Mercurial > hg > CbC > CbC_llvm
view clang-tools-extra/clangd/SemanticHighlighting.cpp @ 221:79ff65ed7e25
LLVM12 Original
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 15 Jun 2021 19:15:29 +0900 |
parents | 0572611fdcc8 |
children | 5f17cb93ff66 |
line wrap: on
line source
//===--- SemanticHighlighting.cpp - ------------------------- ---*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "SemanticHighlighting.h" #include "FindTarget.h" #include "HeuristicResolver.h" #include "ParsedAST.h" #include "Protocol.h" #include "SourceCode.h" #include "support/Logger.h" #include "clang/AST/ASTContext.h" #include "clang/AST/Decl.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/DeclarationName.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/RecursiveASTVisitor.h" #include "clang/AST/Type.h" #include "clang/AST/TypeLoc.h" #include "clang/Basic/LangOptions.h" #include "clang/Basic/SourceLocation.h" #include "clang/Basic/SourceManager.h" #include "clang/Tooling/Syntax/Tokens.h" #include "llvm/ADT/None.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/Base64.h" #include "llvm/Support/Casting.h" #include <algorithm> namespace clang { namespace clangd { namespace { /// Some names are not written in the source code and cannot be highlighted, /// e.g. anonymous classes. This function detects those cases. bool canHighlightName(DeclarationName Name) { switch (Name.getNameKind()) { case DeclarationName::Identifier: { auto *II = Name.getAsIdentifierInfo(); return II && !II->getName().empty(); } case DeclarationName::CXXConstructorName: case DeclarationName::CXXDestructorName: return true; case DeclarationName::ObjCZeroArgSelector: case DeclarationName::ObjCOneArgSelector: case DeclarationName::ObjCMultiArgSelector: // Multi-arg selectors need special handling, and we handle 0/1 arg // selectors there too. return false; case DeclarationName::CXXConversionFunctionName: case DeclarationName::CXXOperatorName: case DeclarationName::CXXDeductionGuideName: case DeclarationName::CXXLiteralOperatorName: case DeclarationName::CXXUsingDirective: return false; } llvm_unreachable("invalid name kind"); } llvm::Optional<HighlightingKind> kindForType(const Type *TP, const HeuristicResolver *Resolver); llvm::Optional<HighlightingKind> kindForDecl(const NamedDecl *D, const HeuristicResolver *Resolver) { if (auto *USD = dyn_cast<UsingShadowDecl>(D)) { if (auto *Target = USD->getTargetDecl()) D = Target; } if (auto *TD = dyn_cast<TemplateDecl>(D)) { if (auto *Templated = TD->getTemplatedDecl()) D = Templated; } if (auto *TD = dyn_cast<TypedefNameDecl>(D)) { // We try to highlight typedefs as their underlying type. if (auto K = kindForType(TD->getUnderlyingType().getTypePtrOrNull(), Resolver)) return K; // And fallback to a generic kind if this fails. return HighlightingKind::Typedef; } // We highlight class decls, constructor decls and destructor decls as // `Class` type. The destructor decls are handled in `VisitTagTypeLoc` (we // will visit a TypeLoc where the underlying Type is a CXXRecordDecl). if (auto *RD = llvm::dyn_cast<RecordDecl>(D)) { // We don't want to highlight lambdas like classes. if (RD->isLambda()) return llvm::None; return HighlightingKind::Class; } if (isa<ClassTemplateDecl, RecordDecl, CXXConstructorDecl, ObjCInterfaceDecl, ObjCImplementationDecl>(D)) return HighlightingKind::Class; if (isa<ObjCProtocolDecl>(D)) return HighlightingKind::Interface; if (isa<ObjCCategoryDecl>(D)) return HighlightingKind::Namespace; if (auto *MD = dyn_cast<CXXMethodDecl>(D)) return MD->isStatic() ? HighlightingKind::StaticMethod : HighlightingKind::Method; if (auto *OMD = dyn_cast<ObjCMethodDecl>(D)) return OMD->isClassMethod() ? HighlightingKind::StaticMethod : HighlightingKind::Method; if (isa<FieldDecl, ObjCPropertyDecl>(D)) return HighlightingKind::Field; if (isa<EnumDecl>(D)) return HighlightingKind::Enum; if (isa<EnumConstantDecl>(D)) return HighlightingKind::EnumConstant; if (isa<ParmVarDecl>(D)) return HighlightingKind::Parameter; if (auto *VD = dyn_cast<VarDecl>(D)) { if (isa<ImplicitParamDecl>(VD)) // e.g. ObjC Self return llvm::None; return VD->isStaticDataMember() ? HighlightingKind::StaticField : VD->isLocalVarDecl() ? HighlightingKind::LocalVariable : HighlightingKind::Variable; } if (const auto *BD = dyn_cast<BindingDecl>(D)) return BD->getDeclContext()->isFunctionOrMethod() ? HighlightingKind::LocalVariable : HighlightingKind::Variable; if (isa<FunctionDecl>(D)) return HighlightingKind::Function; if (isa<NamespaceDecl>(D) || isa<NamespaceAliasDecl>(D) || isa<UsingDirectiveDecl>(D)) return HighlightingKind::Namespace; if (isa<TemplateTemplateParmDecl>(D) || isa<TemplateTypeParmDecl>(D) || isa<NonTypeTemplateParmDecl>(D)) return HighlightingKind::TemplateParameter; if (isa<ConceptDecl>(D)) return HighlightingKind::Concept; if (const auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(D)) { auto Targets = Resolver->resolveUsingValueDecl(UUVD); if (!Targets.empty()) { return kindForDecl(Targets[0], Resolver); } return HighlightingKind::Unknown; } return llvm::None; } llvm::Optional<HighlightingKind> kindForType(const Type *TP, const HeuristicResolver *Resolver) { if (!TP) return llvm::None; if (TP->isBuiltinType()) // Builtins are special, they do not have decls. return HighlightingKind::Primitive; if (auto *TD = dyn_cast<TemplateTypeParmType>(TP)) return kindForDecl(TD->getDecl(), Resolver); if (isa<ObjCObjectPointerType>(TP)) return HighlightingKind::Class; if (auto *TD = TP->getAsTagDecl()) return kindForDecl(TD, Resolver); return llvm::None; } // Whether T is const in a loose sense - is a variable with this type readonly? bool isConst(QualType T) { if (T.isNull() || T->isDependentType()) return false; T = T.getNonReferenceType(); if (T.isConstQualified()) return true; if (const auto *AT = T->getAsArrayTypeUnsafe()) return isConst(AT->getElementType()); if (isConst(T->getPointeeType())) return true; return false; } // Whether D is const in a loose sense (should it be highlighted as such?) // FIXME: This is separate from whether *a particular usage* can mutate D. // We may want V in V.size() to be readonly even if V is mutable. bool isConst(const Decl *D) { if (llvm::isa<EnumConstantDecl>(D) || llvm::isa<NonTypeTemplateParmDecl>(D)) return true; if (llvm::isa<FieldDecl>(D) || llvm::isa<VarDecl>(D) || llvm::isa<MSPropertyDecl>(D) || llvm::isa<BindingDecl>(D)) { if (isConst(llvm::cast<ValueDecl>(D)->getType())) return true; } if (const auto *OCPD = llvm::dyn_cast<ObjCPropertyDecl>(D)) { if (OCPD->isReadOnly()) return true; } if (const auto *MPD = llvm::dyn_cast<MSPropertyDecl>(D)) { if (!MPD->hasSetter()) return true; } if (const auto *CMD = llvm::dyn_cast<CXXMethodDecl>(D)) { if (CMD->isConst()) return true; } return false; } // "Static" means many things in C++, only some get the "static" modifier. // // Meanings that do: // - Members associated with the class rather than the instance. // This is what 'static' most often means across languages. // - static local variables // These are similarly "detached from their context" by the static keyword. // In practice, these are rarely used inside classes, reducing confusion. // // Meanings that don't: // - Namespace-scoped variables, which have static storage class. // This is implicit, so the keyword "static" isn't so strongly associated. // If we want a modifier for these, "global scope" is probably the concept. // - Namespace-scoped variables/functions explicitly marked "static". // There the keyword changes *linkage* , which is a totally different concept. // If we want to model this, "file scope" would be a nice modifier. // // This is confusing, and maybe we should use another name, but because "static" // is a standard LSP modifier, having one with that name has advantages. bool isStatic(const Decl *D) { if (const auto *CMD = llvm::dyn_cast<CXXMethodDecl>(D)) return CMD->isStatic(); if (const VarDecl *VD = llvm::dyn_cast<VarDecl>(D)) return VD->isStaticDataMember() || VD->isStaticLocal(); if (const auto *OPD = llvm::dyn_cast<ObjCPropertyDecl>(D)) return OPD->isClassProperty(); if (const auto *OMD = llvm::dyn_cast<ObjCMethodDecl>(D)) return OMD->isClassMethod(); return false; } bool isAbstract(const Decl *D) { if (const auto *CMD = llvm::dyn_cast<CXXMethodDecl>(D)) return CMD->isPure(); if (const auto *CRD = llvm::dyn_cast<CXXRecordDecl>(D)) return CRD->hasDefinition() && CRD->isAbstract(); return false; } bool isDependent(const Decl *D) { if (isa<UnresolvedUsingValueDecl>(D)) return true; return false; } /// Returns true if `Decl` is considered to be from a default/system library. /// This currently checks the systemness of the file by include type, although /// different heuristics may be used in the future (e.g. sysroot paths). bool isDefaultLibrary(const Decl *D) { SourceLocation Loc = D->getLocation(); if (!Loc.isValid()) return false; return D->getASTContext().getSourceManager().isInSystemHeader(Loc); } bool isDefaultLibrary(const Type *T) { if (!T) return false; const Type *Underlying = T->getPointeeOrArrayElementType(); if (Underlying->isBuiltinType()) return true; if (auto *TD = dyn_cast<TemplateTypeParmType>(Underlying)) return isDefaultLibrary(TD->getDecl()); if (auto *TD = Underlying->getAsTagDecl()) return isDefaultLibrary(TD); return false; } // For a macro usage `DUMP(foo)`, we want: // - DUMP --> "macro" // - foo --> "variable". SourceLocation getHighlightableSpellingToken(SourceLocation L, const SourceManager &SM) { if (L.isFileID()) return SM.isWrittenInMainFile(L) ? L : SourceLocation{}; // Tokens expanded from the macro body contribute no highlightings. if (!SM.isMacroArgExpansion(L)) return {}; // Tokens expanded from macro args are potentially highlightable. return getHighlightableSpellingToken(SM.getImmediateSpellingLoc(L), SM); } unsigned evaluateHighlightPriority(const HighlightingToken &Tok) { enum HighlightPriority { Dependent = 0, Resolved = 1 }; return (Tok.Modifiers & (1 << uint32_t(HighlightingModifier::DependentName))) ? Dependent : Resolved; } // Sometimes we get multiple tokens at the same location: // // - findExplicitReferences() returns a heuristic result for a dependent name // (e.g. Method) and CollectExtraHighlighting returning a fallback dependent // highlighting (e.g. Unknown+Dependent). // - macro arguments are expanded multiple times and have different roles // - broken code recovery produces several AST nodes at the same location // // We should either resolve these to a single token, or drop them all. // Our heuristics are: // // - token kinds that come with "dependent-name" modifiers are less reliable // (these tend to be vague, like Type or Unknown) // - if we have multiple equally reliable kinds, drop token rather than guess // - take the union of modifiers from all tokens // // In particular, heuristically resolved dependent names get their heuristic // kind, plus the dependent modifier. llvm::Optional<HighlightingToken> resolveConflict(ArrayRef<HighlightingToken> Tokens) { if (Tokens.size() == 1) return Tokens[0]; if (Tokens.size() != 2) return llvm::None; unsigned Priority1 = evaluateHighlightPriority(Tokens[0]); unsigned Priority2 = evaluateHighlightPriority(Tokens[1]); if (Priority1 == Priority2 && Tokens[0].Kind != Tokens[1].Kind) return llvm::None; auto Result = Priority1 > Priority2 ? Tokens[0] : Tokens[1]; Result.Modifiers = Tokens[0].Modifiers | Tokens[1].Modifiers; return Result; } /// Consumes source locations and maps them to text ranges for highlightings. class HighlightingsBuilder { public: HighlightingsBuilder(const ParsedAST &AST) : TB(AST.getTokens()), SourceMgr(AST.getSourceManager()), LangOpts(AST.getLangOpts()) {} HighlightingToken &addToken(SourceLocation Loc, HighlightingKind Kind) { Loc = getHighlightableSpellingToken(Loc, SourceMgr); if (Loc.isInvalid()) return InvalidHighlightingToken; const auto *Tok = TB.spelledTokenAt(Loc); assert(Tok); return addToken( halfOpenToRange(SourceMgr, Tok->range(SourceMgr).toCharRange(SourceMgr)), Kind); } HighlightingToken &addToken(Range R, HighlightingKind Kind) { HighlightingToken HT; HT.R = std::move(R); HT.Kind = Kind; Tokens.push_back(std::move(HT)); return Tokens.back(); } std::vector<HighlightingToken> collect(ParsedAST &AST) && { // Initializer lists can give duplicates of tokens, therefore all tokens // must be deduplicated. llvm::sort(Tokens); auto Last = std::unique(Tokens.begin(), Tokens.end()); Tokens.erase(Last, Tokens.end()); // Macros can give tokens that have the same source range but conflicting // kinds. In this case all tokens sharing this source range should be // removed. std::vector<HighlightingToken> NonConflicting; NonConflicting.reserve(Tokens.size()); for (ArrayRef<HighlightingToken> TokRef = Tokens; !TokRef.empty();) { ArrayRef<HighlightingToken> Conflicting = TokRef.take_while([&](const HighlightingToken &T) { // TokRef is guaranteed at least one element here because otherwise // this predicate would never fire. return T.R == TokRef.front().R; }); if (auto Resolved = resolveConflict(Conflicting)) NonConflicting.push_back(*Resolved); // TokRef[Conflicting.size()] is the next token with a different range (or // the end of the Tokens). TokRef = TokRef.drop_front(Conflicting.size()); } const auto &SM = AST.getSourceManager(); StringRef MainCode = SM.getBufferOrFake(SM.getMainFileID()).getBuffer(); // Merge token stream with "inactive line" markers. std::vector<HighlightingToken> WithInactiveLines; auto SortedSkippedRanges = AST.getMacros().SkippedRanges; llvm::sort(SortedSkippedRanges); auto It = NonConflicting.begin(); for (const Range &R : SortedSkippedRanges) { // Create one token for each line in the skipped range, so it works // with line-based diffing. assert(R.start.line <= R.end.line); for (int Line = R.start.line; Line <= R.end.line; ++Line) { // If the end of the inactive range is at the beginning // of a line, that line is not inactive. if (Line == R.end.line && R.end.character == 0) continue; // Copy tokens before the inactive line for (; It != NonConflicting.end() && It->R.start.line < Line; ++It) WithInactiveLines.push_back(std::move(*It)); // Add a token for the inactive line itself. auto StartOfLine = positionToOffset(MainCode, Position{Line, 0}); if (StartOfLine) { StringRef LineText = MainCode.drop_front(*StartOfLine).take_until([](char C) { return C == '\n'; }); HighlightingToken HT; WithInactiveLines.emplace_back(); WithInactiveLines.back().Kind = HighlightingKind::InactiveCode; WithInactiveLines.back().R.start.line = Line; WithInactiveLines.back().R.end.line = Line; WithInactiveLines.back().R.end.character = static_cast<int>(lspLength(LineText)); } else { elog("Failed to convert position to offset: {0}", StartOfLine.takeError()); } // Skip any other tokens on the inactive line. e.g. // `#ifndef Foo` is considered as part of an inactive region when Foo is // defined, and there is a Foo macro token. // FIXME: we should reduce the scope of the inactive region to not // include the directive itself. while (It != NonConflicting.end() && It->R.start.line == Line) ++It; } } // Copy tokens after the last inactive line for (; It != NonConflicting.end(); ++It) WithInactiveLines.push_back(std::move(*It)); return WithInactiveLines; } const HeuristicResolver *getResolver() const { return Resolver; } private: const syntax::TokenBuffer &TB; const SourceManager &SourceMgr; const LangOptions &LangOpts; std::vector<HighlightingToken> Tokens; const HeuristicResolver *Resolver; // returned from addToken(InvalidLoc) HighlightingToken InvalidHighlightingToken; }; llvm::Optional<HighlightingModifier> scopeModifier(const NamedDecl *D) { const DeclContext *DC = D->getDeclContext(); // Injected "Foo" within the class "Foo" has file scope, not class scope. if (auto *R = dyn_cast_or_null<RecordDecl>(D)) if (R->isInjectedClassName()) DC = DC->getParent(); // Lambda captures are considered function scope, not class scope. if (llvm::isa<FieldDecl>(D)) if (const auto *RD = llvm::dyn_cast<RecordDecl>(DC)) if (RD->isLambda()) return HighlightingModifier::FunctionScope; // Walk up the DeclContext hierarchy until we find something interesting. for (; !DC->isFileContext(); DC = DC->getParent()) { if (DC->isFunctionOrMethod()) return HighlightingModifier::FunctionScope; if (DC->isRecord()) return HighlightingModifier::ClassScope; } // Some template parameters (e.g. those for variable templates) don't have // meaningful DeclContexts. That doesn't mean they're global! if (DC->isTranslationUnit() && D->isTemplateParameter()) return llvm::None; // ExternalLinkage threshold could be tweaked, e.g. module-visible as global. if (D->getLinkageInternal() < ExternalLinkage) return HighlightingModifier::FileScope; return HighlightingModifier::GlobalScope; } llvm::Optional<HighlightingModifier> scopeModifier(const Type *T) { if (!T) return llvm::None; if (T->isBuiltinType()) return HighlightingModifier::GlobalScope; if (auto *TD = dyn_cast<TemplateTypeParmType>(T)) return scopeModifier(TD->getDecl()); if (auto *TD = T->getAsTagDecl()) return scopeModifier(TD); return llvm::None; } /// Produces highlightings, which are not captured by findExplicitReferences, /// e.g. highlights dependent names and 'auto' as the underlying type. class CollectExtraHighlightings : public RecursiveASTVisitor<CollectExtraHighlightings> { public: CollectExtraHighlightings(HighlightingsBuilder &H) : H(H) {} bool VisitDecltypeTypeLoc(DecltypeTypeLoc L) { if (auto K = kindForType(L.getTypePtr(), H.getResolver())) { auto &Tok = H.addToken(L.getBeginLoc(), *K) .addModifier(HighlightingModifier::Deduced); if (auto Mod = scopeModifier(L.getTypePtr())) Tok.addModifier(*Mod); if (isDefaultLibrary(L.getTypePtr())) Tok.addModifier(HighlightingModifier::DefaultLibrary); } return true; } bool VisitDeclaratorDecl(DeclaratorDecl *D) { auto *AT = D->getType()->getContainedAutoType(); if (!AT) return true; if (auto K = kindForType(AT->getDeducedType().getTypePtrOrNull(), H.getResolver())) { auto &Tok = H.addToken(D->getTypeSpecStartLoc(), *K) .addModifier(HighlightingModifier::Deduced); const Type *Deduced = AT->getDeducedType().getTypePtrOrNull(); if (auto Mod = scopeModifier(Deduced)) Tok.addModifier(*Mod); if (isDefaultLibrary(Deduced)) Tok.addModifier(HighlightingModifier::DefaultLibrary); } return true; } // We handle objective-C selectors specially, because one reference can // cover several non-contiguous tokens. void highlightObjCSelector(const ArrayRef<SourceLocation> &Locs, bool Decl, bool Class, bool DefaultLibrary) { HighlightingKind Kind = Class ? HighlightingKind::StaticMethod : HighlightingKind::Method; for (SourceLocation Part : Locs) { auto &Tok = H.addToken(Part, Kind).addModifier(HighlightingModifier::ClassScope); if (Decl) Tok.addModifier(HighlightingModifier::Declaration); if (Class) Tok.addModifier(HighlightingModifier::Static); if (DefaultLibrary) Tok.addModifier(HighlightingModifier::DefaultLibrary); } } bool VisitObjCMethodDecl(ObjCMethodDecl *OMD) { llvm::SmallVector<SourceLocation> Locs; OMD->getSelectorLocs(Locs); highlightObjCSelector(Locs, /*Decl=*/true, OMD->isClassMethod(), isDefaultLibrary(OMD)); return true; } bool VisitObjCMessageExpr(ObjCMessageExpr *OME) { llvm::SmallVector<SourceLocation> Locs; OME->getSelectorLocs(Locs); bool DefaultLibrary = false; if (ObjCMethodDecl *OMD = OME->getMethodDecl()) DefaultLibrary = isDefaultLibrary(OMD); highlightObjCSelector(Locs, /*Decl=*/false, OME->isClassMessage(), DefaultLibrary); return true; } bool VisitOverloadExpr(OverloadExpr *E) { if (!E->decls().empty()) return true; // handled by findExplicitReferences. auto &Tok = H.addToken(E->getNameLoc(), HighlightingKind::Unknown) .addModifier(HighlightingModifier::DependentName); if (llvm::isa<UnresolvedMemberExpr>(E)) Tok.addModifier(HighlightingModifier::ClassScope); // other case is UnresolvedLookupExpr, scope is unknown. return true; } bool VisitCXXDependentScopeMemberExpr(CXXDependentScopeMemberExpr *E) { H.addToken(E->getMemberNameInfo().getLoc(), HighlightingKind::Unknown) .addModifier(HighlightingModifier::DependentName) .addModifier(HighlightingModifier::ClassScope); return true; } bool VisitDependentScopeDeclRefExpr(DependentScopeDeclRefExpr *E) { H.addToken(E->getNameInfo().getLoc(), HighlightingKind::Unknown) .addModifier(HighlightingModifier::DependentName) .addModifier(HighlightingModifier::ClassScope); return true; } bool VisitDependentNameTypeLoc(DependentNameTypeLoc L) { H.addToken(L.getNameLoc(), HighlightingKind::Type) .addModifier(HighlightingModifier::DependentName) .addModifier(HighlightingModifier::ClassScope); return true; } bool VisitDependentTemplateSpecializationTypeLoc( DependentTemplateSpecializationTypeLoc L) { H.addToken(L.getTemplateNameLoc(), HighlightingKind::Type) .addModifier(HighlightingModifier::DependentName) .addModifier(HighlightingModifier::ClassScope); return true; } bool TraverseTemplateArgumentLoc(TemplateArgumentLoc L) { // Handle template template arguments only (other arguments are handled by // their Expr, TypeLoc etc values). if (L.getArgument().getKind() != TemplateArgument::Template && L.getArgument().getKind() != TemplateArgument::TemplateExpansion) return RecursiveASTVisitor::TraverseTemplateArgumentLoc(L); TemplateName N = L.getArgument().getAsTemplateOrTemplatePattern(); switch (N.getKind()) { case TemplateName::OverloadedTemplate: // Template template params must always be class templates. // Don't bother to try to work out the scope here. H.addToken(L.getTemplateNameLoc(), HighlightingKind::Class); break; case TemplateName::DependentTemplate: case TemplateName::AssumedTemplate: H.addToken(L.getTemplateNameLoc(), HighlightingKind::Class) .addModifier(HighlightingModifier::DependentName); break; case TemplateName::Template: case TemplateName::QualifiedTemplate: case TemplateName::SubstTemplateTemplateParm: case TemplateName::SubstTemplateTemplateParmPack: // Names that could be resolved to a TemplateDecl are handled elsewhere. break; } return RecursiveASTVisitor::TraverseTemplateArgumentLoc(L); } // findExplicitReferences will walk nested-name-specifiers and // find anything that can be resolved to a Decl. However, non-leaf // components of nested-name-specifiers which are dependent names // (kind "Identifier") cannot be resolved to a decl, so we visit // them here. bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc Q) { if (NestedNameSpecifier *NNS = Q.getNestedNameSpecifier()) { if (NNS->getKind() == NestedNameSpecifier::Identifier) H.addToken(Q.getLocalBeginLoc(), HighlightingKind::Type) .addModifier(HighlightingModifier::DependentName) .addModifier(HighlightingModifier::ClassScope); } return RecursiveASTVisitor::TraverseNestedNameSpecifierLoc(Q); } private: HighlightingsBuilder &H; }; } // namespace std::vector<HighlightingToken> getSemanticHighlightings(ParsedAST &AST) { auto &C = AST.getASTContext(); // Add highlightings for AST nodes. HighlightingsBuilder Builder(AST); // Highlight 'decltype' and 'auto' as their underlying types. CollectExtraHighlightings(Builder).TraverseAST(C); // Highlight all decls and references coming from the AST. findExplicitReferences( C, [&](ReferenceLoc R) { for (const NamedDecl *Decl : R.Targets) { if (!canHighlightName(Decl->getDeclName())) continue; auto Kind = kindForDecl(Decl, AST.getHeuristicResolver()); if (!Kind) continue; auto &Tok = Builder.addToken(R.NameLoc, *Kind); // The attribute tests don't want to look at the template. if (auto *TD = dyn_cast<TemplateDecl>(Decl)) { if (auto *Templated = TD->getTemplatedDecl()) Decl = Templated; } if (auto Mod = scopeModifier(Decl)) Tok.addModifier(*Mod); if (isConst(Decl)) Tok.addModifier(HighlightingModifier::Readonly); if (isStatic(Decl)) Tok.addModifier(HighlightingModifier::Static); if (isAbstract(Decl)) Tok.addModifier(HighlightingModifier::Abstract); if (isDependent(Decl)) Tok.addModifier(HighlightingModifier::DependentName); if (isDefaultLibrary(Decl)) Tok.addModifier(HighlightingModifier::DefaultLibrary); if (Decl->isDeprecated()) Tok.addModifier(HighlightingModifier::Deprecated); // Do not treat an UnresolvedUsingValueDecl as a declaration. // It's more common to think of it as a reference to the // underlying declaration. if (R.IsDecl && !isa<UnresolvedUsingValueDecl>(Decl)) Tok.addModifier(HighlightingModifier::Declaration); } }, AST.getHeuristicResolver()); // Add highlightings for macro references. auto AddMacro = [&](const MacroOccurrence &M) { auto &T = Builder.addToken(M.Rng, HighlightingKind::Macro); T.addModifier(HighlightingModifier::GlobalScope); if (M.IsDefinition) T.addModifier(HighlightingModifier::Declaration); }; for (const auto &SIDToRefs : AST.getMacros().MacroRefs) for (const auto &M : SIDToRefs.second) AddMacro(M); for (const auto &M : AST.getMacros().UnknownMacros) AddMacro(M); return std::move(Builder).collect(AST); } llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, HighlightingKind K) { switch (K) { case HighlightingKind::Variable: return OS << "Variable"; case HighlightingKind::LocalVariable: return OS << "LocalVariable"; case HighlightingKind::Parameter: return OS << "Parameter"; case HighlightingKind::Function: return OS << "Function"; case HighlightingKind::Method: return OS << "Method"; case HighlightingKind::StaticMethod: return OS << "StaticMethod"; case HighlightingKind::Field: return OS << "Field"; case HighlightingKind::StaticField: return OS << "StaticField"; case HighlightingKind::Class: return OS << "Class"; case HighlightingKind::Interface: return OS << "Interface"; case HighlightingKind::Enum: return OS << "Enum"; case HighlightingKind::EnumConstant: return OS << "EnumConstant"; case HighlightingKind::Typedef: return OS << "Typedef"; case HighlightingKind::Type: return OS << "Type"; case HighlightingKind::Unknown: return OS << "Unknown"; case HighlightingKind::Namespace: return OS << "Namespace"; case HighlightingKind::TemplateParameter: return OS << "TemplateParameter"; case HighlightingKind::Concept: return OS << "Concept"; case HighlightingKind::Primitive: return OS << "Primitive"; case HighlightingKind::Macro: return OS << "Macro"; case HighlightingKind::InactiveCode: return OS << "InactiveCode"; } llvm_unreachable("invalid HighlightingKind"); } llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, HighlightingModifier K) { switch (K) { case HighlightingModifier::Declaration: return OS << "decl"; // abbrevation for common case default: return OS << toSemanticTokenModifier(K); } } bool operator==(const HighlightingToken &L, const HighlightingToken &R) { return std::tie(L.R, L.Kind, L.Modifiers) == std::tie(R.R, R.Kind, R.Modifiers); } bool operator<(const HighlightingToken &L, const HighlightingToken &R) { return std::tie(L.R, L.Kind, R.Modifiers) < std::tie(R.R, R.Kind, R.Modifiers); } std::vector<SemanticToken> toSemanticTokens(llvm::ArrayRef<HighlightingToken> Tokens) { assert(std::is_sorted(Tokens.begin(), Tokens.end())); std::vector<SemanticToken> Result; const HighlightingToken *Last = nullptr; for (const HighlightingToken &Tok : Tokens) { Result.emplace_back(); SemanticToken &Out = Result.back(); // deltaStart/deltaLine are relative if possible. if (Last) { assert(Tok.R.start.line >= Last->R.start.line); Out.deltaLine = Tok.R.start.line - Last->R.start.line; if (Out.deltaLine == 0) { assert(Tok.R.start.character >= Last->R.start.character); Out.deltaStart = Tok.R.start.character - Last->R.start.character; } else { Out.deltaStart = Tok.R.start.character; } } else { Out.deltaLine = Tok.R.start.line; Out.deltaStart = Tok.R.start.character; } assert(Tok.R.end.line == Tok.R.start.line); Out.length = Tok.R.end.character - Tok.R.start.character; Out.tokenType = static_cast<unsigned>(Tok.Kind); Out.tokenModifiers = Tok.Modifiers; Last = &Tok; } return Result; } llvm::StringRef toSemanticTokenType(HighlightingKind Kind) { switch (Kind) { case HighlightingKind::Variable: case HighlightingKind::LocalVariable: case HighlightingKind::StaticField: return "variable"; case HighlightingKind::Parameter: return "parameter"; case HighlightingKind::Function: return "function"; case HighlightingKind::Method: return "method"; case HighlightingKind::StaticMethod: // FIXME: better method with static modifier? return "function"; case HighlightingKind::Field: return "property"; case HighlightingKind::Class: return "class"; case HighlightingKind::Interface: return "interface"; case HighlightingKind::Enum: return "enum"; case HighlightingKind::EnumConstant: return "enumMember"; case HighlightingKind::Typedef: case HighlightingKind::Type: return "type"; case HighlightingKind::Unknown: return "unknown"; // nonstandard case HighlightingKind::Namespace: return "namespace"; case HighlightingKind::TemplateParameter: return "typeParameter"; case HighlightingKind::Concept: return "concept"; // nonstandard case HighlightingKind::Primitive: return "type"; case HighlightingKind::Macro: return "macro"; case HighlightingKind::InactiveCode: return "comment"; } llvm_unreachable("unhandled HighlightingKind"); } llvm::StringRef toSemanticTokenModifier(HighlightingModifier Modifier) { switch (Modifier) { case HighlightingModifier::Declaration: return "declaration"; case HighlightingModifier::Deprecated: return "deprecated"; case HighlightingModifier::Readonly: return "readonly"; case HighlightingModifier::Static: return "static"; case HighlightingModifier::Deduced: return "deduced"; // nonstandard case HighlightingModifier::Abstract: return "abstract"; case HighlightingModifier::DependentName: return "dependentName"; // nonstandard case HighlightingModifier::DefaultLibrary: return "defaultLibrary"; case HighlightingModifier::FunctionScope: return "functionScope"; // nonstandard case HighlightingModifier::ClassScope: return "classScope"; // nonstandard case HighlightingModifier::FileScope: return "fileScope"; // nonstandard case HighlightingModifier::GlobalScope: return "globalScope"; // nonstandard } llvm_unreachable("unhandled HighlightingModifier"); } std::vector<SemanticTokensEdit> diffTokens(llvm::ArrayRef<SemanticToken> Old, llvm::ArrayRef<SemanticToken> New) { // For now, just replace everything from the first-last modification. // FIXME: use a real diff instead, this is bad with include-insertion. unsigned Offset = 0; while (!Old.empty() && !New.empty() && Old.front() == New.front()) { ++Offset; Old = Old.drop_front(); New = New.drop_front(); } while (!Old.empty() && !New.empty() && Old.back() == New.back()) { Old = Old.drop_back(); New = New.drop_back(); } if (Old.empty() && New.empty()) return {}; SemanticTokensEdit Edit; Edit.startToken = Offset; Edit.deleteTokens = Old.size(); Edit.tokens = New; return {std::move(Edit)}; } } // namespace clangd } // namespace clang