analysis/CFLSteensAliasAnalysis.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/InlineCost.h" #include "llvm/Analysis/Passes.h" #include "llvm/Analysis/ScopedNoAliasAA.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/TypeBasedAliasAnalysis.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/LegacyPassManager.h" #include "llvm/IR/Verifier.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h" #include "llvm/Transforms/IPO.h" #include "llvm/Transforms/IPO/Attributor.h" #include "llvm/Transforms/IPO/ForceFunctionAttrs.h" #include "llvm/Transforms/IPO/FunctionAttrs.h" #include "llvm/Transforms/IPO/InferFunctionAttrs.h" #include "llvm/Transforms/InstCombine/InstCombine.h" #include "llvm/Transforms/Instrumentation.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Scalar/GVN.h" #include "llvm/Transforms/Scalar/InstSimplifyPass.h" #include "llvm/Transforms/Scalar/LICM.h" #include "llvm/Transforms/Scalar/LoopUnrollPass.h" #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" #include "llvm/Transforms/Utils.h" #include "llvm/Transforms/Vectorize.h" #include "llvm/Transforms/Vectorize/LoopVectorize.h" #include "llvm/Transforms/Vectorize/SLPVectorizer.h" #include "llvm/Transforms/Vectorize/VectorCombine.h" using namespace llvm; static cl::opt<bool> RunPartialInlining("enable-partial-inlining", cl::init(false), cl::Hidden, cl::ZeroOrMore, cl::desc("Run Partial inlinining pass")); static cl::opt<bool> UseGVNAfterVectorization("use-gvn-after-vectorization", cl::init(false), cl::Hidden, cl::desc("Run GVN instead of Early CSE after vectorization passes")); static cl::opt<bool> ExtraVectorizerPasses( "extra-vectorizer-passes", cl::init(false), cl::Hidden, cl::desc("Run cleanup optimization passes after vectorization.")); static cl::opt<bool> RunLoopRerolling("reroll-loops", cl::Hidden, cl::desc("Run the loop rerolling pass")); static cl::opt<bool> RunNewGVN("enable-newgvn", cl::init(false), cl::Hidden, cl::desc("Run the NewGVN pass")); // Experimental option to use CFL-AA enum class CFLAAType { None, Steensgaard, Andersen, Both }; static cl::opt<CFLAAType> UseCFLAA("use-cfl-aa", cl::init(CFLAAType::None), cl::Hidden, cl::desc("Enable the new, experimental CFL alias analysis"), cl::values(clEnumValN(CFLAAType::None, "none", "Disable CFL-AA"), clEnumValN(CFLAAType::Steensgaard, "steens", "Enable unification-based CFL-AA"), clEnumValN(CFLAAType::Andersen, "anders", "Enable inclusion-based CFL-AA"), clEnumValN(CFLAAType::Both, "both", "Enable both variants of CFL-AA"))); static cl::opt<bool> EnableLoopInterchange( "enable-loopinterchange", cl::init(false), cl::Hidden, cl::desc("Enable the new, experimental LoopInterchange Pass")); static cl::opt<bool> EnableUnrollAndJam("enable-unroll-and-jam", cl::init(false), cl::Hidden, cl::desc("Enable Unroll And Jam Pass")); static cl::opt<bool> EnablePrepareForThinLTO("prepare-for-thinlto", cl::init(false), cl::Hidden, cl::desc("Enable preparation for ThinLTO.")); static cl::opt<bool> EnablePerformThinLTO("perform-thinlto", cl::init(false), cl::Hidden, cl::desc("Enable performing ThinLTO.")); cl::opt<bool> EnableHotColdSplit("hot-cold-split", cl::init(false), cl::Hidden, cl::desc("Enable hot-cold splitting pass")); static cl::opt<bool> UseLoopVersioningLICM( "enable-loop-versioning-licm", cl::init(false), cl::Hidden, cl::desc("Enable the experimental Loop Versioning LICM pass")); static cl::opt<bool> DisablePreInliner("disable-preinline", cl::init(false), cl::Hidden, cl::desc("Disable pre-instrumentation inliner")); static cl::opt<int> PreInlineThreshold( "preinline-threshold", cl::Hidden, cl::init(75), cl::ZeroOrMore, cl::desc("Control the amount of inlining in pre-instrumentation inliner " "(default = 75)")); static cl::opt<bool> EnableGVNHoist( "enable-gvn-hoist", cl::init(false), cl::Hidden, cl::desc("Enable the GVN hoisting pass (default = off)")); static cl::opt<bool> DisableLibCallsShrinkWrap("disable-libcalls-shrinkwrap", cl::init(false), cl::Hidden, cl::desc("Disable shrink-wrap library calls")); static cl::opt<bool> EnableSimpleLoopUnswitch( "enable-simple-loop-unswitch", cl::init(false), cl::Hidden, cl::desc("Enable the simple loop unswitch pass. Also enables independent " "cleanup passes integrated into the loop pass manager pipeline.")); static cl::opt<bool> EnableGVNSink( "enable-gvn-sink", cl::init(false), cl::Hidden, cl::desc("Enable the GVN sinking pass (default = off)")); // This option is used in simplifying testing SampleFDO optimizations for // profile loading. static cl::opt<bool> EnableCHR("enable-chr", cl::init(true), cl::Hidden, cl::desc("Enable control height reduction optimization (CHR)")); cl::opt<bool> FlattenedProfileUsed( "flattened-profile-used", cl::init(false), cl::Hidden, cl::desc("Indicate the sample profile being used is flattened, i.e., " "no inline hierachy exists in the profile. ")); cl::opt<bool> EnableOrderFileInstrumentation( "enable-order-file-instrumentation", cl::init(false), cl::Hidden, cl::desc("Enable order file instrumentation (default = off)")); static cl::opt<bool> EnableMatrix("enable-matrix", cl::init(false), cl::Hidden, cl::desc("Enable lowering of the matrix intrinsics")); PassManagerBuilder::PassManagerBuilder() { OptLevel = 2; SizeLevel = 0; LibraryInfo = nullptr; Inliner = nullptr; DisableUnrollLoops = false; SLPVectorize = RunSLPVectorization; LoopVectorize = EnableLoopVectorization; LoopsInterleaved = EnableLoopInterleaving; RerollLoops = RunLoopRerolling; NewGVN = RunNewGVN; LicmMssaOptCap = SetLicmMssaOptCap; LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap; DisableGVNLoadPRE = false; ForgetAllSCEVInLoopUnroll = ForgetSCEVInLoopUnroll; VerifyInput = false; VerifyOutput = false; MergeFunctions = false; PrepareForLTO = false; EnablePGOInstrGen = false; EnablePGOCSInstrGen = false; EnablePGOCSInstrUse = false; PGOInstrGen = ""; PGOInstrUse = ""; PGOSampleUse = ""; PrepareForThinLTO = EnablePrepareForThinLTO; PerformThinLTO = EnablePerformThinLTO; DivergentTarget = false; } PassManagerBuilder::~PassManagerBuilder() { delete LibraryInfo; delete Inliner; } /// Set of global extensions, automatically added as part of the standard set. static ManagedStatic< SmallVector<std::tuple<PassManagerBuilder::ExtensionPointTy, PassManagerBuilder::ExtensionFn, PassManagerBuilder::GlobalExtensionID>, 8>> GlobalExtensions; static PassManagerBuilder::GlobalExtensionID GlobalExtensionsCounter; /// Check if GlobalExtensions is constructed and not empty. /// Since GlobalExtensions is a managed static, calling 'empty()' will trigger /// the construction of the object. static bool GlobalExtensionsNotEmpty() { return GlobalExtensions.isConstructed() && !GlobalExtensions->empty(); } PassManagerBuilder::GlobalExtensionID PassManagerBuilder::addGlobalExtension(PassManagerBuilder::ExtensionPointTy Ty, PassManagerBuilder::ExtensionFn Fn) { auto ExtensionID = GlobalExtensionsCounter++; GlobalExtensions->push_back(std::make_tuple(Ty, std::move(Fn), ExtensionID)); return ExtensionID; } void PassManagerBuilder::removeGlobalExtension( PassManagerBuilder::GlobalExtensionID ExtensionID) { // RegisterStandardPasses may try to call this function after GlobalExtensions // has already been destroyed; doing so should not generate an error. if (!GlobalExtensions.isConstructed()) return; auto GlobalExtension = llvm::find_if(*GlobalExtensions, [ExtensionID](const auto &elem) { return std::get<2>(elem) == ExtensionID; }); assert(GlobalExtension != GlobalExtensions->end() && "The extension ID to be removed should always be valid."); GlobalExtensions->erase(GlobalExtension); } void PassManagerBuilder::addExtension(ExtensionPointTy Ty, ExtensionFn Fn) { Extensions.push_back(std::make_pair(Ty, std::move(Fn))); } void PassManagerBuilder::addExtensionsToPM(ExtensionPointTy ETy, legacy::PassManagerBase &PM) const { if (GlobalExtensionsNotEmpty()) { for (auto &Ext : *GlobalExtensions) { if (std::get<0>(Ext) == ETy) std::get<1>(Ext)(*this, PM); } } for (unsigned i = 0, e = Extensions.size(); i != e; ++i) if (Extensions[i].first == ETy) Extensions[i].second(*this, PM); } void PassManagerBuilder::addInitialAliasAnalysisPasses( legacy::PassManagerBase &PM) const { switch (UseCFLAA) { case CFLAAType::Steensgaard: PM.add(createCFLSteensAAWrapperPass()); break; case CFLAAType::Andersen: PM.add(createCFLAndersAAWrapperPass()); break; case CFLAAType::Both: PM.add(createCFLSteensAAWrapperPass()); PM.add(createCFLAndersAAWrapperPass()); break; default: break; } // Add TypeBasedAliasAnalysis before BasicAliasAnalysis so that // BasicAliasAnalysis wins if they disagree. This is intended to help // support "obvious" type-punning idioms. PM.add(createTypeBasedAAWrapperPass()); PM.add(createScopedNoAliasAAWrapperPass()); } void PassManagerBuilder::addInstructionCombiningPass( legacy::PassManagerBase &PM) const { bool ExpensiveCombines = OptLevel > 2; PM.add(createInstructionCombiningPass(ExpensiveCombines)); } void PassManagerBuilder::populateFunctionPassManager( legacy::FunctionPassManager &FPM) { addExtensionsToPM(EP_EarlyAsPossible, FPM); FPM.add(createEntryExitInstrumenterPass()); // Add LibraryInfo if we have some. if (LibraryInfo) FPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo)); #ifndef noCbC if (OptLevel == 0) { FPM.add(createSROAPass(true)); } #else if (OptLevel == 0) return; #endif addInitialAliasAnalysisPasses(FPM); FPM.add(createCFGSimplificationPass()); #ifndef noCbC FPM.add(createSROAPass(false)); #else FPM.add(createSROAPass()); #endif FPM.add(createEarlyCSEPass()); FPM.add(createLowerExpectIntrinsicPass()); } // Do PGO instrumentation generation or use pass as the option specified. void PassManagerBuilder::addPGOInstrPasses(legacy::PassManagerBase &MPM, bool IsCS = false) { if (IsCS) { if (!EnablePGOCSInstrGen && !EnablePGOCSInstrUse) return; } else if (!EnablePGOInstrGen && PGOInstrUse.empty() && PGOSampleUse.empty()) return; // Perform the preinline and cleanup passes for O1 and above. // And avoid doing them if optimizing for size. // We will not do this inline for context sensitive PGO (when IsCS is true). if (OptLevel > 0 && SizeLevel == 0 && !DisablePreInliner && PGOSampleUse.empty() && !IsCS) { // Create preinline pass. We construct an InlineParams object and specify // the threshold here to avoid the command line options of the regular // inliner to influence pre-inlining. The only fields of InlineParams we // care about are DefaultThreshold and HintThreshold. InlineParams IP; IP.DefaultThreshold = PreInlineThreshold; // FIXME: The hint threshold has the same value used by the regular inliner. // This should probably be lowered after performance testing. IP.HintThreshold = 325; MPM.add(createFunctionInliningPass(IP)); MPM.add(createSROAPass()); MPM.add(createEarlyCSEPass()); // Catch trivial redundancies MPM.add(createCFGSimplificationPass()); // Merge & remove BBs MPM.add(createInstructionCombiningPass()); // Combine silly seq's addExtensionsToPM(EP_Peephole, MPM); } if ((EnablePGOInstrGen && !IsCS) || (EnablePGOCSInstrGen && IsCS)) { MPM.add(createPGOInstrumentationGenLegacyPass(IsCS)); // Add the profile lowering pass. InstrProfOptions Options; if (!PGOInstrGen.empty()) Options.InstrProfileOutput = PGOInstrGen; Options.DoCounterPromotion = true; Options.UseBFIInPromotion = IsCS; MPM.add(createLoopRotatePass()); MPM.add(createInstrProfilingLegacyPass(Options, IsCS)); } if (!PGOInstrUse.empty()) MPM.add(createPGOInstrumentationUseLegacyPass(PGOInstrUse, IsCS)); // Indirect call promotion that promotes intra-module targets only. // For ThinLTO this is done earlier due to interactions with globalopt // for imported functions. We don't run this at -O0. if (OptLevel > 0 && !IsCS) MPM.add( createPGOIndirectCallPromotionLegacyPass(false, !PGOSampleUse.empty())); } void PassManagerBuilder::addFunctionSimplificationPasses( legacy::PassManagerBase &MPM) { // Start of function pass. // Break up aggregate allocas, using SSAUpdater. assert(OptLevel >= 1 && "Calling function optimizer with no optimization level!"); #ifndef noCbC MPM.add(createSROAPass(false)); #else MPM.add(createSROAPass()); #endif MPM.add(createEarlyCSEPass(true /* Enable mem-ssa. */)); // Catch trivial redundancies if (OptLevel > 1) { if (EnableGVNHoist) MPM.add(createGVNHoistPass()); if (EnableGVNSink) { MPM.add(createGVNSinkPass()); MPM.add(createCFGSimplificationPass()); } } if (OptLevel > 1) { // Speculative execution if the target has divergent branches; otherwise nop. MPM.add(createSpeculativeExecutionIfHasBranchDivergencePass()); MPM.add(createJumpThreadingPass()); // Thread jumps. MPM.add(createCorrelatedValuePropagationPass()); // Propagate conditionals } MPM.add(createCFGSimplificationPass()); // Merge & remove BBs // Combine silly seq's if (OptLevel > 2) MPM.add(createAggressiveInstCombinerPass()); addInstructionCombiningPass(MPM); if (SizeLevel == 0 && !DisableLibCallsShrinkWrap) MPM.add(createLibCallsShrinkWrapPass()); addExtensionsToPM(EP_Peephole, MPM); // Optimize memory intrinsic calls based on the profiled size information. if (SizeLevel == 0) MPM.add(createPGOMemOPSizeOptLegacyPass()); #ifndef noCbc MPM.add(createTailCallEliminationPass(false)); // CbC #endif // TODO: Investigate the cost/benefit of tail call elimination on debugging. #ifdef noCbC if (OptLevel > 1) MPM.add(createTailCallEliminationPass()); // Eliminate tail calls #endif MPM.add(createCFGSimplificationPass()); // Merge & remove BBs MPM.add(createReassociatePass()); // Reassociate expressions // Begin the loop pass pipeline. if (EnableSimpleLoopUnswitch) { // The simple loop unswitch pass relies on separate cleanup passes. Schedule // them first so when we re-process a loop they run before other loop // passes. MPM.add(createLoopInstSimplifyPass()); MPM.add(createLoopSimplifyCFGPass()); } // Rotate Loop - disable header duplication at -Oz MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1)); // TODO: Investigate promotion cap for O1. MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap)); if (EnableSimpleLoopUnswitch) MPM.add(createSimpleLoopUnswitchLegacyPass()); else MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3, DivergentTarget)); // FIXME: We break the loop pass pipeline here in order to do full // simplify-cfg. Eventually loop-simplifycfg should be enhanced to replace the // need for this. MPM.add(createCFGSimplificationPass()); addInstructionCombiningPass(MPM); // We resume loop passes creating a second loop pipeline here. MPM.add(createIndVarSimplifyPass()); // Canonicalize indvars MPM.add(createLoopIdiomPass()); // Recognize idioms like memset. addExtensionsToPM(EP_LateLoopOptimizations, MPM); MPM.add(createLoopDeletionPass()); // Delete dead loops if (EnableLoopInterchange) MPM.add(createLoopInterchangePass()); // Interchange loops // Unroll small loops MPM.add(createSimpleLoopUnrollPass(OptLevel, DisableUnrollLoops, ForgetAllSCEVInLoopUnroll)); addExtensionsToPM(EP_LoopOptimizerEnd, MPM); // This ends the loop pass pipelines. if (OptLevel > 1) { MPM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds MPM.add(NewGVN ? createNewGVNPass() : createGVNPass(DisableGVNLoadPRE)); // Remove redundancies } MPM.add(createMemCpyOptPass()); // Remove memcpy / form memset MPM.add(createSCCPPass()); // Constant prop with SCCP // Delete dead bit computations (instcombine runs after to fold away the dead // computations, and then ADCE will run later to exploit any new DCE // opportunities that creates). MPM.add(createBitTrackingDCEPass()); // Delete dead bit computations // Run instcombine after redundancy elimination to exploit opportunities // opened up by them. addInstructionCombiningPass(MPM); addExtensionsToPM(EP_Peephole, MPM); if (OptLevel > 1) { MPM.add(createJumpThreadingPass()); // Thread jumps MPM.add(createCorrelatedValuePropagationPass()); MPM.add(createDeadStoreEliminationPass()); // Delete dead stores MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap)); } addExtensionsToPM(EP_ScalarOptimizerLate, MPM); if (RerollLoops) MPM.add(createLoopRerollPass()); // TODO: Investigate if this is too expensive at O1. MPM.add(createAggressiveDCEPass()); // Delete dead instructions MPM.add(createCFGSimplificationPass()); // Merge & remove BBs // Clean up after everything. addInstructionCombiningPass(MPM); addExtensionsToPM(EP_Peephole, MPM); if (EnableCHR && OptLevel >= 3 && (!PGOInstrUse.empty() || !PGOSampleUse.empty() || EnablePGOCSInstrGen)) MPM.add(createControlHeightReductionLegacyPass()); } void PassManagerBuilder::populateModulePassManager( legacy::PassManagerBase &MPM) { // Whether this is a default or *LTO pre-link pipeline. The FullLTO post-link // is handled separately, so just check this is not the ThinLTO post-link. bool DefaultOrPreLinkPipeline = !PerformThinLTO; if (!PGOSampleUse.empty()) { MPM.add(createPruneEHPass()); // In ThinLTO mode, when flattened profile is used, all the available // profile information will be annotated in PreLink phase so there is // no need to load the profile again in PostLink. if (!(FlattenedProfileUsed && PerformThinLTO)) MPM.add(createSampleProfileLoaderPass(PGOSampleUse)); } // Allow forcing function attributes as a debugging and tuning aid. MPM.add(createForceFunctionAttrsLegacyPass()); // If all optimizations are disabled, just run the always-inline pass and, // if enabled, the function merging pass. if (OptLevel == 0) { addPGOInstrPasses(MPM); if (Inliner) { MPM.add(Inliner); Inliner = nullptr; } // FIXME: The BarrierNoopPass is a HACK! The inliner pass above implicitly // creates a CGSCC pass manager, but we don't want to add extensions into // that pass manager. To prevent this we insert a no-op module pass to reset // the pass manager to get the same behavior as EP_OptimizerLast in non-O0 // builds. The function merging pass is if (MergeFunctions) MPM.add(createMergeFunctionsPass()); else if (GlobalExtensionsNotEmpty() || !Extensions.empty()) MPM.add(createBarrierNoopPass()); #ifndef noCbC MPM.add(createTailCallEliminationPass(true)); // Eliminate tail calls #endif if (PerformThinLTO) { MPM.add(createLowerTypeTestsPass(nullptr, nullptr, true)); // Drop available_externally and unreferenced globals. This is necessary // with ThinLTO in order to avoid leaving undefined references to dead // globals in the object file. MPM.add(createEliminateAvailableExternallyPass()); MPM.add(createGlobalDCEPass()); } addExtensionsToPM(EP_EnabledOnOptLevel0, MPM); if (PrepareForLTO || PrepareForThinLTO) { MPM.add(createCanonicalizeAliasesPass()); // Rename anon globals to be able to export them in the summary. // This has to be done after we add the extensions to the pass manager // as there could be passes (e.g. Adddress sanitizer) which introduce // new unnamed globals. MPM.add(createNameAnonGlobalPass()); } return; } // Add LibraryInfo if we have some. if (LibraryInfo) MPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo)); addInitialAliasAnalysisPasses(MPM); // For ThinLTO there are two passes of indirect call promotion. The // first is during the compile phase when PerformThinLTO=false and // intra-module indirect call targets are promoted. The second is during // the ThinLTO backend when PerformThinLTO=true, when we promote imported // inter-module indirect calls. For that we perform indirect call promotion // earlier in the pass pipeline, here before globalopt. Otherwise imported // available_externally functions look unreferenced and are removed. if (PerformThinLTO) { MPM.add(createPGOIndirectCallPromotionLegacyPass(/*InLTO = */ true, !PGOSampleUse.empty())); MPM.add(createLowerTypeTestsPass(nullptr, nullptr, true)); } // For SamplePGO in ThinLTO compile phase, we do not want to unroll loops // as it will change the CFG too much to make the 2nd profile annotation // in backend more difficult. bool PrepareForThinLTOUsingPGOSampleProfile = PrepareForThinLTO && !PGOSampleUse.empty(); if (PrepareForThinLTOUsingPGOSampleProfile) DisableUnrollLoops = true; // Infer attributes about declarations if possible. MPM.add(createInferFunctionAttrsLegacyPass()); // Infer attributes on declarations, call sites, arguments, etc. MPM.add(createAttributorLegacyPass()); addExtensionsToPM(EP_ModuleOptimizerEarly, MPM); if (OptLevel > 2) MPM.add(createCallSiteSplittingPass()); MPM.add(createIPSCCPPass()); // IP SCCP MPM.add(createCalledValuePropagationPass()); MPM.add(createGlobalOptimizerPass()); // Optimize out global vars // Promote any localized global vars. MPM.add(createPromoteMemoryToRegisterPass()); MPM.add(createDeadArgEliminationPass()); // Dead argument elimination addInstructionCombiningPass(MPM); // Clean up after IPCP & DAE addExtensionsToPM(EP_Peephole, MPM); MPM.add(createCFGSimplificationPass()); // Clean up after IPCP & DAE // For SamplePGO in ThinLTO compile phase, we do not want to do indirect // call promotion as it will change the CFG too much to make the 2nd // profile annotation in backend more difficult. // PGO instrumentation is added during the compile phase for ThinLTO, do // not run it a second time if (DefaultOrPreLinkPipeline && !PrepareForThinLTOUsingPGOSampleProfile) addPGOInstrPasses(MPM); // Create profile COMDAT variables. Lld linker wants to see all variables // before the LTO/ThinLTO link since it needs to resolve symbols/comdats. if (!PerformThinLTO && EnablePGOCSInstrGen) MPM.add(createPGOInstrumentationGenCreateVarLegacyPass(PGOInstrGen)); // We add a module alias analysis pass here. In part due to bugs in the // analysis infrastructure this "works" in that the analysis stays alive // for the entire SCC pass run below. MPM.add(createGlobalsAAWrapperPass()); // Start of CallGraph SCC passes. MPM.add(createPruneEHPass()); // Remove dead EH info bool RunInliner = false; if (Inliner) { MPM.add(Inliner); Inliner = nullptr; RunInliner = true; } // Infer attributes on declarations, call sites, arguments, etc. for an SCC. MPM.add(createAttributorCGSCCLegacyPass()); // Try to perform OpenMP specific optimizations. This is a (quick!) no-op if // there are no OpenMP runtime calls present in the module. if (OptLevel > 1) MPM.add(createOpenMPOptLegacyPass()); MPM.add(createPostOrderFunctionAttrsLegacyPass()); if (OptLevel > 2) MPM.add(createArgumentPromotionPass()); // Scalarize uninlined fn args addExtensionsToPM(EP_CGSCCOptimizerLate, MPM); addFunctionSimplificationPasses(MPM); // FIXME: This is a HACK! The inliner pass above implicitly creates a CGSCC // pass manager that we are specifically trying to avoid. To prevent this // we must insert a no-op module pass to reset the pass manager. MPM.add(createBarrierNoopPass()); if (RunPartialInlining) MPM.add(createPartialInliningPass()); if (OptLevel > 1 && !PrepareForLTO && !PrepareForThinLTO) // Remove avail extern fns and globals definitions if we aren't // compiling an object file for later LTO. For LTO we want to preserve // these so they are eligible for inlining at link-time. Note if they // are unreferenced they will be removed by GlobalDCE later, so // this only impacts referenced available externally globals. // Eventually they will be suppressed during codegen, but eliminating // here enables more opportunity for GlobalDCE as it may make // globals referenced by available external functions dead // and saves running remaining passes on the eliminated functions. MPM.add(createEliminateAvailableExternallyPass()); // CSFDO instrumentation and use pass. Don't invoke this for Prepare pass // for LTO and ThinLTO -- The actual pass will be called after all inlines // are performed. // Need to do this after COMDAT variables have been eliminated, // (i.e. after EliminateAvailableExternallyPass). if (!(PrepareForLTO || PrepareForThinLTO)) addPGOInstrPasses(MPM, /* IsCS */ true); if (EnableOrderFileInstrumentation) MPM.add(createInstrOrderFilePass()); MPM.add(createReversePostOrderFunctionAttrsPass()); // The inliner performs some kind of dead code elimination as it goes, // but there are cases that are not really caught by it. We might // at some point consider teaching the inliner about them, but it // is OK for now to run GlobalOpt + GlobalDCE in tandem as their // benefits generally outweight the cost, making the whole pipeline // faster. if (RunInliner) { MPM.add(createGlobalOptimizerPass()); MPM.add(createGlobalDCEPass()); } // If we are planning to perform ThinLTO later, let's not bloat the code with // unrolling/vectorization/... now. We'll first run the inliner + CGSCC passes // during ThinLTO and perform the rest of the optimizations afterward. if (PrepareForThinLTO) { // Ensure we perform any last passes, but do so before renaming anonymous // globals in case the passes add any. addExtensionsToPM(EP_OptimizerLast, MPM); MPM.add(createCanonicalizeAliasesPass()); // Rename anon globals to be able to export them in the summary. MPM.add(createNameAnonGlobalPass()); return; } if (PerformThinLTO) // Optimize globals now when performing ThinLTO, this enables more // optimizations later. MPM.add(createGlobalOptimizerPass()); // Scheduling LoopVersioningLICM when inlining is over, because after that // we may see more accurate aliasing. Reason to run this late is that too // early versioning may prevent further inlining due to increase of code // size. By placing it just after inlining other optimizations which runs // later might get benefit of no-alias assumption in clone loop. if (UseLoopVersioningLICM) { MPM.add(createLoopVersioningLICMPass()); // Do LoopVersioningLICM MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap)); } // We add a fresh GlobalsModRef run at this point. This is particularly // useful as the above will have inlined, DCE'ed, and function-attr // propagated everything. We should at this point have a reasonably minimal // and richly annotated call graph. By computing aliasing and mod/ref // information for all local globals here, the late loop passes and notably // the vectorizer will be able to use them to help recognize vectorizable // memory operations. // // Note that this relies on a bug in the pass manager which preserves // a module analysis into a function pass pipeline (and throughout it) so // long as the first function pass doesn't invalidate the module analysis. // Thus both Float2Int and LoopRotate have to preserve AliasAnalysis for // this to work. Fortunately, it is trivial to preserve AliasAnalysis // (doing nothing preserves it as it is required to be conservatively // correct in the face of IR changes). MPM.add(createGlobalsAAWrapperPass()); MPM.add(createFloat2IntPass()); MPM.add(createLowerConstantIntrinsicsPass()); if (EnableMatrix) { MPM.add(createLowerMatrixIntrinsicsPass()); // CSE the pointer arithmetic of the column vectors. This allows alias // analysis to establish no-aliasing between loads and stores of different // columns of the same matrix. MPM.add(createEarlyCSEPass(false)); } addExtensionsToPM(EP_VectorizerStart, MPM); // Re-rotate loops in all our loop nests. These may have fallout out of // rotated form due to GVN or other transformations, and the vectorizer relies // on the rotated form. Disable header duplication at -Oz. MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1)); // Distribute loops to allow partial vectorization. I.e. isolate dependences // into separate loop that would otherwise inhibit vectorization. This is // currently only performed for loops marked with the metadata // llvm.loop.distribute=true or when -enable-loop-distribute is specified. MPM.add(createLoopDistributePass()); MPM.add(createLoopVectorizePass(!LoopsInterleaved, !LoopVectorize)); // Eliminate loads by forwarding stores from the previous iteration to loads // of the current iteration. MPM.add(createLoopLoadEliminationPass()); // FIXME: Because of #pragma vectorize enable, the passes below are always // inserted in the pipeline, even when the vectorizer doesn't run (ex. when // on -O1 and no #pragma is found). Would be good to have these two passes // as function calls, so that we can only pass them when the vectorizer // changed the code. MPM.add(createVectorCombinePass()); addInstructionCombiningPass(MPM); if (OptLevel > 1 && ExtraVectorizerPasses) { // At higher optimization levels, try to clean up any runtime overlap and // alignment checks inserted by the vectorizer. We want to track correllated // runtime checks for two inner loops in the same outer loop, fold any // common computations, hoist loop-invariant aspects out of any outer loop, // and unswitch the runtime checks if possible. Once hoisted, we may have // dead (or speculatable) control flows or more combining opportunities. MPM.add(createEarlyCSEPass()); MPM.add(createCorrelatedValuePropagationPass()); addInstructionCombiningPass(MPM); MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap)); MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3, DivergentTarget)); MPM.add(createCFGSimplificationPass()); addInstructionCombiningPass(MPM); } // Cleanup after loop vectorization, etc. Simplification passes like CVP and // GVN, loop transforms, and others have already run, so it's now better to // convert to more optimized IR using more aggressive simplify CFG options. // The extra sinking transform can create larger basic blocks, so do this // before SLP vectorization. MPM.add(createCFGSimplificationPass(1, true, true, false, true)); if (SLPVectorize) { MPM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains. MPM.add(createVectorCombinePass()); if (OptLevel > 1 && ExtraVectorizerPasses) { MPM.add(createEarlyCSEPass()); } } addExtensionsToPM(EP_Peephole, MPM); addInstructionCombiningPass(MPM); if (EnableUnrollAndJam && !DisableUnrollLoops) { // Unroll and Jam. We do this before unroll but need to be in a separate // loop pass manager in order for the outer loop to be processed by // unroll and jam before the inner loop is unrolled. MPM.add(createLoopUnrollAndJamPass(OptLevel)); } // Unroll small loops MPM.add(createLoopUnrollPass(OptLevel, DisableUnrollLoops, ForgetAllSCEVInLoopUnroll)); if (!DisableUnrollLoops) { // LoopUnroll may generate some redundency to cleanup. addInstructionCombiningPass(MPM); // Runtime unrolling will introduce runtime check in loop prologue. If the // unrolled loop is a inner loop, then the prologue will be inside the // outer loop. LICM pass can help to promote the runtime check out if the // checked value is loop invariant. MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap)); } MPM.add(createWarnMissedTransformationsPass()); // After vectorization and unrolling, assume intrinsics may tell us more // about pointer alignments. MPM.add(createAlignmentFromAssumptionsPass()); // FIXME: We shouldn't bother with this anymore. MPM.add(createStripDeadPrototypesPass()); // Get rid of dead prototypes // GlobalOpt already deletes dead functions and globals, at -O2 try a // late pass of GlobalDCE. It is capable of deleting dead cycles. if (OptLevel > 1) { MPM.add(createGlobalDCEPass()); // Remove dead fns and globals. MPM.add(createConstantMergePass()); // Merge dup global constants } // See comment in the new PM for justification of scheduling splitting at // this stage (\ref buildModuleSimplificationPipeline). if (EnableHotColdSplit && !(PrepareForLTO || PrepareForThinLTO)) MPM.add(createHotColdSplittingPass()); if (MergeFunctions) MPM.add(createMergeFunctionsPass()); // LoopSink pass sinks instructions hoisted by LICM, which serves as a // canonicalization pass that enables other optimizations. As a result, // LoopSink pass needs to be a very late IR pass to avoid undoing LICM // result too early. MPM.add(createLoopSinkPass()); // Get rid of LCSSA nodes. MPM.add(createInstSimplifyLegacyPass()); // This hoists/decomposes div/rem ops. It should run after other sink/hoist // passes to avoid re-sinking, but before SimplifyCFG because it can allow // flattening of blocks. MPM.add(createDivRemPairsPass()); // LoopSink (and other loop passes since the last simplifyCFG) might have // resulted in single-entry-single-exit or empty blocks. Clean up the CFG. MPM.add(createCFGSimplificationPass()); addExtensionsToPM(EP_OptimizerLast, MPM); if (PrepareForLTO) { MPM.add(createCanonicalizeAliasesPass()); // Rename anon globals to be able to handle them in the summary MPM.add(createNameAnonGlobalPass()); } } void PassManagerBuilder::addLTOOptimizationPasses(legacy::PassManagerBase &PM) { // Load sample profile before running the LTO optimization pipeline. if (!PGOSampleUse.empty()) { PM.add(createPruneEHPass()); PM.add(createSampleProfileLoaderPass(PGOSampleUse)); } // Remove unused virtual tables to improve the quality of code generated by // whole-program devirtualization and bitset lowering. PM.add(createGlobalDCEPass()); // Provide AliasAnalysis services for optimizations. addInitialAliasAnalysisPasses(PM); // Allow forcing function attributes as a debugging and tuning aid. PM.add(createForceFunctionAttrsLegacyPass()); // Infer attributes about declarations if possible. PM.add(createInferFunctionAttrsLegacyPass()); if (OptLevel > 1) { // Split call-site with more constrained arguments. PM.add(createCallSiteSplittingPass()); // Indirect call promotion. This should promote all the targets that are // left by the earlier promotion pass that promotes intra-module targets. // This two-step promotion is to save the compile time. For LTO, it should // produce the same result as if we only do promotion here. PM.add( createPGOIndirectCallPromotionLegacyPass(true, !PGOSampleUse.empty())); // Propagate constants at call sites into the functions they call. This // opens opportunities for globalopt (and inlining) by substituting function // pointers passed as arguments to direct uses of functions. PM.add(createIPSCCPPass()); // Attach metadata to indirect call sites indicating the set of functions // they may target at run-time. This should follow IPSCCP. PM.add(createCalledValuePropagationPass()); // Infer attributes on declarations, call sites, arguments, etc. PM.add(createAttributorLegacyPass()); } // Infer attributes about definitions. The readnone attribute in particular is // required for virtual constant propagation. PM.add(createPostOrderFunctionAttrsLegacyPass()); PM.add(createReversePostOrderFunctionAttrsPass()); // Split globals using inrange annotations on GEP indices. This can help // improve the quality of generated code when virtual constant propagation or // control flow integrity are enabled. PM.add(createGlobalSplitPass()); // Apply whole-program devirtualization and virtual constant propagation. PM.add(createWholeProgramDevirtPass(ExportSummary, nullptr)); // That's all we need at opt level 1. if (OptLevel == 1) return; // Now that we internalized some globals, see if we can hack on them! PM.add(createGlobalOptimizerPass()); // Promote any localized global vars. PM.add(createPromoteMemoryToRegisterPass()); // Linking modules together can lead to duplicated global constants, only // keep one copy of each constant. PM.add(createConstantMergePass()); // Remove unused arguments from functions. PM.add(createDeadArgEliminationPass()); // Reduce the code after globalopt and ipsccp. Both can open up significant // simplification opportunities, and both can propagate functions through // function pointers. When this happens, we often have to resolve varargs // calls, etc, so let instcombine do this. if (OptLevel > 2) PM.add(createAggressiveInstCombinerPass()); addInstructionCombiningPass(PM); addExtensionsToPM(EP_Peephole, PM); // Inline small functions bool RunInliner = Inliner; if (RunInliner) { PM.add(Inliner); Inliner = nullptr; } PM.add(createPruneEHPass()); // Remove dead EH info. // CSFDO instrumentation and use pass. addPGOInstrPasses(PM, /* IsCS */ true); // Infer attributes on declarations, call sites, arguments, etc. for an SCC. PM.add(createAttributorCGSCCLegacyPass()); // Try to perform OpenMP specific optimizations. This is a (quick!) no-op if // there are no OpenMP runtime calls present in the module. if (OptLevel > 1) PM.add(createOpenMPOptLegacyPass()); // Optimize globals again if we ran the inliner. if (RunInliner) PM.add(createGlobalOptimizerPass()); PM.add(createGlobalDCEPass()); // Remove dead functions. // If we didn't decide to inline a function, check to see if we can // transform it to pass arguments by value instead of by reference. PM.add(createArgumentPromotionPass()); // The IPO passes may leave cruft around. Clean up after them. addInstructionCombiningPass(PM); addExtensionsToPM(EP_Peephole, PM); PM.add(createJumpThreadingPass()); // Break up allocas PM.add(createSROAPass()); // LTO provides additional opportunities for tailcall elimination due to // link-time inlining, and visibility of nocapture attribute. #ifndef noCbC PM.add(createTailCallEliminationPass(false)); #else if (OptLevel > 1) PM.add(createTailCallEliminationPass()); #endif // Infer attributes on declarations, call sites, arguments, etc. PM.add(createPostOrderFunctionAttrsLegacyPass()); // Add nocapture. // Run a few AA driven optimizations here and now, to cleanup the code. PM.add(createGlobalsAAWrapperPass()); // IP alias analysis. PM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap)); PM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds. PM.add(NewGVN ? createNewGVNPass() : createGVNPass(DisableGVNLoadPRE)); // Remove redundancies. PM.add(createMemCpyOptPass()); // Remove dead memcpys. // Nuke dead stores. PM.add(createDeadStoreEliminationPass()); // More loops are countable; try to optimize them. PM.add(createIndVarSimplifyPass()); PM.add(createLoopDeletionPass()); if (EnableLoopInterchange) PM.add(createLoopInterchangePass()); // Unroll small loops PM.add(createSimpleLoopUnrollPass(OptLevel, DisableUnrollLoops, ForgetAllSCEVInLoopUnroll)); PM.add(createLoopVectorizePass(true, !LoopVectorize)); // The vectorizer may have significantly shortened a loop body; unroll again. PM.add(createLoopUnrollPass(OptLevel, DisableUnrollLoops, ForgetAllSCEVInLoopUnroll)); PM.add(createWarnMissedTransformationsPass()); // Now that we've optimized loops (in particular loop induction variables), // we may have exposed more scalar opportunities. Run parts of the scalar // optimizer again at this point. PM.add(createVectorCombinePass()); addInstructionCombiningPass(PM); // Initial cleanup PM.add(createCFGSimplificationPass()); // if-convert PM.add(createSCCPPass()); // Propagate exposed constants addInstructionCombiningPass(PM); // Clean up again PM.add(createBitTrackingDCEPass()); // More scalar chains could be vectorized due to more alias information if (SLPVectorize) { PM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains. PM.add(createVectorCombinePass()); // Clean up partial vectorization. } // After vectorization, assume intrinsics may tell us more about pointer // alignments. PM.add(createAlignmentFromAssumptionsPass()); // Cleanup and simplify the code after the scalar optimizations. addInstructionCombiningPass(PM); addExtensionsToPM(EP_Peephole, PM); PM.add(createJumpThreadingPass()); } void PassManagerBuilder::addLateLTOOptimizationPasses( legacy::PassManagerBase &PM) { // See comment in the new PM for justification of scheduling splitting at // this stage (\ref buildLTODefaultPipeline). if (EnableHotColdSplit) PM.add(createHotColdSplittingPass()); // Delete basic blocks, which optimization passes may have killed. PM.add(createCFGSimplificationPass()); // Drop bodies of available externally objects to improve GlobalDCE. PM.add(createEliminateAvailableExternallyPass()); // Now that we have optimized the program, discard unreachable functions. PM.add(createGlobalDCEPass()); // FIXME: this is profitable (for compiler time) to do at -O0 too, but // currently it damages debug info. if (MergeFunctions) PM.add(createMergeFunctionsPass()); } void PassManagerBuilder::populateThinLTOPassManager( legacy::PassManagerBase &PM) { PerformThinLTO = true; if (LibraryInfo) PM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo)); if (VerifyInput) PM.add(createVerifierPass()); if (ImportSummary) { // This pass imports type identifier resolutions for whole-program // devirtualization and CFI. It must run early because other passes may // disturb the specific instruction patterns that these passes look for, // creating dependencies on resolutions that may not appear in the summary. // // For example, GVN may transform the pattern assume(type.test) appearing in // two basic blocks into assume(phi(type.test, type.test)), which would // transform a dependency on a WPD resolution into a dependency on a type // identifier resolution for CFI. // // Also, WPD has access to more precise information than ICP and can // devirtualize more effectively, so it should operate on the IR first. PM.add(createWholeProgramDevirtPass(nullptr, ImportSummary)); PM.add(createLowerTypeTestsPass(nullptr, ImportSummary)); } populateModulePassManager(PM); if (VerifyOutput) PM.add(createVerifierPass()); PerformThinLTO = false; } void PassManagerBuilder::populateLTOPassManager(legacy::PassManagerBase &PM) { if (LibraryInfo) PM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo)); if (VerifyInput) PM.add(createVerifierPass()); addExtensionsToPM(EP_FullLinkTimeOptimizationEarly, PM); if (OptLevel != 0) addLTOOptimizationPasses(PM); else { // The whole-program-devirt pass needs to run at -O0 because only it knows // about the llvm.type.checked.load intrinsic: it needs to both lower the // intrinsic itself and handle it in the summary. PM.add(createWholeProgramDevirtPass(ExportSummary, nullptr)); } // Create a function that performs CFI checks for cross-DSO calls with targets // in the current module. PM.add(createCrossDSOCFIPass()); // Lower type metadata and the type.test intrinsic. This pass supports Clang's // control flow integrity mechanisms (-fsanitize=cfi*) and needs to run at // link time if CFI is enabled. The pass does nothing if CFI is disabled. PM.add(createLowerTypeTestsPass(ExportSummary, nullptr)); // Run a second time to clean up any type tests left behind by WPD for use // in ICP (which is performed earlier than this in the regular LTO pipeline). PM.add(createLowerTypeTestsPass(nullptr, nullptr, true)); if (OptLevel != 0) addLateLTOOptimizationPasses(PM); addExtensionsToPM(EP_FullLinkTimeOptimizationLast, PM); if (VerifyOutput) PM.add(createVerifierPass()); } inline PassManagerBuilder *unwrap(LLVMPassManagerBuilderRef P) { return reinterpret_cast<PassManagerBuilder*>(P); } inline LLVMPassManagerBuilderRef wrap(PassManagerBuilder *P) { return reinterpret_cast<LLVMPassManagerBuilderRef>(P); } LLVMPassManagerBuilderRef LLVMPassManagerBuilderCreate() { PassManagerBuilder *PMB = new PassManagerBuilder(); return wrap(PMB); } void LLVMPassManagerBuilderDispose(LLVMPassManagerBuilderRef PMB) { PassManagerBuilder *Builder = unwrap(PMB); delete Builder; } void LLVMPassManagerBuilderSetOptLevel(LLVMPassManagerBuilderRef PMB, unsigned OptLevel) { PassManagerBuilder *Builder = unwrap(PMB); Builder->OptLevel = OptLevel; } void LLVMPassManagerBuilderSetSizeLevel(LLVMPassManagerBuilderRef PMB, unsigned SizeLevel) { PassManagerBuilder *Builder = unwrap(PMB); Builder->SizeLevel = SizeLevel; } void LLVMPassManagerBuilderSetDisableUnitAtATime(LLVMPassManagerBuilderRef PMB, LLVMBool Value) { // NOTE: The DisableUnitAtATime switch has been removed. } void LLVMPassManagerBuilderSetDisableUnrollLoops(LLVMPassManagerBuilderRef PMB, LLVMBool Value) { PassManagerBuilder *Builder = unwrap(PMB); Builder->DisableUnrollLoops = Value; } void LLVMPassManagerBuilderSetDisableSimplifyLibCalls(LLVMPassManagerBuilderRef PMB, LLVMBool Value) { // NOTE: The simplify-libcalls pass has been removed. } void LLVMPassManagerBuilderUseInlinerWithThreshold(LLVMPassManagerBuilderRef PMB, unsigned Threshold) { PassManagerBuilder *Builder = unwrap(PMB); Builder->Inliner = createFunctionInliningPass(Threshold); } void LLVMPassManagerBuilderPopulateFunctionPassManager(LLVMPassManagerBuilderRef PMB, LLVMPassManagerRef PM) { PassManagerBuilder *Builder = unwrap(PMB); legacy::FunctionPassManager *FPM = unwrap<legacy::FunctionPassManager>(PM); Builder->populateFunctionPassManager(*FPM); } void LLVMPassManagerBuilderPopulateModulePassManager(LLVMPassManagerBuilderRef PMB, LLVMPassManagerRef PM) { PassManagerBuilder *Builder = unwrap(PMB); legacy::PassManagerBase *MPM = unwrap(PM); Builder->populateModulePassManager(*MPM); } void LLVMPassManagerBuilderPopulateLTOPassManager(LLVMPassManagerBuilderRef PMB, LLVMPassManagerRef PM, LLVMBool Internalize, LLVMBool RunInliner) { PassManagerBuilder *Builder = unwrap(PMB); legacy::PassManagerBase *LPM = unwrap(PM); // A small backwards compatibility hack. populateLTOPassManager used to take // an RunInliner option. if (RunInliner && !Builder->Inliner) Builder->Inliner = createFunctionInliningPass(); Builder->populateLTOPassManager(*LPM); }