Mercurial > hg > CbC > CbC_llvm
view lld/MachO/SyntheticSections.cpp @ 223:5f17cb93ff66 llvm-original
LLVM13 (2021/7/18)
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 18 Jul 2021 22:43:00 +0900 |
parents | 79ff65ed7e25 |
children | 5f20bc1ed4ff |
line wrap: on
line source
//===- SyntheticSections.cpp ---------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "SyntheticSections.h" #include "ConcatOutputSection.h" #include "Config.h" #include "ExportTrie.h" #include "InputFiles.h" #include "MachOStructs.h" #include "OutputSegment.h" #include "SymbolTable.h" #include "Symbols.h" #include "lld/Common/ErrorHandler.h" #include "lld/Common/Memory.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Config/llvm-config.h" #include "llvm/Support/EndianStream.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/LEB128.h" #include "llvm/Support/Path.h" #include "llvm/Support/SHA256.h" #if defined(__APPLE__) #include <sys/mman.h> #endif #ifdef LLVM_HAVE_LIBXAR #include <fcntl.h> #include <xar/xar.h> #endif using namespace llvm; using namespace llvm::MachO; using namespace llvm::support; using namespace llvm::support::endian; using namespace lld; using namespace lld::macho; InStruct macho::in; std::vector<SyntheticSection *> macho::syntheticSections; SyntheticSection::SyntheticSection(const char *segname, const char *name) : OutputSection(SyntheticKind, name) { std::tie(this->segname, this->name) = maybeRenameSection({segname, name}); isec = make<ConcatInputSection>(segname, name); isec->parent = this; syntheticSections.push_back(this); } // dyld3's MachOLoaded::getSlide() assumes that the __TEXT segment starts // from the beginning of the file (i.e. the header). MachHeaderSection::MachHeaderSection() : SyntheticSection(segment_names::text, section_names::header) { // XXX: This is a hack. (See D97007) // Setting the index to 1 to pretend that this section is the text // section. index = 1; isec->isFinal = true; } void MachHeaderSection::addLoadCommand(LoadCommand *lc) { loadCommands.push_back(lc); sizeOfCmds += lc->getSize(); } uint64_t MachHeaderSection::getSize() const { uint64_t size = target->headerSize + sizeOfCmds + config->headerPad; // If we are emitting an encryptable binary, our load commands must have a // separate (non-encrypted) page to themselves. if (config->emitEncryptionInfo) size = alignTo(size, target->getPageSize()); return size; } static uint32_t cpuSubtype() { uint32_t subtype = target->cpuSubtype; if (config->outputType == MH_EXECUTE && !config->staticLink && target->cpuSubtype == CPU_SUBTYPE_X86_64_ALL && config->platform() == PlatformKind::macOS && config->platformInfo.minimum >= VersionTuple(10, 5)) subtype |= CPU_SUBTYPE_LIB64; return subtype; } void MachHeaderSection::writeTo(uint8_t *buf) const { auto *hdr = reinterpret_cast<mach_header *>(buf); hdr->magic = target->magic; hdr->cputype = target->cpuType; hdr->cpusubtype = cpuSubtype(); hdr->filetype = config->outputType; hdr->ncmds = loadCommands.size(); hdr->sizeofcmds = sizeOfCmds; hdr->flags = MH_DYLDLINK; if (config->namespaceKind == NamespaceKind::twolevel) hdr->flags |= MH_NOUNDEFS | MH_TWOLEVEL; if (config->outputType == MH_DYLIB && !config->hasReexports) hdr->flags |= MH_NO_REEXPORTED_DYLIBS; if (config->markDeadStrippableDylib) hdr->flags |= MH_DEAD_STRIPPABLE_DYLIB; if (config->outputType == MH_EXECUTE && config->isPic) hdr->flags |= MH_PIE; if (config->outputType == MH_DYLIB && config->applicationExtension) hdr->flags |= MH_APP_EXTENSION_SAFE; if (in.exports->hasWeakSymbol || in.weakBinding->hasNonWeakDefinition()) hdr->flags |= MH_WEAK_DEFINES; if (in.exports->hasWeakSymbol || in.weakBinding->hasEntry()) hdr->flags |= MH_BINDS_TO_WEAK; for (const OutputSegment *seg : outputSegments) { for (const OutputSection *osec : seg->getSections()) { if (isThreadLocalVariables(osec->flags)) { hdr->flags |= MH_HAS_TLV_DESCRIPTORS; break; } } } uint8_t *p = reinterpret_cast<uint8_t *>(hdr) + target->headerSize; for (const LoadCommand *lc : loadCommands) { lc->writeTo(p); p += lc->getSize(); } } PageZeroSection::PageZeroSection() : SyntheticSection(segment_names::pageZero, section_names::pageZero) {} RebaseSection::RebaseSection() : LinkEditSection(segment_names::linkEdit, section_names::rebase) {} namespace { struct Rebase { OutputSegment *segment = nullptr; uint64_t offset = 0; uint64_t consecutiveCount = 0; }; } // namespace // Rebase opcodes allow us to describe a contiguous sequence of rebase location // using a single DO_REBASE opcode. To take advantage of it, we delay emitting // `DO_REBASE` until we have reached the end of a contiguous sequence. static void encodeDoRebase(Rebase &rebase, raw_svector_ostream &os) { assert(rebase.consecutiveCount != 0); if (rebase.consecutiveCount <= REBASE_IMMEDIATE_MASK) { os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_IMM_TIMES | rebase.consecutiveCount); } else { os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_ULEB_TIMES); encodeULEB128(rebase.consecutiveCount, os); } rebase.consecutiveCount = 0; } static void encodeRebase(const OutputSection *osec, uint64_t outSecOff, Rebase &lastRebase, raw_svector_ostream &os) { OutputSegment *seg = osec->parent; uint64_t offset = osec->getSegmentOffset() + outSecOff; if (lastRebase.segment != seg || lastRebase.offset != offset) { if (lastRebase.consecutiveCount != 0) encodeDoRebase(lastRebase, os); if (lastRebase.segment != seg) { os << static_cast<uint8_t>(REBASE_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB | seg->index); encodeULEB128(offset, os); lastRebase.segment = seg; lastRebase.offset = offset; } else { assert(lastRebase.offset != offset); os << static_cast<uint8_t>(REBASE_OPCODE_ADD_ADDR_ULEB); encodeULEB128(offset - lastRebase.offset, os); lastRebase.offset = offset; } } ++lastRebase.consecutiveCount; // DO_REBASE causes dyld to both perform the binding and increment the offset lastRebase.offset += target->wordSize; } void RebaseSection::finalizeContents() { if (locations.empty()) return; raw_svector_ostream os{contents}; Rebase lastRebase; os << static_cast<uint8_t>(REBASE_OPCODE_SET_TYPE_IMM | REBASE_TYPE_POINTER); llvm::sort(locations, [](const Location &a, const Location &b) { return a.isec->getVA(a.offset) < b.isec->getVA(b.offset); }); for (const Location &loc : locations) encodeRebase(loc.isec->parent, loc.isec->getOffset(loc.offset), lastRebase, os); if (lastRebase.consecutiveCount != 0) encodeDoRebase(lastRebase, os); os << static_cast<uint8_t>(REBASE_OPCODE_DONE); } void RebaseSection::writeTo(uint8_t *buf) const { memcpy(buf, contents.data(), contents.size()); } NonLazyPointerSectionBase::NonLazyPointerSectionBase(const char *segname, const char *name) : SyntheticSection(segname, name) { align = target->wordSize; } void macho::addNonLazyBindingEntries(const Symbol *sym, const InputSection *isec, uint64_t offset, int64_t addend) { if (const auto *dysym = dyn_cast<DylibSymbol>(sym)) { in.binding->addEntry(dysym, isec, offset, addend); if (dysym->isWeakDef()) in.weakBinding->addEntry(sym, isec, offset, addend); } else if (const auto *defined = dyn_cast<Defined>(sym)) { in.rebase->addEntry(isec, offset); if (defined->isExternalWeakDef()) in.weakBinding->addEntry(sym, isec, offset, addend); } else { // Undefined symbols are filtered out in scanRelocations(); we should never // get here llvm_unreachable("cannot bind to an undefined symbol"); } } void NonLazyPointerSectionBase::addEntry(Symbol *sym) { if (entries.insert(sym)) { assert(!sym->isInGot()); sym->gotIndex = entries.size() - 1; addNonLazyBindingEntries(sym, isec, sym->gotIndex * target->wordSize); } } void NonLazyPointerSectionBase::writeTo(uint8_t *buf) const { for (size_t i = 0, n = entries.size(); i < n; ++i) if (auto *defined = dyn_cast<Defined>(entries[i])) write64le(&buf[i * target->wordSize], defined->getVA()); } GotSection::GotSection() : NonLazyPointerSectionBase(segment_names::dataConst, section_names::got) { flags = S_NON_LAZY_SYMBOL_POINTERS; } TlvPointerSection::TlvPointerSection() : NonLazyPointerSectionBase(segment_names::data, section_names::threadPtrs) { flags = S_THREAD_LOCAL_VARIABLE_POINTERS; } BindingSection::BindingSection() : LinkEditSection(segment_names::linkEdit, section_names::binding) {} namespace { struct Binding { OutputSegment *segment = nullptr; uint64_t offset = 0; int64_t addend = 0; }; struct BindIR { // Default value of 0xF0 is not valid opcode and should make the program // scream instead of accidentally writing "valid" values. uint8_t opcode = 0xF0; uint64_t data = 0; uint64_t consecutiveCount = 0; }; } // namespace // Encode a sequence of opcodes that tell dyld to write the address of symbol + // addend at osec->addr + outSecOff. // // The bind opcode "interpreter" remembers the values of each binding field, so // we only need to encode the differences between bindings. Hence the use of // lastBinding. static void encodeBinding(const OutputSection *osec, uint64_t outSecOff, int64_t addend, Binding &lastBinding, std::vector<BindIR> &opcodes) { OutputSegment *seg = osec->parent; uint64_t offset = osec->getSegmentOffset() + outSecOff; if (lastBinding.segment != seg) { opcodes.push_back( {static_cast<uint8_t>(BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB | seg->index), offset}); lastBinding.segment = seg; lastBinding.offset = offset; } else if (lastBinding.offset != offset) { opcodes.push_back({BIND_OPCODE_ADD_ADDR_ULEB, offset - lastBinding.offset}); lastBinding.offset = offset; } if (lastBinding.addend != addend) { opcodes.push_back( {BIND_OPCODE_SET_ADDEND_SLEB, static_cast<uint64_t>(addend)}); lastBinding.addend = addend; } opcodes.push_back({BIND_OPCODE_DO_BIND, 0}); // DO_BIND causes dyld to both perform the binding and increment the offset lastBinding.offset += target->wordSize; } static void optimizeOpcodes(std::vector<BindIR> &opcodes) { // Pass 1: Combine bind/add pairs size_t i; int pWrite = 0; for (i = 1; i < opcodes.size(); ++i, ++pWrite) { if ((opcodes[i].opcode == BIND_OPCODE_ADD_ADDR_ULEB) && (opcodes[i - 1].opcode == BIND_OPCODE_DO_BIND)) { opcodes[pWrite].opcode = BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB; opcodes[pWrite].data = opcodes[i].data; ++i; } else { opcodes[pWrite] = opcodes[i - 1]; } } if (i == opcodes.size()) opcodes[pWrite] = opcodes[i - 1]; opcodes.resize(pWrite + 1); // Pass 2: Compress two or more bind_add opcodes pWrite = 0; for (i = 1; i < opcodes.size(); ++i, ++pWrite) { if ((opcodes[i].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) && (opcodes[i - 1].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) && (opcodes[i].data == opcodes[i - 1].data)) { opcodes[pWrite].opcode = BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB; opcodes[pWrite].consecutiveCount = 2; opcodes[pWrite].data = opcodes[i].data; ++i; while (i < opcodes.size() && (opcodes[i].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) && (opcodes[i].data == opcodes[i - 1].data)) { opcodes[pWrite].consecutiveCount++; ++i; } } else { opcodes[pWrite] = opcodes[i - 1]; } } if (i == opcodes.size()) opcodes[pWrite] = opcodes[i - 1]; opcodes.resize(pWrite + 1); } static void flushOpcodes(const BindIR &op, raw_svector_ostream &os) { uint8_t opcode = op.opcode & BIND_OPCODE_MASK; switch (opcode) { case BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB: case BIND_OPCODE_ADD_ADDR_ULEB: case BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB: os << op.opcode; encodeULEB128(op.data, os); break; case BIND_OPCODE_SET_ADDEND_SLEB: os << op.opcode; encodeSLEB128(static_cast<int64_t>(op.data), os); break; case BIND_OPCODE_DO_BIND: os << op.opcode; break; case BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB: os << op.opcode; encodeULEB128(op.consecutiveCount, os); encodeULEB128(op.data, os); break; default: llvm_unreachable("cannot bind to an unrecognized symbol"); } } // Non-weak bindings need to have their dylib ordinal encoded as well. static int16_t ordinalForDylibSymbol(const DylibSymbol &dysym) { if (config->namespaceKind == NamespaceKind::flat || dysym.isDynamicLookup()) return static_cast<int16_t>(BIND_SPECIAL_DYLIB_FLAT_LOOKUP); assert(dysym.getFile()->isReferenced()); return dysym.getFile()->ordinal; } static void encodeDylibOrdinal(int16_t ordinal, raw_svector_ostream &os) { if (ordinal <= 0) { os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_SPECIAL_IMM | (ordinal & BIND_IMMEDIATE_MASK)); } else if (ordinal <= BIND_IMMEDIATE_MASK) { os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_ORDINAL_IMM | ordinal); } else { os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_ORDINAL_ULEB); encodeULEB128(ordinal, os); } } static void encodeWeakOverride(const Defined *defined, raw_svector_ostream &os) { os << static_cast<uint8_t>(BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM | BIND_SYMBOL_FLAGS_NON_WEAK_DEFINITION) << defined->getName() << '\0'; } // Organize the bindings so we can encoded them with fewer opcodes. // // First, all bindings for a given symbol should be grouped together. // BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM is the largest opcode (since it // has an associated symbol string), so we only want to emit it once per symbol. // // Within each group, we sort the bindings by address. Since bindings are // delta-encoded, sorting them allows for a more compact result. Note that // sorting by address alone ensures that bindings for the same segment / section // are located together, minimizing the number of times we have to emit // BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB. // // Finally, we sort the symbols by the address of their first binding, again // to facilitate the delta-encoding process. template <class Sym> std::vector<std::pair<const Sym *, std::vector<BindingEntry>>> sortBindings(const BindingsMap<const Sym *> &bindingsMap) { std::vector<std::pair<const Sym *, std::vector<BindingEntry>>> bindingsVec( bindingsMap.begin(), bindingsMap.end()); for (auto &p : bindingsVec) { std::vector<BindingEntry> &bindings = p.second; llvm::sort(bindings, [](const BindingEntry &a, const BindingEntry &b) { return a.target.getVA() < b.target.getVA(); }); } llvm::sort(bindingsVec, [](const auto &a, const auto &b) { return a.second[0].target.getVA() < b.second[0].target.getVA(); }); return bindingsVec; } // Emit bind opcodes, which are a stream of byte-sized opcodes that dyld // interprets to update a record with the following fields: // * segment index (of the segment to write the symbol addresses to, typically // the __DATA_CONST segment which contains the GOT) // * offset within the segment, indicating the next location to write a binding // * symbol type // * symbol library ordinal (the index of its library's LC_LOAD_DYLIB command) // * symbol name // * addend // When dyld sees BIND_OPCODE_DO_BIND, it uses the current record state to bind // a symbol in the GOT, and increments the segment offset to point to the next // entry. It does *not* clear the record state after doing the bind, so // subsequent opcodes only need to encode the differences between bindings. void BindingSection::finalizeContents() { raw_svector_ostream os{contents}; Binding lastBinding; int16_t lastOrdinal = 0; for (auto &p : sortBindings(bindingsMap)) { const DylibSymbol *sym = p.first; std::vector<BindingEntry> &bindings = p.second; uint8_t flags = BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM; if (sym->isWeakRef()) flags |= BIND_SYMBOL_FLAGS_WEAK_IMPORT; os << flags << sym->getName() << '\0' << static_cast<uint8_t>(BIND_OPCODE_SET_TYPE_IMM | BIND_TYPE_POINTER); int16_t ordinal = ordinalForDylibSymbol(*sym); if (ordinal != lastOrdinal) { encodeDylibOrdinal(ordinal, os); lastOrdinal = ordinal; } std::vector<BindIR> opcodes; for (const BindingEntry &b : bindings) encodeBinding(b.target.isec->parent, b.target.isec->getOffset(b.target.offset), b.addend, lastBinding, opcodes); if (config->optimize > 1) optimizeOpcodes(opcodes); for (const auto &op : opcodes) flushOpcodes(op, os); } if (!bindingsMap.empty()) os << static_cast<uint8_t>(BIND_OPCODE_DONE); } void BindingSection::writeTo(uint8_t *buf) const { memcpy(buf, contents.data(), contents.size()); } WeakBindingSection::WeakBindingSection() : LinkEditSection(segment_names::linkEdit, section_names::weakBinding) {} void WeakBindingSection::finalizeContents() { raw_svector_ostream os{contents}; Binding lastBinding; for (const Defined *defined : definitions) encodeWeakOverride(defined, os); for (auto &p : sortBindings(bindingsMap)) { const Symbol *sym = p.first; std::vector<BindingEntry> &bindings = p.second; os << static_cast<uint8_t>(BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM) << sym->getName() << '\0' << static_cast<uint8_t>(BIND_OPCODE_SET_TYPE_IMM | BIND_TYPE_POINTER); std::vector<BindIR> opcodes; for (const BindingEntry &b : bindings) encodeBinding(b.target.isec->parent, b.target.isec->getOffset(b.target.offset), b.addend, lastBinding, opcodes); if (config->optimize > 1) optimizeOpcodes(opcodes); for (const auto &op : opcodes) flushOpcodes(op, os); } if (!bindingsMap.empty() || !definitions.empty()) os << static_cast<uint8_t>(BIND_OPCODE_DONE); } void WeakBindingSection::writeTo(uint8_t *buf) const { memcpy(buf, contents.data(), contents.size()); } StubsSection::StubsSection() : SyntheticSection(segment_names::text, section_names::stubs) { flags = S_SYMBOL_STUBS | S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS; // The stubs section comprises machine instructions, which are aligned to // 4 bytes on the archs we care about. align = 4; reserved2 = target->stubSize; } uint64_t StubsSection::getSize() const { return entries.size() * target->stubSize; } void StubsSection::writeTo(uint8_t *buf) const { size_t off = 0; for (const Symbol *sym : entries) { target->writeStub(buf + off, *sym); off += target->stubSize; } } void StubsSection::finalize() { isFinal = true; } bool StubsSection::addEntry(Symbol *sym) { bool inserted = entries.insert(sym); if (inserted) sym->stubsIndex = entries.size() - 1; return inserted; } StubHelperSection::StubHelperSection() : SyntheticSection(segment_names::text, section_names::stubHelper) { flags = S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS; align = 4; // This section comprises machine instructions } uint64_t StubHelperSection::getSize() const { return target->stubHelperHeaderSize + in.lazyBinding->getEntries().size() * target->stubHelperEntrySize; } bool StubHelperSection::isNeeded() const { return in.lazyBinding->isNeeded(); } void StubHelperSection::writeTo(uint8_t *buf) const { target->writeStubHelperHeader(buf); size_t off = target->stubHelperHeaderSize; for (const DylibSymbol *sym : in.lazyBinding->getEntries()) { target->writeStubHelperEntry(buf + off, *sym, addr + off); off += target->stubHelperEntrySize; } } void StubHelperSection::setup() { Symbol *binder = symtab->addUndefined("dyld_stub_binder", /*file=*/nullptr, /*isWeakRef=*/false); if (auto *undefined = dyn_cast<Undefined>(binder)) treatUndefinedSymbol(*undefined, "lazy binding (normally in libSystem.dylib)"); // treatUndefinedSymbol() can replace binder with a DylibSymbol; re-check. stubBinder = dyn_cast_or_null<DylibSymbol>(binder); if (stubBinder == nullptr) return; in.got->addEntry(stubBinder); in.imageLoaderCache->parent = ConcatOutputSection::getOrCreateForInput(in.imageLoaderCache); inputSections.push_back(in.imageLoaderCache); // Since this isn't in the symbol table or in any input file, the noDeadStrip // argument doesn't matter. It's kept alive by ImageLoaderCacheSection() // setting `live` to true on the backing InputSection. dyldPrivate = make<Defined>("__dyld_private", nullptr, in.imageLoaderCache, 0, 0, /*isWeakDef=*/false, /*isExternal=*/false, /*isPrivateExtern=*/false, /*isThumb=*/false, /*isReferencedDynamically=*/false, /*noDeadStrip=*/false); } LazyPointerSection::LazyPointerSection() : SyntheticSection(segment_names::data, section_names::lazySymbolPtr) { align = target->wordSize; flags = S_LAZY_SYMBOL_POINTERS; } uint64_t LazyPointerSection::getSize() const { return in.stubs->getEntries().size() * target->wordSize; } bool LazyPointerSection::isNeeded() const { return !in.stubs->getEntries().empty(); } void LazyPointerSection::writeTo(uint8_t *buf) const { size_t off = 0; for (const Symbol *sym : in.stubs->getEntries()) { if (const auto *dysym = dyn_cast<DylibSymbol>(sym)) { if (dysym->hasStubsHelper()) { uint64_t stubHelperOffset = target->stubHelperHeaderSize + dysym->stubsHelperIndex * target->stubHelperEntrySize; write64le(buf + off, in.stubHelper->addr + stubHelperOffset); } } else { write64le(buf + off, sym->getVA()); } off += target->wordSize; } } LazyBindingSection::LazyBindingSection() : LinkEditSection(segment_names::linkEdit, section_names::lazyBinding) {} void LazyBindingSection::finalizeContents() { // TODO: Just precompute output size here instead of writing to a temporary // buffer for (DylibSymbol *sym : entries) sym->lazyBindOffset = encode(*sym); } void LazyBindingSection::writeTo(uint8_t *buf) const { memcpy(buf, contents.data(), contents.size()); } void LazyBindingSection::addEntry(DylibSymbol *dysym) { if (entries.insert(dysym)) { dysym->stubsHelperIndex = entries.size() - 1; in.rebase->addEntry(in.lazyPointers->isec, dysym->stubsIndex * target->wordSize); } } // Unlike the non-lazy binding section, the bind opcodes in this section aren't // interpreted all at once. Rather, dyld will start interpreting opcodes at a // given offset, typically only binding a single symbol before it finds a // BIND_OPCODE_DONE terminator. As such, unlike in the non-lazy-binding case, // we cannot encode just the differences between symbols; we have to emit the // complete bind information for each symbol. uint32_t LazyBindingSection::encode(const DylibSymbol &sym) { uint32_t opstreamOffset = contents.size(); OutputSegment *dataSeg = in.lazyPointers->parent; os << static_cast<uint8_t>(BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB | dataSeg->index); uint64_t offset = in.lazyPointers->addr - dataSeg->firstSection()->addr + sym.stubsIndex * target->wordSize; encodeULEB128(offset, os); encodeDylibOrdinal(ordinalForDylibSymbol(sym), os); uint8_t flags = BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM; if (sym.isWeakRef()) flags |= BIND_SYMBOL_FLAGS_WEAK_IMPORT; os << flags << sym.getName() << '\0' << static_cast<uint8_t>(BIND_OPCODE_DO_BIND) << static_cast<uint8_t>(BIND_OPCODE_DONE); return opstreamOffset; } ExportSection::ExportSection() : LinkEditSection(segment_names::linkEdit, section_names::export_) {} void ExportSection::finalizeContents() { trieBuilder.setImageBase(in.header->addr); for (const Symbol *sym : symtab->getSymbols()) { if (const auto *defined = dyn_cast<Defined>(sym)) { if (defined->privateExtern || !defined->isLive()) continue; trieBuilder.addSymbol(*defined); hasWeakSymbol = hasWeakSymbol || sym->isWeakDef(); } } size = trieBuilder.build(); } void ExportSection::writeTo(uint8_t *buf) const { trieBuilder.writeTo(buf); } DataInCodeSection::DataInCodeSection() : LinkEditSection(segment_names::linkEdit, section_names::dataInCode) {} template <class LP> static std::vector<MachO::data_in_code_entry> collectDataInCodeEntries() { using SegmentCommand = typename LP::segment_command; using Section = typename LP::section; std::vector<MachO::data_in_code_entry> dataInCodeEntries; for (const InputFile *inputFile : inputFiles) { if (!isa<ObjFile>(inputFile)) continue; const ObjFile *objFile = cast<ObjFile>(inputFile); const auto *c = reinterpret_cast<const SegmentCommand *>( findCommand(objFile->mb.getBufferStart(), LP::segmentLCType)); if (!c) continue; ArrayRef<Section> sections{reinterpret_cast<const Section *>(c + 1), c->nsects}; ArrayRef<MachO::data_in_code_entry> entries = objFile->dataInCodeEntries; if (entries.empty()) continue; // For each code subsection find 'data in code' entries residing in it. // Compute the new offset values as // <offset within subsection> + <subsection address> - <__TEXT address>. for (size_t i = 0, n = sections.size(); i < n; ++i) { const SubsectionMap &subsecMap = objFile->subsections[i]; for (const SubsectionEntry &subsecEntry : subsecMap) { const InputSection *isec = subsecEntry.isec; if (!isCodeSection(isec)) continue; if (cast<ConcatInputSection>(isec)->shouldOmitFromOutput()) continue; const uint64_t beginAddr = sections[i].addr + subsecEntry.offset; auto it = llvm::lower_bound( entries, beginAddr, [](const MachO::data_in_code_entry &entry, uint64_t addr) { return entry.offset < addr; }); const uint64_t endAddr = beginAddr + isec->getFileSize(); for (const auto end = entries.end(); it != end && it->offset + it->length <= endAddr; ++it) dataInCodeEntries.push_back( {static_cast<uint32_t>(isec->getVA(it->offset - beginAddr) - in.header->addr), it->length, it->kind}); } } } return dataInCodeEntries; } void DataInCodeSection::finalizeContents() { entries = target->wordSize == 8 ? collectDataInCodeEntries<LP64>() : collectDataInCodeEntries<ILP32>(); } void DataInCodeSection::writeTo(uint8_t *buf) const { if (!entries.empty()) memcpy(buf, entries.data(), getRawSize()); } FunctionStartsSection::FunctionStartsSection() : LinkEditSection(segment_names::linkEdit, section_names::functionStarts) {} void FunctionStartsSection::finalizeContents() { raw_svector_ostream os{contents}; std::vector<uint64_t> addrs; for (const Symbol *sym : symtab->getSymbols()) { if (const auto *defined = dyn_cast<Defined>(sym)) { if (!defined->isec || !isCodeSection(defined->isec) || !defined->isLive()) continue; if (const auto *concatIsec = dyn_cast<ConcatInputSection>(defined->isec)) if (concatIsec->shouldOmitFromOutput()) continue; // TODO: Add support for thumbs, in that case // the lowest bit of nextAddr needs to be set to 1. addrs.push_back(defined->getVA()); } } llvm::sort(addrs); uint64_t addr = in.header->addr; for (uint64_t nextAddr : addrs) { uint64_t delta = nextAddr - addr; if (delta == 0) continue; encodeULEB128(delta, os); addr = nextAddr; } os << '\0'; } void FunctionStartsSection::writeTo(uint8_t *buf) const { memcpy(buf, contents.data(), contents.size()); } SymtabSection::SymtabSection(StringTableSection &stringTableSection) : LinkEditSection(segment_names::linkEdit, section_names::symbolTable), stringTableSection(stringTableSection) {} void SymtabSection::emitBeginSourceStab(DWARFUnit *compileUnit) { StabsEntry stab(N_SO); SmallString<261> dir(compileUnit->getCompilationDir()); StringRef sep = sys::path::get_separator(); // We don't use `path::append` here because we want an empty `dir` to result // in an absolute path. `append` would give us a relative path for that case. if (!dir.endswith(sep)) dir += sep; stab.strx = stringTableSection.addString( saver.save(dir + compileUnit->getUnitDIE().getShortName())); stabs.emplace_back(std::move(stab)); } void SymtabSection::emitEndSourceStab() { StabsEntry stab(N_SO); stab.sect = 1; stabs.emplace_back(std::move(stab)); } void SymtabSection::emitObjectFileStab(ObjFile *file) { StabsEntry stab(N_OSO); stab.sect = target->cpuSubtype; SmallString<261> path(!file->archiveName.empty() ? file->archiveName : file->getName()); std::error_code ec = sys::fs::make_absolute(path); if (ec) fatal("failed to get absolute path for " + path); if (!file->archiveName.empty()) path.append({"(", file->getName(), ")"}); stab.strx = stringTableSection.addString(saver.save(path.str())); stab.desc = 1; stab.value = file->modTime; stabs.emplace_back(std::move(stab)); } void SymtabSection::emitEndFunStab(Defined *defined) { StabsEntry stab(N_FUN); stab.value = defined->size; stabs.emplace_back(std::move(stab)); } void SymtabSection::emitStabs() { for (const std::string &s : config->astPaths) { StabsEntry astStab(N_AST); astStab.strx = stringTableSection.addString(s); stabs.emplace_back(std::move(astStab)); } std::vector<Defined *> symbolsNeedingStabs; for (const SymtabEntry &entry : concat<SymtabEntry>(localSymbols, externalSymbols)) { Symbol *sym = entry.sym; assert(sym->isLive() && "dead symbols should not be in localSymbols, externalSymbols"); if (auto *defined = dyn_cast<Defined>(sym)) { if (defined->isAbsolute()) continue; InputSection *isec = defined->isec; ObjFile *file = dyn_cast_or_null<ObjFile>(isec->getFile()); if (!file || !file->compileUnit) continue; symbolsNeedingStabs.push_back(defined); } } llvm::stable_sort(symbolsNeedingStabs, [&](Defined *a, Defined *b) { return a->isec->getFile()->id < b->isec->getFile()->id; }); // Emit STABS symbols so that dsymutil and/or the debugger can map address // regions in the final binary to the source and object files from which they // originated. InputFile *lastFile = nullptr; for (Defined *defined : symbolsNeedingStabs) { InputSection *isec = defined->isec; ObjFile *file = cast<ObjFile>(isec->getFile()); if (lastFile == nullptr || lastFile != file) { if (lastFile != nullptr) emitEndSourceStab(); lastFile = file; emitBeginSourceStab(file->compileUnit); emitObjectFileStab(file); } StabsEntry symStab; symStab.sect = defined->isec->canonical()->parent->index; symStab.strx = stringTableSection.addString(defined->getName()); symStab.value = defined->getVA(); if (isCodeSection(isec)) { symStab.type = N_FUN; stabs.emplace_back(std::move(symStab)); emitEndFunStab(defined); } else { symStab.type = defined->isExternal() ? N_GSYM : N_STSYM; stabs.emplace_back(std::move(symStab)); } } if (!stabs.empty()) emitEndSourceStab(); } void SymtabSection::finalizeContents() { auto addSymbol = [&](std::vector<SymtabEntry> &symbols, Symbol *sym) { uint32_t strx = stringTableSection.addString(sym->getName()); symbols.push_back({sym, strx}); }; // Local symbols aren't in the SymbolTable, so we walk the list of object // files to gather them. for (const InputFile *file : inputFiles) { if (auto *objFile = dyn_cast<ObjFile>(file)) { for (Symbol *sym : objFile->symbols) { if (auto *defined = dyn_cast_or_null<Defined>(sym)) { if (!defined->isExternal() && defined->isLive()) { StringRef name = defined->getName(); if (!name.startswith("l") && !name.startswith("L")) addSymbol(localSymbols, sym); } } } } } // __dyld_private is a local symbol too. It's linker-created and doesn't // exist in any object file. if (Defined *dyldPrivate = in.stubHelper->dyldPrivate) addSymbol(localSymbols, dyldPrivate); for (Symbol *sym : symtab->getSymbols()) { if (!sym->isLive()) continue; if (auto *defined = dyn_cast<Defined>(sym)) { if (!defined->includeInSymtab) continue; assert(defined->isExternal()); if (defined->privateExtern) addSymbol(localSymbols, defined); else addSymbol(externalSymbols, defined); } else if (auto *dysym = dyn_cast<DylibSymbol>(sym)) { if (dysym->isReferenced()) addSymbol(undefinedSymbols, sym); } } emitStabs(); uint32_t symtabIndex = stabs.size(); for (const SymtabEntry &entry : concat<SymtabEntry>(localSymbols, externalSymbols, undefinedSymbols)) { entry.sym->symtabIndex = symtabIndex++; } } uint32_t SymtabSection::getNumSymbols() const { return stabs.size() + localSymbols.size() + externalSymbols.size() + undefinedSymbols.size(); } // This serves to hide (type-erase) the template parameter from SymtabSection. template <class LP> class SymtabSectionImpl final : public SymtabSection { public: SymtabSectionImpl(StringTableSection &stringTableSection) : SymtabSection(stringTableSection) {} uint64_t getRawSize() const override; void writeTo(uint8_t *buf) const override; }; template <class LP> uint64_t SymtabSectionImpl<LP>::getRawSize() const { return getNumSymbols() * sizeof(typename LP::nlist); } template <class LP> void SymtabSectionImpl<LP>::writeTo(uint8_t *buf) const { auto *nList = reinterpret_cast<typename LP::nlist *>(buf); // Emit the stabs entries before the "real" symbols. We cannot emit them // after as that would render Symbol::symtabIndex inaccurate. for (const StabsEntry &entry : stabs) { nList->n_strx = entry.strx; nList->n_type = entry.type; nList->n_sect = entry.sect; nList->n_desc = entry.desc; nList->n_value = entry.value; ++nList; } for (const SymtabEntry &entry : concat<const SymtabEntry>( localSymbols, externalSymbols, undefinedSymbols)) { nList->n_strx = entry.strx; // TODO populate n_desc with more flags if (auto *defined = dyn_cast<Defined>(entry.sym)) { uint8_t scope = 0; if (defined->privateExtern) { // Private external -- dylib scoped symbol. // Promote to non-external at link time. scope = N_PEXT; } else if (defined->isExternal()) { // Normal global symbol. scope = N_EXT; } else { // TU-local symbol from localSymbols. scope = 0; } if (defined->isAbsolute()) { nList->n_type = scope | N_ABS; nList->n_sect = NO_SECT; nList->n_value = defined->value; } else { nList->n_type = scope | N_SECT; nList->n_sect = defined->isec->canonical()->parent->index; // For the N_SECT symbol type, n_value is the address of the symbol nList->n_value = defined->getVA(); } nList->n_desc |= defined->thumb ? N_ARM_THUMB_DEF : 0; nList->n_desc |= defined->isExternalWeakDef() ? N_WEAK_DEF : 0; nList->n_desc |= defined->referencedDynamically ? REFERENCED_DYNAMICALLY : 0; } else if (auto *dysym = dyn_cast<DylibSymbol>(entry.sym)) { uint16_t n_desc = nList->n_desc; int16_t ordinal = ordinalForDylibSymbol(*dysym); if (ordinal == BIND_SPECIAL_DYLIB_FLAT_LOOKUP) SET_LIBRARY_ORDINAL(n_desc, DYNAMIC_LOOKUP_ORDINAL); else if (ordinal == BIND_SPECIAL_DYLIB_MAIN_EXECUTABLE) SET_LIBRARY_ORDINAL(n_desc, EXECUTABLE_ORDINAL); else { assert(ordinal > 0); SET_LIBRARY_ORDINAL(n_desc, static_cast<uint8_t>(ordinal)); } nList->n_type = N_EXT; n_desc |= dysym->isWeakDef() ? N_WEAK_DEF : 0; n_desc |= dysym->isWeakRef() ? N_WEAK_REF : 0; nList->n_desc = n_desc; } ++nList; } } template <class LP> SymtabSection * macho::makeSymtabSection(StringTableSection &stringTableSection) { return make<SymtabSectionImpl<LP>>(stringTableSection); } IndirectSymtabSection::IndirectSymtabSection() : LinkEditSection(segment_names::linkEdit, section_names::indirectSymbolTable) {} uint32_t IndirectSymtabSection::getNumSymbols() const { return in.got->getEntries().size() + in.tlvPointers->getEntries().size() + 2 * in.stubs->getEntries().size(); } bool IndirectSymtabSection::isNeeded() const { return in.got->isNeeded() || in.tlvPointers->isNeeded() || in.stubs->isNeeded(); } void IndirectSymtabSection::finalizeContents() { uint32_t off = 0; in.got->reserved1 = off; off += in.got->getEntries().size(); in.tlvPointers->reserved1 = off; off += in.tlvPointers->getEntries().size(); in.stubs->reserved1 = off; off += in.stubs->getEntries().size(); in.lazyPointers->reserved1 = off; } static uint32_t indirectValue(const Symbol *sym) { return sym->symtabIndex != UINT32_MAX ? sym->symtabIndex : INDIRECT_SYMBOL_LOCAL; } void IndirectSymtabSection::writeTo(uint8_t *buf) const { uint32_t off = 0; for (const Symbol *sym : in.got->getEntries()) { write32le(buf + off * sizeof(uint32_t), indirectValue(sym)); ++off; } for (const Symbol *sym : in.tlvPointers->getEntries()) { write32le(buf + off * sizeof(uint32_t), indirectValue(sym)); ++off; } for (const Symbol *sym : in.stubs->getEntries()) { write32le(buf + off * sizeof(uint32_t), indirectValue(sym)); ++off; } // There is a 1:1 correspondence between stubs and LazyPointerSection // entries. But giving __stubs and __la_symbol_ptr the same reserved1 // (the offset into the indirect symbol table) so that they both refer // to the same range of offsets confuses `strip`, so write the stubs // symbol table offsets a second time. for (const Symbol *sym : in.stubs->getEntries()) { write32le(buf + off * sizeof(uint32_t), indirectValue(sym)); ++off; } } StringTableSection::StringTableSection() : LinkEditSection(segment_names::linkEdit, section_names::stringTable) {} uint32_t StringTableSection::addString(StringRef str) { uint32_t strx = size; strings.push_back(str); // TODO: consider deduplicating strings size += str.size() + 1; // account for null terminator return strx; } void StringTableSection::writeTo(uint8_t *buf) const { uint32_t off = 0; for (StringRef str : strings) { memcpy(buf + off, str.data(), str.size()); off += str.size() + 1; // account for null terminator } } static_assert((CodeSignatureSection::blobHeadersSize % 8) == 0, ""); static_assert((CodeSignatureSection::fixedHeadersSize % 8) == 0, ""); CodeSignatureSection::CodeSignatureSection() : LinkEditSection(segment_names::linkEdit, section_names::codeSignature) { align = 16; // required by libstuff // FIXME: Consider using finalOutput instead of outputFile. fileName = config->outputFile; size_t slashIndex = fileName.rfind("/"); if (slashIndex != std::string::npos) fileName = fileName.drop_front(slashIndex + 1); allHeadersSize = alignTo<16>(fixedHeadersSize + fileName.size() + 1); fileNamePad = allHeadersSize - fixedHeadersSize - fileName.size(); } uint32_t CodeSignatureSection::getBlockCount() const { return (fileOff + blockSize - 1) / blockSize; } uint64_t CodeSignatureSection::getRawSize() const { return allHeadersSize + getBlockCount() * hashSize; } void CodeSignatureSection::writeHashes(uint8_t *buf) const { uint8_t *code = buf; uint8_t *codeEnd = buf + fileOff; uint8_t *hashes = codeEnd + allHeadersSize; while (code < codeEnd) { StringRef block(reinterpret_cast<char *>(code), std::min(codeEnd - code, static_cast<ssize_t>(blockSize))); SHA256 hasher; hasher.update(block); StringRef hash = hasher.final(); assert(hash.size() == hashSize); memcpy(hashes, hash.data(), hashSize); code += blockSize; hashes += hashSize; } #if defined(__APPLE__) // This is macOS-specific work-around and makes no sense for any // other host OS. See https://openradar.appspot.com/FB8914231 // // The macOS kernel maintains a signature-verification cache to // quickly validate applications at time of execve(2). The trouble // is that for the kernel creates the cache entry at the time of the // mmap(2) call, before we have a chance to write either the code to // sign or the signature header+hashes. The fix is to invalidate // all cached data associated with the output file, thus discarding // the bogus prematurely-cached signature. msync(buf, fileOff + getSize(), MS_INVALIDATE); #endif } void CodeSignatureSection::writeTo(uint8_t *buf) const { uint32_t signatureSize = static_cast<uint32_t>(getSize()); auto *superBlob = reinterpret_cast<CS_SuperBlob *>(buf); write32be(&superBlob->magic, CSMAGIC_EMBEDDED_SIGNATURE); write32be(&superBlob->length, signatureSize); write32be(&superBlob->count, 1); auto *blobIndex = reinterpret_cast<CS_BlobIndex *>(&superBlob[1]); write32be(&blobIndex->type, CSSLOT_CODEDIRECTORY); write32be(&blobIndex->offset, blobHeadersSize); auto *codeDirectory = reinterpret_cast<CS_CodeDirectory *>(buf + blobHeadersSize); write32be(&codeDirectory->magic, CSMAGIC_CODEDIRECTORY); write32be(&codeDirectory->length, signatureSize - blobHeadersSize); write32be(&codeDirectory->version, CS_SUPPORTSEXECSEG); write32be(&codeDirectory->flags, CS_ADHOC | CS_LINKER_SIGNED); write32be(&codeDirectory->hashOffset, sizeof(CS_CodeDirectory) + fileName.size() + fileNamePad); write32be(&codeDirectory->identOffset, sizeof(CS_CodeDirectory)); codeDirectory->nSpecialSlots = 0; write32be(&codeDirectory->nCodeSlots, getBlockCount()); write32be(&codeDirectory->codeLimit, fileOff); codeDirectory->hashSize = static_cast<uint8_t>(hashSize); codeDirectory->hashType = kSecCodeSignatureHashSHA256; codeDirectory->platform = 0; codeDirectory->pageSize = blockSizeShift; codeDirectory->spare2 = 0; codeDirectory->scatterOffset = 0; codeDirectory->teamOffset = 0; codeDirectory->spare3 = 0; codeDirectory->codeLimit64 = 0; OutputSegment *textSeg = getOrCreateOutputSegment(segment_names::text); write64be(&codeDirectory->execSegBase, textSeg->fileOff); write64be(&codeDirectory->execSegLimit, textSeg->fileSize); write64be(&codeDirectory->execSegFlags, config->outputType == MH_EXECUTE ? CS_EXECSEG_MAIN_BINARY : 0); auto *id = reinterpret_cast<char *>(&codeDirectory[1]); memcpy(id, fileName.begin(), fileName.size()); memset(id + fileName.size(), 0, fileNamePad); } BitcodeBundleSection::BitcodeBundleSection() : SyntheticSection(segment_names::llvm, section_names::bitcodeBundle) {} class ErrorCodeWrapper { public: explicit ErrorCodeWrapper(std::error_code ec) : errorCode(ec.value()) {} explicit ErrorCodeWrapper(int ec) : errorCode(ec) {} operator int() const { return errorCode; } private: int errorCode; }; #define CHECK_EC(exp) \ do { \ ErrorCodeWrapper ec(exp); \ if (ec) \ fatal(Twine("operation failed with error code ") + Twine(ec) + ": " + \ #exp); \ } while (0); void BitcodeBundleSection::finalize() { #ifdef LLVM_HAVE_LIBXAR using namespace llvm::sys::fs; CHECK_EC(createTemporaryFile("bitcode-bundle", "xar", xarPath)); xar_t xar(xar_open(xarPath.data(), O_RDWR)); if (!xar) fatal("failed to open XAR temporary file at " + xarPath); CHECK_EC(xar_opt_set(xar, XAR_OPT_COMPRESSION, XAR_OPT_VAL_NONE)); // FIXME: add more data to XAR CHECK_EC(xar_close(xar)); file_size(xarPath, xarSize); #endif // defined(LLVM_HAVE_LIBXAR) } void BitcodeBundleSection::writeTo(uint8_t *buf) const { using namespace llvm::sys::fs; file_t handle = CHECK(openNativeFile(xarPath, CD_OpenExisting, FA_Read, OF_None), "failed to open XAR file"); std::error_code ec; mapped_file_region xarMap(handle, mapped_file_region::mapmode::readonly, xarSize, 0, ec); if (ec) fatal("failed to map XAR file"); memcpy(buf, xarMap.const_data(), xarSize); closeFile(handle); remove(xarPath); } CStringSection::CStringSection() : SyntheticSection(segment_names::text, section_names::cString) { flags = S_CSTRING_LITERALS; } void CStringSection::addInput(CStringInputSection *isec) { isec->parent = this; inputs.push_back(isec); if (isec->align > align) align = isec->align; } void CStringSection::writeTo(uint8_t *buf) const { for (const CStringInputSection *isec : inputs) { for (size_t i = 0, e = isec->pieces.size(); i != e; ++i) { if (!isec->pieces[i].live) continue; StringRef string = isec->getStringRef(i); memcpy(buf + isec->pieces[i].outSecOff, string.data(), string.size()); } } } void CStringSection::finalizeContents() { uint64_t offset = 0; for (CStringInputSection *isec : inputs) { for (size_t i = 0, e = isec->pieces.size(); i != e; ++i) { if (!isec->pieces[i].live) continue; uint32_t pieceAlign = MinAlign(isec->pieces[i].inSecOff, align); offset = alignTo(offset, pieceAlign); isec->pieces[i].outSecOff = offset; isec->isFinal = true; StringRef string = isec->getStringRef(i); offset += string.size(); } } size = offset; } // Mergeable cstring literals are found under the __TEXT,__cstring section. In // contrast to ELF, which puts strings that need different alignments into // different sections, clang's Mach-O backend puts them all in one section. // Strings that need to be aligned have the .p2align directive emitted before // them, which simply translates into zero padding in the object file. // // I *think* ld64 extracts the desired per-string alignment from this data by // preserving each string's offset from the last section-aligned address. I'm // not entirely certain since it doesn't seem consistent about doing this, and // in fact doesn't seem to be correct in general: we can in fact can induce ld64 // to produce a crashing binary just by linking in an additional object file // that only contains a duplicate cstring at a different alignment. See PR50563 // for details. // // On x86_64, the cstrings we've seen so far that require special alignment are // all accessed by SIMD operations -- x86_64 requires SIMD accesses to be // 16-byte-aligned. arm64 also seems to require 16-byte-alignment in some cases // (PR50791), but I haven't tracked down the root cause. So for now, I'm just // aligning all strings to 16 bytes. This is indeed wasteful, but // implementation-wise it's simpler than preserving per-string // alignment+offsets. It also avoids the aforementioned crash after // deduplication of differently-aligned strings. Finally, the overhead is not // huge: using 16-byte alignment (vs no alignment) is only a 0.5% size overhead // when linking chromium_framework on x86_64. DeduplicatedCStringSection::DeduplicatedCStringSection() : builder(StringTableBuilder::RAW, /*Alignment=*/16) {} void DeduplicatedCStringSection::finalizeContents() { // Add all string pieces to the string table builder to create section // contents. for (const CStringInputSection *isec : inputs) for (size_t i = 0, e = isec->pieces.size(); i != e; ++i) if (isec->pieces[i].live) builder.add(isec->getCachedHashStringRef(i)); // Fix the string table content. After this, the contents will never change. builder.finalizeInOrder(); // finalize() fixed tail-optimized strings, so we can now get // offsets of strings. Get an offset for each string and save it // to a corresponding SectionPiece for easy access. for (CStringInputSection *isec : inputs) { for (size_t i = 0, e = isec->pieces.size(); i != e; ++i) { if (!isec->pieces[i].live) continue; isec->pieces[i].outSecOff = builder.getOffset(isec->getCachedHashStringRef(i)); isec->isFinal = true; } } } // This section is actually emitted as __TEXT,__const by ld64, but clang may // emit input sections of that name, and LLD doesn't currently support mixing // synthetic and concat-type OutputSections. To work around this, I've given // our merged-literals section a different name. WordLiteralSection::WordLiteralSection() : SyntheticSection(segment_names::text, section_names::literals) { align = 16; } void WordLiteralSection::addInput(WordLiteralInputSection *isec) { isec->parent = this; inputs.push_back(isec); } void WordLiteralSection::finalizeContents() { for (WordLiteralInputSection *isec : inputs) { // We do all processing of the InputSection here, so it will be effectively // finalized. isec->isFinal = true; const uint8_t *buf = isec->data.data(); switch (sectionType(isec->getFlags())) { case S_4BYTE_LITERALS: { for (size_t off = 0, e = isec->data.size(); off < e; off += 4) { if (!isec->isLive(off)) continue; uint32_t value = *reinterpret_cast<const uint32_t *>(buf + off); literal4Map.emplace(value, literal4Map.size()); } break; } case S_8BYTE_LITERALS: { for (size_t off = 0, e = isec->data.size(); off < e; off += 8) { if (!isec->isLive(off)) continue; uint64_t value = *reinterpret_cast<const uint64_t *>(buf + off); literal8Map.emplace(value, literal8Map.size()); } break; } case S_16BYTE_LITERALS: { for (size_t off = 0, e = isec->data.size(); off < e; off += 16) { if (!isec->isLive(off)) continue; UInt128 value = *reinterpret_cast<const UInt128 *>(buf + off); literal16Map.emplace(value, literal16Map.size()); } break; } default: llvm_unreachable("invalid literal section type"); } } } void WordLiteralSection::writeTo(uint8_t *buf) const { // Note that we don't attempt to do any endianness conversion in addInput(), // so we don't do it here either -- just write out the original value, // byte-for-byte. for (const auto &p : literal16Map) memcpy(buf + p.second * 16, &p.first, 16); buf += literal16Map.size() * 16; for (const auto &p : literal8Map) memcpy(buf + p.second * 8, &p.first, 8); buf += literal8Map.size() * 8; for (const auto &p : literal4Map) memcpy(buf + p.second * 4, &p.first, 4); } void macho::createSyntheticSymbols() { auto addHeaderSymbol = [](const char *name) { symtab->addSynthetic(name, in.header->isec, /*value=*/0, /*privateExtern=*/true, /*includeInSymtab=*/false, /*referencedDynamically=*/false); }; switch (config->outputType) { // FIXME: Assign the right address value for these symbols // (rather than 0). But we need to do that after assignAddresses(). case MH_EXECUTE: // If linking PIE, __mh_execute_header is a defined symbol in // __TEXT, __text) // Otherwise, it's an absolute symbol. if (config->isPic) symtab->addSynthetic("__mh_execute_header", in.header->isec, /*value=*/0, /*privateExtern=*/false, /*includeInSymtab=*/true, /*referencedDynamically=*/true); else symtab->addSynthetic("__mh_execute_header", /*isec=*/nullptr, /*value=*/0, /*privateExtern=*/false, /*includeInSymtab=*/true, /*referencedDynamically=*/true); break; // The following symbols are N_SECT symbols, even though the header is not // part of any section and that they are private to the bundle/dylib/object // they are part of. case MH_BUNDLE: addHeaderSymbol("__mh_bundle_header"); break; case MH_DYLIB: addHeaderSymbol("__mh_dylib_header"); break; case MH_DYLINKER: addHeaderSymbol("__mh_dylinker_header"); break; case MH_OBJECT: addHeaderSymbol("__mh_object_header"); break; default: llvm_unreachable("unexpected outputType"); break; } // The Itanium C++ ABI requires dylibs to pass a pointer to __cxa_atexit // which does e.g. cleanup of static global variables. The ABI document // says that the pointer can point to any address in one of the dylib's // segments, but in practice ld64 seems to set it to point to the header, // so that's what's implemented here. addHeaderSymbol("___dso_handle"); } template SymtabSection *macho::makeSymtabSection<LP64>(StringTableSection &); template SymtabSection *macho::makeSymtabSection<ILP32>(StringTableSection &);