Mercurial > hg > CbC > CbC_llvm
view clang-tools-extra/clang-tidy/utils/ExceptionAnalyzer.cpp @ 256:7d9b19ec7a62
cbclang output is still wrong
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 18 Aug 2023 18:48:47 +0900 |
parents | 1f2b6ac9f198 |
children |
line wrap: on
line source
//===--- ExceptionAnalyzer.cpp - clang-tidy -------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "ExceptionAnalyzer.h" namespace clang::tidy::utils { void ExceptionAnalyzer::ExceptionInfo::registerException( const Type *ExceptionType) { assert(ExceptionType != nullptr && "Only valid types are accepted"); Behaviour = State::Throwing; ThrownExceptions.insert(ExceptionType); } void ExceptionAnalyzer::ExceptionInfo::registerExceptions( const Throwables &Exceptions) { if (Exceptions.size() == 0) return; Behaviour = State::Throwing; ThrownExceptions.insert(Exceptions.begin(), Exceptions.end()); } ExceptionAnalyzer::ExceptionInfo &ExceptionAnalyzer::ExceptionInfo::merge( const ExceptionAnalyzer::ExceptionInfo &Other) { // Only the following two cases require an update to the local // 'Behaviour'. If the local entity is already throwing there will be no // change and if the other entity is throwing the merged entity will throw // as well. // If one of both entities is 'Unknown' and the other one does not throw // the merged entity is 'Unknown' as well. if (Other.Behaviour == State::Throwing) Behaviour = State::Throwing; else if (Other.Behaviour == State::Unknown && Behaviour == State::NotThrowing) Behaviour = State::Unknown; ContainsUnknown = ContainsUnknown || Other.ContainsUnknown; ThrownExceptions.insert(Other.ThrownExceptions.begin(), Other.ThrownExceptions.end()); return *this; } // FIXME: This could be ported to clang later. namespace { bool isUnambiguousPublicBaseClass(const Type *DerivedType, const Type *BaseType) { const auto *DerivedClass = DerivedType->getCanonicalTypeUnqualified()->getAsCXXRecordDecl(); const auto *BaseClass = BaseType->getCanonicalTypeUnqualified()->getAsCXXRecordDecl(); if (!DerivedClass || !BaseClass) return false; CXXBasePaths Paths; Paths.setOrigin(DerivedClass); bool IsPublicBaseClass = false; DerivedClass->lookupInBases( [&BaseClass, &IsPublicBaseClass](const CXXBaseSpecifier *BS, CXXBasePath &) { if (BS->getType() ->getCanonicalTypeUnqualified() ->getAsCXXRecordDecl() == BaseClass && BS->getAccessSpecifier() == AS_public) { IsPublicBaseClass = true; return true; } return false; }, Paths); return !Paths.isAmbiguous(BaseType->getCanonicalTypeUnqualified()) && IsPublicBaseClass; } inline bool isPointerOrPointerToMember(const Type *T) { return T->isPointerType() || T->isMemberPointerType(); } std::optional<QualType> getPointeeOrArrayElementQualType(QualType T) { if (T->isAnyPointerType() || T->isMemberPointerType()) return T->getPointeeType(); if (T->isArrayType()) return T->getAsArrayTypeUnsafe()->getElementType(); return std::nullopt; } bool isBaseOf(const Type *DerivedType, const Type *BaseType) { const auto *DerivedClass = DerivedType->getAsCXXRecordDecl(); const auto *BaseClass = BaseType->getAsCXXRecordDecl(); if (!DerivedClass || !BaseClass) return false; return !DerivedClass->forallBases( [BaseClass](const CXXRecordDecl *Cur) { return Cur != BaseClass; }); } // Check if T1 is more or Equally qualified than T2. bool moreOrEquallyQualified(QualType T1, QualType T2) { return T1.getQualifiers().isStrictSupersetOf(T2.getQualifiers()) || T1.getQualifiers() == T2.getQualifiers(); } bool isStandardPointerConvertible(QualType From, QualType To) { assert((From->isPointerType() || From->isMemberPointerType()) && (To->isPointerType() || To->isMemberPointerType()) && "Pointer conversion should be performed on pointer types only."); if (!moreOrEquallyQualified(To->getPointeeType(), From->getPointeeType())) return false; // (1) // A null pointer constant can be converted to a pointer type ... // The conversion of a null pointer constant to a pointer to cv-qualified type // is a single conversion, and not the sequence of a pointer conversion // followed by a qualification conversion. A null pointer constant of integral // type can be converted to a prvalue of type std::nullptr_t if (To->isPointerType() && From->isNullPtrType()) return true; // (2) // A prvalue of type “pointer to cv T”, where T is an object type, can be // converted to a prvalue of type “pointer to cv void”. if (To->isVoidPointerType() && From->isObjectPointerType()) return true; // (3) // A prvalue of type “pointer to cv D”, where D is a complete class type, can // be converted to a prvalue of type “pointer to cv B”, where B is a base // class of D. If B is an inaccessible or ambiguous base class of D, a program // that necessitates this conversion is ill-formed. if (const auto *RD = From->getPointeeCXXRecordDecl()) { if (RD->isCompleteDefinition() && isBaseOf(From->getPointeeType().getTypePtr(), To->getPointeeType().getTypePtr())) { return true; } } return false; } bool isFunctionPointerConvertible(QualType From, QualType To) { if (!From->isFunctionPointerType() && !From->isFunctionType() && !From->isMemberFunctionPointerType()) return false; if (!To->isFunctionPointerType() && !To->isMemberFunctionPointerType()) return false; if (To->isFunctionPointerType()) { if (From->isFunctionPointerType()) return To->getPointeeType() == From->getPointeeType(); if (From->isFunctionType()) return To->getPointeeType() == From; return false; } if (To->isMemberFunctionPointerType()) { if (!From->isMemberFunctionPointerType()) return false; const auto *FromMember = cast<MemberPointerType>(From); const auto *ToMember = cast<MemberPointerType>(To); // Note: converting Derived::* to Base::* is a different kind of conversion, // called Pointer-to-member conversion. return FromMember->getClass() == ToMember->getClass() && FromMember->getPointeeType() == ToMember->getPointeeType(); } return false; } // Checks if From is qualification convertible to To based on the current // LangOpts. If From is any array, we perform the array to pointer conversion // first. The function only performs checks based on C++ rules, which can differ // from the C rules. // // The function should only be called in C++ mode. bool isQualificationConvertiblePointer(QualType From, QualType To, LangOptions LangOpts) { // [N4659 7.5 (1)] // A cv-decomposition of a type T is a sequence of cv_i and P_i such that T is // cv_0 P_0 cv_1 P_1 ... cv_n−1 P_n−1 cv_n U” for n > 0, // where each cv_i is a set of cv-qualifiers, and each P_i is “pointer to”, // “pointer to member of class C_i of type”, “array of N_i”, or // “array of unknown bound of”. // // If P_i designates an array, the cv-qualifiers cv_i+1 on the element type // are also taken as the cv-qualifiers cvi of the array. // // The n-tuple of cv-qualifiers after the first one in the longest // cv-decomposition of T, that is, cv_1, cv_2, ... , cv_n, is called the // cv-qualification signature of T. auto isValidP_i = [](QualType P) { return P->isPointerType() || P->isMemberPointerType() || P->isConstantArrayType() || P->isIncompleteArrayType(); }; auto isSameP_i = [](QualType P1, QualType P2) { if (P1->isPointerType()) return P2->isPointerType(); if (P1->isMemberPointerType()) return P2->isMemberPointerType() && P1->getAs<MemberPointerType>()->getClass() == P2->getAs<MemberPointerType>()->getClass(); if (P1->isConstantArrayType()) return P2->isConstantArrayType() && cast<ConstantArrayType>(P1)->getSize() == cast<ConstantArrayType>(P2)->getSize(); if (P1->isIncompleteArrayType()) return P2->isIncompleteArrayType(); return false; }; // (2) // Two types From and To are similar if they have cv-decompositions with the // same n such that corresponding P_i components are the same [(added by // N4849 7.3.5) or one is “array of N_i” and the other is “array of unknown // bound of”], and the types denoted by U are the same. // // (3) // A prvalue expression of type From can be converted to type To if the // following conditions are satisfied: // - From and To are similar // - For every i > 0, if const is in cv_i of From then const is in cv_i of // To, and similarly for volatile. // - [(derived from addition by N4849 7.3.5) If P_i of From is “array of // unknown bound of”, P_i of To is “array of unknown bound of”.] // - If the cv_i of From and cv_i of To are different, then const is in every // cv_k of To for 0 < k < i. int I = 0; bool ConstUntilI = true; auto SatisfiesCVRules = [&I, &ConstUntilI](const QualType &From, const QualType &To) { if (I > 1) { if (From.getQualifiers() != To.getQualifiers() && !ConstUntilI) return false; } if (I > 0) { if (From.isConstQualified() && !To.isConstQualified()) return false; if (From.isVolatileQualified() && !To.isVolatileQualified()) return false; ConstUntilI = To.isConstQualified(); } return true; }; while (isValidP_i(From) && isValidP_i(To)) { // Remove every sugar. From = From.getCanonicalType(); To = To.getCanonicalType(); if (!SatisfiesCVRules(From, To)) return false; if (!isSameP_i(From, To)) { if (LangOpts.CPlusPlus20) { if (From->isConstantArrayType() && !To->isIncompleteArrayType()) return false; if (From->isIncompleteArrayType() && !To->isIncompleteArrayType()) return false; } else { return false; } } ++I; std::optional<QualType> FromPointeeOrElem = getPointeeOrArrayElementQualType(From); std::optional<QualType> ToPointeeOrElem = getPointeeOrArrayElementQualType(To); assert(FromPointeeOrElem && "From pointer or array has no pointee or element!"); assert(ToPointeeOrElem && "To pointer or array has no pointee or element!"); From = *FromPointeeOrElem; To = *ToPointeeOrElem; } // In this case the length (n) of From and To are not the same. if (isValidP_i(From) || isValidP_i(To)) return false; // We hit U. if (!SatisfiesCVRules(From, To)) return false; return From.getTypePtr() == To.getTypePtr(); } } // namespace static bool canThrow(const FunctionDecl *Func) { const auto *FunProto = Func->getType()->getAs<FunctionProtoType>(); if (!FunProto) return true; switch (FunProto->canThrow()) { case CT_Cannot: return false; case CT_Dependent: { const Expr *NoexceptExpr = FunProto->getNoexceptExpr(); if (!NoexceptExpr) return true; // no noexept - can throw if (NoexceptExpr->isValueDependent()) return true; // depend on template - some instance can throw bool Result = false; if (!NoexceptExpr->EvaluateAsBooleanCondition(Result, Func->getASTContext(), /*InConstantContext=*/true)) return true; // complex X condition in noexcept(X), cannot validate, // assume that may throw return !Result; // noexcept(false) - can throw } default: return true; }; } bool ExceptionAnalyzer::ExceptionInfo::filterByCatch( const Type *HandlerTy, const ASTContext &Context) { llvm::SmallVector<const Type *, 8> TypesToDelete; for (const Type *ExceptionTy : ThrownExceptions) { CanQualType ExceptionCanTy = ExceptionTy->getCanonicalTypeUnqualified(); CanQualType HandlerCanTy = HandlerTy->getCanonicalTypeUnqualified(); // The handler is of type cv T or cv T& and E and T are the same type // (ignoring the top-level cv-qualifiers) ... if (ExceptionCanTy == HandlerCanTy) { TypesToDelete.push_back(ExceptionTy); } // The handler is of type cv T or cv T& and T is an unambiguous public base // class of E ... else if (isUnambiguousPublicBaseClass(ExceptionCanTy->getTypePtr(), HandlerCanTy->getTypePtr())) { TypesToDelete.push_back(ExceptionTy); } if (HandlerCanTy->getTypeClass() == Type::RValueReference || (HandlerCanTy->getTypeClass() == Type::LValueReference && !HandlerCanTy->getTypePtr()->getPointeeType().isConstQualified())) continue; // The handler is of type cv T or const T& where T is a pointer or // pointer-to-member type and E is a pointer or pointer-to-member type that // can be converted to T by one or more of ... if (isPointerOrPointerToMember(HandlerCanTy->getTypePtr()) && isPointerOrPointerToMember(ExceptionCanTy->getTypePtr())) { // A standard pointer conversion not involving conversions to pointers to // private or protected or ambiguous classes ... if (isStandardPointerConvertible(ExceptionCanTy, HandlerCanTy) && isUnambiguousPublicBaseClass( ExceptionCanTy->getTypePtr()->getPointeeType().getTypePtr(), HandlerCanTy->getTypePtr()->getPointeeType().getTypePtr())) { TypesToDelete.push_back(ExceptionTy); } // A function pointer conversion ... else if (isFunctionPointerConvertible(ExceptionCanTy, HandlerCanTy)) { TypesToDelete.push_back(ExceptionTy); } // A a qualification conversion ... else if (isQualificationConvertiblePointer(ExceptionCanTy, HandlerCanTy, Context.getLangOpts())) { TypesToDelete.push_back(ExceptionTy); } } // The handler is of type cv T or const T& where T is a pointer or // pointer-to-member type and E is std::nullptr_t. else if (isPointerOrPointerToMember(HandlerCanTy->getTypePtr()) && ExceptionCanTy->isNullPtrType()) { TypesToDelete.push_back(ExceptionTy); } } for (const Type *T : TypesToDelete) ThrownExceptions.erase(T); reevaluateBehaviour(); return TypesToDelete.size() > 0; } ExceptionAnalyzer::ExceptionInfo & ExceptionAnalyzer::ExceptionInfo::filterIgnoredExceptions( const llvm::StringSet<> &IgnoredTypes, bool IgnoreBadAlloc) { llvm::SmallVector<const Type *, 8> TypesToDelete; // Note: Using a 'SmallSet' with 'llvm::remove_if()' is not possible. // Therefore this slightly hacky implementation is required. for (const Type *T : ThrownExceptions) { if (const auto *TD = T->getAsTagDecl()) { if (TD->getDeclName().isIdentifier()) { if ((IgnoreBadAlloc && (TD->getName() == "bad_alloc" && TD->isInStdNamespace())) || (IgnoredTypes.count(TD->getName()) > 0)) TypesToDelete.push_back(T); } } } for (const Type *T : TypesToDelete) ThrownExceptions.erase(T); reevaluateBehaviour(); return *this; } void ExceptionAnalyzer::ExceptionInfo::clear() { Behaviour = State::NotThrowing; ContainsUnknown = false; ThrownExceptions.clear(); } void ExceptionAnalyzer::ExceptionInfo::reevaluateBehaviour() { if (ThrownExceptions.size() == 0) if (ContainsUnknown) Behaviour = State::Unknown; else Behaviour = State::NotThrowing; else Behaviour = State::Throwing; } ExceptionAnalyzer::ExceptionInfo ExceptionAnalyzer::throwsException( const FunctionDecl *Func, const ExceptionInfo::Throwables &Caught, llvm::SmallSet<const FunctionDecl *, 32> &CallStack) { if (!Func || CallStack.count(Func) || (!CallStack.empty() && !canThrow(Func))) return ExceptionInfo::createNonThrowing(); if (const Stmt *Body = Func->getBody()) { CallStack.insert(Func); ExceptionInfo Result = throwsException(Body, Caught, CallStack); // For a constructor, we also have to check the initializers. if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(Func)) { for (const CXXCtorInitializer *Init : Ctor->inits()) { ExceptionInfo Excs = throwsException(Init->getInit(), Caught, CallStack); Result.merge(Excs); } } CallStack.erase(Func); return Result; } auto Result = ExceptionInfo::createUnknown(); if (const auto *FPT = Func->getType()->getAs<FunctionProtoType>()) { for (const QualType &Ex : FPT->exceptions()) Result.registerException(Ex.getTypePtr()); } return Result; } /// Analyzes a single statement on it's throwing behaviour. This is in principle /// possible except some 'Unknown' functions are called. ExceptionAnalyzer::ExceptionInfo ExceptionAnalyzer::throwsException( const Stmt *St, const ExceptionInfo::Throwables &Caught, llvm::SmallSet<const FunctionDecl *, 32> &CallStack) { auto Results = ExceptionInfo::createNonThrowing(); if (!St) return Results; if (const auto *Throw = dyn_cast<CXXThrowExpr>(St)) { if (const auto *ThrownExpr = Throw->getSubExpr()) { const auto *ThrownType = ThrownExpr->getType()->getUnqualifiedDesugaredType(); if (ThrownType->isReferenceType()) ThrownType = ThrownType->castAs<ReferenceType>() ->getPointeeType() ->getUnqualifiedDesugaredType(); Results.registerException( ThrownExpr->getType()->getUnqualifiedDesugaredType()); } else // A rethrow of a caught exception happens which makes it possible // to throw all exception that are caught in the 'catch' clause of // the parent try-catch block. Results.registerExceptions(Caught); } else if (const auto *Try = dyn_cast<CXXTryStmt>(St)) { ExceptionInfo Uncaught = throwsException(Try->getTryBlock(), Caught, CallStack); for (unsigned I = 0; I < Try->getNumHandlers(); ++I) { const CXXCatchStmt *Catch = Try->getHandler(I); // Everything is catched through 'catch(...)'. if (!Catch->getExceptionDecl()) { ExceptionInfo Rethrown = throwsException( Catch->getHandlerBlock(), Uncaught.getExceptionTypes(), CallStack); Results.merge(Rethrown); Uncaught.clear(); } else { const auto *CaughtType = Catch->getCaughtType()->getUnqualifiedDesugaredType(); if (CaughtType->isReferenceType()) { CaughtType = CaughtType->castAs<ReferenceType>() ->getPointeeType() ->getUnqualifiedDesugaredType(); } // If the caught exception will catch multiple previously potential // thrown types (because it's sensitive to inheritance) the throwing // situation changes. First of all filter the exception types and // analyze if the baseclass-exception is rethrown. if (Uncaught.filterByCatch( CaughtType, Catch->getExceptionDecl()->getASTContext())) { ExceptionInfo::Throwables CaughtExceptions; CaughtExceptions.insert(CaughtType); ExceptionInfo Rethrown = throwsException(Catch->getHandlerBlock(), CaughtExceptions, CallStack); Results.merge(Rethrown); } } } Results.merge(Uncaught); } else if (const auto *Call = dyn_cast<CallExpr>(St)) { if (const FunctionDecl *Func = Call->getDirectCallee()) { ExceptionInfo Excs = throwsException(Func, Caught, CallStack); Results.merge(Excs); } } else if (const auto *Construct = dyn_cast<CXXConstructExpr>(St)) { ExceptionInfo Excs = throwsException(Construct->getConstructor(), Caught, CallStack); Results.merge(Excs); } else if (const auto *DefaultInit = dyn_cast<CXXDefaultInitExpr>(St)) { ExceptionInfo Excs = throwsException(DefaultInit->getExpr(), Caught, CallStack); Results.merge(Excs); } else if (const auto *Coro = dyn_cast<CoroutineBodyStmt>(St)) { for (const Stmt *Child : Coro->childrenExclBody()) { if (Child != Coro->getExceptionHandler()) { ExceptionInfo Excs = throwsException(Child, Caught, CallStack); Results.merge(Excs); } } ExceptionInfo Excs = throwsException(Coro->getBody(), Caught, CallStack); Results.merge(throwsException(Coro->getExceptionHandler(), Excs.getExceptionTypes(), CallStack)); for (const Type *Throwable : Excs.getExceptionTypes()) { if (const auto ThrowableRec = Throwable->getAsCXXRecordDecl()) { ExceptionInfo DestructorExcs = throwsException(ThrowableRec->getDestructor(), Caught, CallStack); Results.merge(DestructorExcs); } } } else { for (const Stmt *Child : St->children()) { ExceptionInfo Excs = throwsException(Child, Caught, CallStack); Results.merge(Excs); } } return Results; } ExceptionAnalyzer::ExceptionInfo ExceptionAnalyzer::analyzeImpl(const FunctionDecl *Func) { ExceptionInfo ExceptionList; // Check if the function has already been analyzed and reuse that result. const auto CacheEntry = FunctionCache.find(Func); if (CacheEntry == FunctionCache.end()) { llvm::SmallSet<const FunctionDecl *, 32> CallStack; ExceptionList = throwsException(Func, ExceptionInfo::Throwables(), CallStack); // Cache the result of the analysis. This is done prior to filtering // because it is best to keep as much information as possible. // The results here might be relevant to different analysis passes // with different needs as well. FunctionCache.try_emplace(Func, ExceptionList); } else ExceptionList = CacheEntry->getSecond(); return ExceptionList; } ExceptionAnalyzer::ExceptionInfo ExceptionAnalyzer::analyzeImpl(const Stmt *Stmt) { llvm::SmallSet<const FunctionDecl *, 32> CallStack; return throwsException(Stmt, ExceptionInfo::Throwables(), CallStack); } template <typename T> ExceptionAnalyzer::ExceptionInfo ExceptionAnalyzer::analyzeDispatch(const T *Node) { ExceptionInfo ExceptionList = analyzeImpl(Node); if (ExceptionList.getBehaviour() == State::NotThrowing || ExceptionList.getBehaviour() == State::Unknown) return ExceptionList; // Remove all ignored exceptions from the list of exceptions that can be // thrown. ExceptionList.filterIgnoredExceptions(IgnoredExceptions, IgnoreBadAlloc); return ExceptionList; } ExceptionAnalyzer::ExceptionInfo ExceptionAnalyzer::analyze(const FunctionDecl *Func) { return analyzeDispatch(Func); } ExceptionAnalyzer::ExceptionInfo ExceptionAnalyzer::analyze(const Stmt *Stmt) { return analyzeDispatch(Stmt); } } // namespace clang::tidy::utils