Mercurial > hg > CbC > CbC_llvm
view clang/lib/AST/ExprCXX.cpp @ 222:81f6424ef0e3 llvm-original
LLVM original branch
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 18 Jul 2021 22:10:01 +0900 |
parents | 79ff65ed7e25 |
children | 5f17cb93ff66 |
line wrap: on
line source
//===- ExprCXX.cpp - (C++) Expression AST Node Implementation -------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the subclesses of Expr class declared in ExprCXX.h // //===----------------------------------------------------------------------===// #include "clang/AST/ExprCXX.h" #include "clang/AST/ASTContext.h" #include "clang/AST/Attr.h" #include "clang/AST/ComputeDependence.h" #include "clang/AST/Decl.h" #include "clang/AST/DeclAccessPair.h" #include "clang/AST/DeclBase.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/DeclarationName.h" #include "clang/AST/DependenceFlags.h" #include "clang/AST/Expr.h" #include "clang/AST/LambdaCapture.h" #include "clang/AST/NestedNameSpecifier.h" #include "clang/AST/TemplateBase.h" #include "clang/AST/Type.h" #include "clang/AST/TypeLoc.h" #include "clang/Basic/LLVM.h" #include "clang/Basic/OperatorKinds.h" #include "clang/Basic/SourceLocation.h" #include "clang/Basic/Specifiers.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/Support/Casting.h" #include "llvm/Support/ErrorHandling.h" #include <cassert> #include <cstddef> #include <cstring> #include <memory> using namespace clang; //===----------------------------------------------------------------------===// // Child Iterators for iterating over subexpressions/substatements //===----------------------------------------------------------------------===// bool CXXOperatorCallExpr::isInfixBinaryOp() const { // An infix binary operator is any operator with two arguments other than // operator() and operator[]. Note that none of these operators can have // default arguments, so it suffices to check the number of argument // expressions. if (getNumArgs() != 2) return false; switch (getOperator()) { case OO_Call: case OO_Subscript: return false; default: return true; } } CXXRewrittenBinaryOperator::DecomposedForm CXXRewrittenBinaryOperator::getDecomposedForm() const { DecomposedForm Result = {}; const Expr *E = getSemanticForm()->IgnoreImplicit(); // Remove an outer '!' if it exists (only happens for a '!=' rewrite). bool SkippedNot = false; if (auto *NotEq = dyn_cast<UnaryOperator>(E)) { assert(NotEq->getOpcode() == UO_LNot); E = NotEq->getSubExpr()->IgnoreImplicit(); SkippedNot = true; } // Decompose the outer binary operator. if (auto *BO = dyn_cast<BinaryOperator>(E)) { assert(!SkippedNot || BO->getOpcode() == BO_EQ); Result.Opcode = SkippedNot ? BO_NE : BO->getOpcode(); Result.LHS = BO->getLHS(); Result.RHS = BO->getRHS(); Result.InnerBinOp = BO; } else if (auto *BO = dyn_cast<CXXOperatorCallExpr>(E)) { assert(!SkippedNot || BO->getOperator() == OO_EqualEqual); assert(BO->isInfixBinaryOp()); switch (BO->getOperator()) { case OO_Less: Result.Opcode = BO_LT; break; case OO_LessEqual: Result.Opcode = BO_LE; break; case OO_Greater: Result.Opcode = BO_GT; break; case OO_GreaterEqual: Result.Opcode = BO_GE; break; case OO_Spaceship: Result.Opcode = BO_Cmp; break; case OO_EqualEqual: Result.Opcode = SkippedNot ? BO_NE : BO_EQ; break; default: llvm_unreachable("unexpected binop in rewritten operator expr"); } Result.LHS = BO->getArg(0); Result.RHS = BO->getArg(1); Result.InnerBinOp = BO; } else { llvm_unreachable("unexpected rewritten operator form"); } // Put the operands in the right order for == and !=, and canonicalize the // <=> subexpression onto the LHS for all other forms. if (isReversed()) std::swap(Result.LHS, Result.RHS); // If this isn't a spaceship rewrite, we're done. if (Result.Opcode == BO_EQ || Result.Opcode == BO_NE) return Result; // Otherwise, we expect a <=> to now be on the LHS. E = Result.LHS->IgnoreImplicitAsWritten(); if (auto *BO = dyn_cast<BinaryOperator>(E)) { assert(BO->getOpcode() == BO_Cmp); Result.LHS = BO->getLHS(); Result.RHS = BO->getRHS(); Result.InnerBinOp = BO; } else if (auto *BO = dyn_cast<CXXOperatorCallExpr>(E)) { assert(BO->getOperator() == OO_Spaceship); Result.LHS = BO->getArg(0); Result.RHS = BO->getArg(1); Result.InnerBinOp = BO; } else { llvm_unreachable("unexpected rewritten operator form"); } // Put the comparison operands in the right order. if (isReversed()) std::swap(Result.LHS, Result.RHS); return Result; } bool CXXTypeidExpr::isPotentiallyEvaluated() const { if (isTypeOperand()) return false; // C++11 [expr.typeid]p3: // When typeid is applied to an expression other than a glvalue of // polymorphic class type, [...] the expression is an unevaluated operand. const Expr *E = getExprOperand(); if (const CXXRecordDecl *RD = E->getType()->getAsCXXRecordDecl()) if (RD->isPolymorphic() && E->isGLValue()) return true; return false; } bool CXXTypeidExpr::isMostDerived(ASTContext &Context) const { assert(!isTypeOperand() && "Cannot call isMostDerived for typeid(type)"); const Expr *E = getExprOperand()->IgnoreParenNoopCasts(Context); if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { QualType Ty = DRE->getDecl()->getType(); if (!Ty->isPointerType() && !Ty->isReferenceType()) return true; } return false; } QualType CXXTypeidExpr::getTypeOperand(ASTContext &Context) const { assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)"); Qualifiers Quals; return Context.getUnqualifiedArrayType( Operand.get<TypeSourceInfo *>()->getType().getNonReferenceType(), Quals); } QualType CXXUuidofExpr::getTypeOperand(ASTContext &Context) const { assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)"); Qualifiers Quals; return Context.getUnqualifiedArrayType( Operand.get<TypeSourceInfo *>()->getType().getNonReferenceType(), Quals); } // CXXScalarValueInitExpr SourceLocation CXXScalarValueInitExpr::getBeginLoc() const { return TypeInfo ? TypeInfo->getTypeLoc().getBeginLoc() : getRParenLoc(); } // CXXNewExpr CXXNewExpr::CXXNewExpr(bool IsGlobalNew, FunctionDecl *OperatorNew, FunctionDecl *OperatorDelete, bool ShouldPassAlignment, bool UsualArrayDeleteWantsSize, ArrayRef<Expr *> PlacementArgs, SourceRange TypeIdParens, Optional<Expr *> ArraySize, InitializationStyle InitializationStyle, Expr *Initializer, QualType Ty, TypeSourceInfo *AllocatedTypeInfo, SourceRange Range, SourceRange DirectInitRange) : Expr(CXXNewExprClass, Ty, VK_RValue, OK_Ordinary), OperatorNew(OperatorNew), OperatorDelete(OperatorDelete), AllocatedTypeInfo(AllocatedTypeInfo), Range(Range), DirectInitRange(DirectInitRange) { assert((Initializer != nullptr || InitializationStyle == NoInit) && "Only NoInit can have no initializer!"); CXXNewExprBits.IsGlobalNew = IsGlobalNew; CXXNewExprBits.IsArray = ArraySize.hasValue(); CXXNewExprBits.ShouldPassAlignment = ShouldPassAlignment; CXXNewExprBits.UsualArrayDeleteWantsSize = UsualArrayDeleteWantsSize; CXXNewExprBits.StoredInitializationStyle = Initializer ? InitializationStyle + 1 : 0; bool IsParenTypeId = TypeIdParens.isValid(); CXXNewExprBits.IsParenTypeId = IsParenTypeId; CXXNewExprBits.NumPlacementArgs = PlacementArgs.size(); if (ArraySize) getTrailingObjects<Stmt *>()[arraySizeOffset()] = *ArraySize; if (Initializer) getTrailingObjects<Stmt *>()[initExprOffset()] = Initializer; for (unsigned I = 0; I != PlacementArgs.size(); ++I) getTrailingObjects<Stmt *>()[placementNewArgsOffset() + I] = PlacementArgs[I]; if (IsParenTypeId) getTrailingObjects<SourceRange>()[0] = TypeIdParens; switch (getInitializationStyle()) { case CallInit: this->Range.setEnd(DirectInitRange.getEnd()); break; case ListInit: this->Range.setEnd(getInitializer()->getSourceRange().getEnd()); break; default: if (IsParenTypeId) this->Range.setEnd(TypeIdParens.getEnd()); break; } setDependence(computeDependence(this)); } CXXNewExpr::CXXNewExpr(EmptyShell Empty, bool IsArray, unsigned NumPlacementArgs, bool IsParenTypeId) : Expr(CXXNewExprClass, Empty) { CXXNewExprBits.IsArray = IsArray; CXXNewExprBits.NumPlacementArgs = NumPlacementArgs; CXXNewExprBits.IsParenTypeId = IsParenTypeId; } CXXNewExpr * CXXNewExpr::Create(const ASTContext &Ctx, bool IsGlobalNew, FunctionDecl *OperatorNew, FunctionDecl *OperatorDelete, bool ShouldPassAlignment, bool UsualArrayDeleteWantsSize, ArrayRef<Expr *> PlacementArgs, SourceRange TypeIdParens, Optional<Expr *> ArraySize, InitializationStyle InitializationStyle, Expr *Initializer, QualType Ty, TypeSourceInfo *AllocatedTypeInfo, SourceRange Range, SourceRange DirectInitRange) { bool IsArray = ArraySize.hasValue(); bool HasInit = Initializer != nullptr; unsigned NumPlacementArgs = PlacementArgs.size(); bool IsParenTypeId = TypeIdParens.isValid(); void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *, SourceRange>( IsArray + HasInit + NumPlacementArgs, IsParenTypeId), alignof(CXXNewExpr)); return new (Mem) CXXNewExpr(IsGlobalNew, OperatorNew, OperatorDelete, ShouldPassAlignment, UsualArrayDeleteWantsSize, PlacementArgs, TypeIdParens, ArraySize, InitializationStyle, Initializer, Ty, AllocatedTypeInfo, Range, DirectInitRange); } CXXNewExpr *CXXNewExpr::CreateEmpty(const ASTContext &Ctx, bool IsArray, bool HasInit, unsigned NumPlacementArgs, bool IsParenTypeId) { void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *, SourceRange>( IsArray + HasInit + NumPlacementArgs, IsParenTypeId), alignof(CXXNewExpr)); return new (Mem) CXXNewExpr(EmptyShell(), IsArray, NumPlacementArgs, IsParenTypeId); } bool CXXNewExpr::shouldNullCheckAllocation() const { return getOperatorNew() ->getType() ->castAs<FunctionProtoType>() ->isNothrow() && !getOperatorNew()->isReservedGlobalPlacementOperator(); } // CXXDeleteExpr QualType CXXDeleteExpr::getDestroyedType() const { const Expr *Arg = getArgument(); // For a destroying operator delete, we may have implicitly converted the // pointer type to the type of the parameter of the 'operator delete' // function. while (const auto *ICE = dyn_cast<ImplicitCastExpr>(Arg)) { if (ICE->getCastKind() == CK_DerivedToBase || ICE->getCastKind() == CK_UncheckedDerivedToBase || ICE->getCastKind() == CK_NoOp) { assert((ICE->getCastKind() == CK_NoOp || getOperatorDelete()->isDestroyingOperatorDelete()) && "only a destroying operator delete can have a converted arg"); Arg = ICE->getSubExpr(); } else break; } // The type-to-delete may not be a pointer if it's a dependent type. const QualType ArgType = Arg->getType(); if (ArgType->isDependentType() && !ArgType->isPointerType()) return QualType(); return ArgType->castAs<PointerType>()->getPointeeType(); } // CXXPseudoDestructorExpr PseudoDestructorTypeStorage::PseudoDestructorTypeStorage(TypeSourceInfo *Info) : Type(Info) { Location = Info->getTypeLoc().getLocalSourceRange().getBegin(); } CXXPseudoDestructorExpr::CXXPseudoDestructorExpr( const ASTContext &Context, Expr *Base, bool isArrow, SourceLocation OperatorLoc, NestedNameSpecifierLoc QualifierLoc, TypeSourceInfo *ScopeType, SourceLocation ColonColonLoc, SourceLocation TildeLoc, PseudoDestructorTypeStorage DestroyedType) : Expr(CXXPseudoDestructorExprClass, Context.BoundMemberTy, VK_RValue, OK_Ordinary), Base(static_cast<Stmt *>(Base)), IsArrow(isArrow), OperatorLoc(OperatorLoc), QualifierLoc(QualifierLoc), ScopeType(ScopeType), ColonColonLoc(ColonColonLoc), TildeLoc(TildeLoc), DestroyedType(DestroyedType) { setDependence(computeDependence(this)); } QualType CXXPseudoDestructorExpr::getDestroyedType() const { if (TypeSourceInfo *TInfo = DestroyedType.getTypeSourceInfo()) return TInfo->getType(); return QualType(); } SourceLocation CXXPseudoDestructorExpr::getEndLoc() const { SourceLocation End = DestroyedType.getLocation(); if (TypeSourceInfo *TInfo = DestroyedType.getTypeSourceInfo()) End = TInfo->getTypeLoc().getLocalSourceRange().getEnd(); return End; } // UnresolvedLookupExpr UnresolvedLookupExpr::UnresolvedLookupExpr( const ASTContext &Context, CXXRecordDecl *NamingClass, NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, const DeclarationNameInfo &NameInfo, bool RequiresADL, bool Overloaded, const TemplateArgumentListInfo *TemplateArgs, UnresolvedSetIterator Begin, UnresolvedSetIterator End) : OverloadExpr(UnresolvedLookupExprClass, Context, QualifierLoc, TemplateKWLoc, NameInfo, TemplateArgs, Begin, End, false, false, false), NamingClass(NamingClass) { UnresolvedLookupExprBits.RequiresADL = RequiresADL; UnresolvedLookupExprBits.Overloaded = Overloaded; } UnresolvedLookupExpr::UnresolvedLookupExpr(EmptyShell Empty, unsigned NumResults, bool HasTemplateKWAndArgsInfo) : OverloadExpr(UnresolvedLookupExprClass, Empty, NumResults, HasTemplateKWAndArgsInfo) {} UnresolvedLookupExpr *UnresolvedLookupExpr::Create( const ASTContext &Context, CXXRecordDecl *NamingClass, NestedNameSpecifierLoc QualifierLoc, const DeclarationNameInfo &NameInfo, bool RequiresADL, bool Overloaded, UnresolvedSetIterator Begin, UnresolvedSetIterator End) { unsigned NumResults = End - Begin; unsigned Size = totalSizeToAlloc<DeclAccessPair, ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(NumResults, 0, 0); void *Mem = Context.Allocate(Size, alignof(UnresolvedLookupExpr)); return new (Mem) UnresolvedLookupExpr(Context, NamingClass, QualifierLoc, SourceLocation(), NameInfo, RequiresADL, Overloaded, nullptr, Begin, End); } UnresolvedLookupExpr *UnresolvedLookupExpr::Create( const ASTContext &Context, CXXRecordDecl *NamingClass, NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, const DeclarationNameInfo &NameInfo, bool RequiresADL, const TemplateArgumentListInfo *Args, UnresolvedSetIterator Begin, UnresolvedSetIterator End) { assert(Args || TemplateKWLoc.isValid()); unsigned NumResults = End - Begin; unsigned NumTemplateArgs = Args ? Args->size() : 0; unsigned Size = totalSizeToAlloc<DeclAccessPair, ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(NumResults, 1, NumTemplateArgs); void *Mem = Context.Allocate(Size, alignof(UnresolvedLookupExpr)); return new (Mem) UnresolvedLookupExpr(Context, NamingClass, QualifierLoc, TemplateKWLoc, NameInfo, RequiresADL, /*Overloaded*/ true, Args, Begin, End); } UnresolvedLookupExpr *UnresolvedLookupExpr::CreateEmpty( const ASTContext &Context, unsigned NumResults, bool HasTemplateKWAndArgsInfo, unsigned NumTemplateArgs) { assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo); unsigned Size = totalSizeToAlloc<DeclAccessPair, ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>( NumResults, HasTemplateKWAndArgsInfo, NumTemplateArgs); void *Mem = Context.Allocate(Size, alignof(UnresolvedLookupExpr)); return new (Mem) UnresolvedLookupExpr(EmptyShell(), NumResults, HasTemplateKWAndArgsInfo); } OverloadExpr::OverloadExpr(StmtClass SC, const ASTContext &Context, NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, const DeclarationNameInfo &NameInfo, const TemplateArgumentListInfo *TemplateArgs, UnresolvedSetIterator Begin, UnresolvedSetIterator End, bool KnownDependent, bool KnownInstantiationDependent, bool KnownContainsUnexpandedParameterPack) : Expr(SC, Context.OverloadTy, VK_LValue, OK_Ordinary), NameInfo(NameInfo), QualifierLoc(QualifierLoc) { unsigned NumResults = End - Begin; OverloadExprBits.NumResults = NumResults; OverloadExprBits.HasTemplateKWAndArgsInfo = (TemplateArgs != nullptr ) || TemplateKWLoc.isValid(); if (NumResults) { // Copy the results to the trailing array past UnresolvedLookupExpr // or UnresolvedMemberExpr. DeclAccessPair *Results = getTrailingResults(); memcpy(Results, Begin.I, NumResults * sizeof(DeclAccessPair)); } if (TemplateArgs) { auto Deps = TemplateArgumentDependence::None; getTrailingASTTemplateKWAndArgsInfo()->initializeFrom( TemplateKWLoc, *TemplateArgs, getTrailingTemplateArgumentLoc(), Deps); } else if (TemplateKWLoc.isValid()) { getTrailingASTTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc); } setDependence(computeDependence(this, KnownDependent, KnownInstantiationDependent, KnownContainsUnexpandedParameterPack)); if (isTypeDependent()) setType(Context.DependentTy); } OverloadExpr::OverloadExpr(StmtClass SC, EmptyShell Empty, unsigned NumResults, bool HasTemplateKWAndArgsInfo) : Expr(SC, Empty) { OverloadExprBits.NumResults = NumResults; OverloadExprBits.HasTemplateKWAndArgsInfo = HasTemplateKWAndArgsInfo; } // DependentScopeDeclRefExpr DependentScopeDeclRefExpr::DependentScopeDeclRefExpr( QualType Ty, NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, const DeclarationNameInfo &NameInfo, const TemplateArgumentListInfo *Args) : Expr(DependentScopeDeclRefExprClass, Ty, VK_LValue, OK_Ordinary), QualifierLoc(QualifierLoc), NameInfo(NameInfo) { DependentScopeDeclRefExprBits.HasTemplateKWAndArgsInfo = (Args != nullptr) || TemplateKWLoc.isValid(); if (Args) { auto Deps = TemplateArgumentDependence::None; getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( TemplateKWLoc, *Args, getTrailingObjects<TemplateArgumentLoc>(), Deps); } else if (TemplateKWLoc.isValid()) { getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( TemplateKWLoc); } setDependence(computeDependence(this)); } DependentScopeDeclRefExpr *DependentScopeDeclRefExpr::Create( const ASTContext &Context, NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, const DeclarationNameInfo &NameInfo, const TemplateArgumentListInfo *Args) { assert(QualifierLoc && "should be created for dependent qualifiers"); bool HasTemplateKWAndArgsInfo = Args || TemplateKWLoc.isValid(); std::size_t Size = totalSizeToAlloc<ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>( HasTemplateKWAndArgsInfo, Args ? Args->size() : 0); void *Mem = Context.Allocate(Size); return new (Mem) DependentScopeDeclRefExpr(Context.DependentTy, QualifierLoc, TemplateKWLoc, NameInfo, Args); } DependentScopeDeclRefExpr * DependentScopeDeclRefExpr::CreateEmpty(const ASTContext &Context, bool HasTemplateKWAndArgsInfo, unsigned NumTemplateArgs) { assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo); std::size_t Size = totalSizeToAlloc<ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>( HasTemplateKWAndArgsInfo, NumTemplateArgs); void *Mem = Context.Allocate(Size); auto *E = new (Mem) DependentScopeDeclRefExpr( QualType(), NestedNameSpecifierLoc(), SourceLocation(), DeclarationNameInfo(), nullptr); E->DependentScopeDeclRefExprBits.HasTemplateKWAndArgsInfo = HasTemplateKWAndArgsInfo; return E; } SourceLocation CXXConstructExpr::getBeginLoc() const { if (isa<CXXTemporaryObjectExpr>(this)) return cast<CXXTemporaryObjectExpr>(this)->getBeginLoc(); return getLocation(); } SourceLocation CXXConstructExpr::getEndLoc() const { if (isa<CXXTemporaryObjectExpr>(this)) return cast<CXXTemporaryObjectExpr>(this)->getEndLoc(); if (ParenOrBraceRange.isValid()) return ParenOrBraceRange.getEnd(); SourceLocation End = getLocation(); for (unsigned I = getNumArgs(); I > 0; --I) { const Expr *Arg = getArg(I-1); if (!Arg->isDefaultArgument()) { SourceLocation NewEnd = Arg->getEndLoc(); if (NewEnd.isValid()) { End = NewEnd; break; } } } return End; } CXXOperatorCallExpr::CXXOperatorCallExpr(OverloadedOperatorKind OpKind, Expr *Fn, ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK, SourceLocation OperatorLoc, FPOptionsOverride FPFeatures, ADLCallKind UsesADL) : CallExpr(CXXOperatorCallExprClass, Fn, /*PreArgs=*/{}, Args, Ty, VK, OperatorLoc, FPFeatures, /*MinNumArgs=*/0, UsesADL) { CXXOperatorCallExprBits.OperatorKind = OpKind; assert( (CXXOperatorCallExprBits.OperatorKind == static_cast<unsigned>(OpKind)) && "OperatorKind overflow!"); Range = getSourceRangeImpl(); } CXXOperatorCallExpr::CXXOperatorCallExpr(unsigned NumArgs, bool HasFPFeatures, EmptyShell Empty) : CallExpr(CXXOperatorCallExprClass, /*NumPreArgs=*/0, NumArgs, HasFPFeatures, Empty) {} CXXOperatorCallExpr * CXXOperatorCallExpr::Create(const ASTContext &Ctx, OverloadedOperatorKind OpKind, Expr *Fn, ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK, SourceLocation OperatorLoc, FPOptionsOverride FPFeatures, ADLCallKind UsesADL) { // Allocate storage for the trailing objects of CallExpr. unsigned NumArgs = Args.size(); unsigned SizeOfTrailingObjects = CallExpr::sizeOfTrailingObjects( /*NumPreArgs=*/0, NumArgs, FPFeatures.requiresTrailingStorage()); void *Mem = Ctx.Allocate(sizeof(CXXOperatorCallExpr) + SizeOfTrailingObjects, alignof(CXXOperatorCallExpr)); return new (Mem) CXXOperatorCallExpr(OpKind, Fn, Args, Ty, VK, OperatorLoc, FPFeatures, UsesADL); } CXXOperatorCallExpr *CXXOperatorCallExpr::CreateEmpty(const ASTContext &Ctx, unsigned NumArgs, bool HasFPFeatures, EmptyShell Empty) { // Allocate storage for the trailing objects of CallExpr. unsigned SizeOfTrailingObjects = CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs, HasFPFeatures); void *Mem = Ctx.Allocate(sizeof(CXXOperatorCallExpr) + SizeOfTrailingObjects, alignof(CXXOperatorCallExpr)); return new (Mem) CXXOperatorCallExpr(NumArgs, HasFPFeatures, Empty); } SourceRange CXXOperatorCallExpr::getSourceRangeImpl() const { OverloadedOperatorKind Kind = getOperator(); if (Kind == OO_PlusPlus || Kind == OO_MinusMinus) { if (getNumArgs() == 1) // Prefix operator return SourceRange(getOperatorLoc(), getArg(0)->getEndLoc()); else // Postfix operator return SourceRange(getArg(0)->getBeginLoc(), getOperatorLoc()); } else if (Kind == OO_Arrow) { return SourceRange(getArg(0)->getBeginLoc(), getOperatorLoc()); } else if (Kind == OO_Call) { return SourceRange(getArg(0)->getBeginLoc(), getRParenLoc()); } else if (Kind == OO_Subscript) { return SourceRange(getArg(0)->getBeginLoc(), getRParenLoc()); } else if (getNumArgs() == 1) { return SourceRange(getOperatorLoc(), getArg(0)->getEndLoc()); } else if (getNumArgs() == 2) { return SourceRange(getArg(0)->getBeginLoc(), getArg(1)->getEndLoc()); } else { return getOperatorLoc(); } } CXXMemberCallExpr::CXXMemberCallExpr(Expr *Fn, ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK, SourceLocation RP, FPOptionsOverride FPOptions, unsigned MinNumArgs) : CallExpr(CXXMemberCallExprClass, Fn, /*PreArgs=*/{}, Args, Ty, VK, RP, FPOptions, MinNumArgs, NotADL) {} CXXMemberCallExpr::CXXMemberCallExpr(unsigned NumArgs, bool HasFPFeatures, EmptyShell Empty) : CallExpr(CXXMemberCallExprClass, /*NumPreArgs=*/0, NumArgs, HasFPFeatures, Empty) {} CXXMemberCallExpr *CXXMemberCallExpr::Create(const ASTContext &Ctx, Expr *Fn, ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK, SourceLocation RP, FPOptionsOverride FPFeatures, unsigned MinNumArgs) { // Allocate storage for the trailing objects of CallExpr. unsigned NumArgs = std::max<unsigned>(Args.size(), MinNumArgs); unsigned SizeOfTrailingObjects = CallExpr::sizeOfTrailingObjects( /*NumPreArgs=*/0, NumArgs, FPFeatures.requiresTrailingStorage()); void *Mem = Ctx.Allocate(sizeof(CXXMemberCallExpr) + SizeOfTrailingObjects, alignof(CXXMemberCallExpr)); return new (Mem) CXXMemberCallExpr(Fn, Args, Ty, VK, RP, FPFeatures, MinNumArgs); } CXXMemberCallExpr *CXXMemberCallExpr::CreateEmpty(const ASTContext &Ctx, unsigned NumArgs, bool HasFPFeatures, EmptyShell Empty) { // Allocate storage for the trailing objects of CallExpr. unsigned SizeOfTrailingObjects = CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs, HasFPFeatures); void *Mem = Ctx.Allocate(sizeof(CXXMemberCallExpr) + SizeOfTrailingObjects, alignof(CXXMemberCallExpr)); return new (Mem) CXXMemberCallExpr(NumArgs, HasFPFeatures, Empty); } Expr *CXXMemberCallExpr::getImplicitObjectArgument() const { const Expr *Callee = getCallee()->IgnoreParens(); if (const auto *MemExpr = dyn_cast<MemberExpr>(Callee)) return MemExpr->getBase(); if (const auto *BO = dyn_cast<BinaryOperator>(Callee)) if (BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI) return BO->getLHS(); // FIXME: Will eventually need to cope with member pointers. return nullptr; } QualType CXXMemberCallExpr::getObjectType() const { QualType Ty = getImplicitObjectArgument()->getType(); if (Ty->isPointerType()) Ty = Ty->getPointeeType(); return Ty; } CXXMethodDecl *CXXMemberCallExpr::getMethodDecl() const { if (const auto *MemExpr = dyn_cast<MemberExpr>(getCallee()->IgnoreParens())) return cast<CXXMethodDecl>(MemExpr->getMemberDecl()); // FIXME: Will eventually need to cope with member pointers. return nullptr; } CXXRecordDecl *CXXMemberCallExpr::getRecordDecl() const { Expr* ThisArg = getImplicitObjectArgument(); if (!ThisArg) return nullptr; if (ThisArg->getType()->isAnyPointerType()) return ThisArg->getType()->getPointeeType()->getAsCXXRecordDecl(); return ThisArg->getType()->getAsCXXRecordDecl(); } //===----------------------------------------------------------------------===// // Named casts //===----------------------------------------------------------------------===// /// getCastName - Get the name of the C++ cast being used, e.g., /// "static_cast", "dynamic_cast", "reinterpret_cast", or /// "const_cast". The returned pointer must not be freed. const char *CXXNamedCastExpr::getCastName() const { switch (getStmtClass()) { case CXXStaticCastExprClass: return "static_cast"; case CXXDynamicCastExprClass: return "dynamic_cast"; case CXXReinterpretCastExprClass: return "reinterpret_cast"; case CXXConstCastExprClass: return "const_cast"; case CXXAddrspaceCastExprClass: return "addrspace_cast"; default: return "<invalid cast>"; } } CXXStaticCastExpr * CXXStaticCastExpr::Create(const ASTContext &C, QualType T, ExprValueKind VK, CastKind K, Expr *Op, const CXXCastPath *BasePath, TypeSourceInfo *WrittenTy, FPOptionsOverride FPO, SourceLocation L, SourceLocation RParenLoc, SourceRange AngleBrackets) { unsigned PathSize = (BasePath ? BasePath->size() : 0); void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>( PathSize, FPO.requiresTrailingStorage())); auto *E = new (Buffer) CXXStaticCastExpr(T, VK, K, Op, PathSize, WrittenTy, FPO, L, RParenLoc, AngleBrackets); if (PathSize) std::uninitialized_copy_n(BasePath->data(), BasePath->size(), E->getTrailingObjects<CXXBaseSpecifier *>()); return E; } CXXStaticCastExpr *CXXStaticCastExpr::CreateEmpty(const ASTContext &C, unsigned PathSize, bool HasFPFeatures) { void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>( PathSize, HasFPFeatures)); return new (Buffer) CXXStaticCastExpr(EmptyShell(), PathSize, HasFPFeatures); } CXXDynamicCastExpr *CXXDynamicCastExpr::Create(const ASTContext &C, QualType T, ExprValueKind VK, CastKind K, Expr *Op, const CXXCastPath *BasePath, TypeSourceInfo *WrittenTy, SourceLocation L, SourceLocation RParenLoc, SourceRange AngleBrackets) { unsigned PathSize = (BasePath ? BasePath->size() : 0); void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize)); auto *E = new (Buffer) CXXDynamicCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, RParenLoc, AngleBrackets); if (PathSize) std::uninitialized_copy_n(BasePath->data(), BasePath->size(), E->getTrailingObjects<CXXBaseSpecifier *>()); return E; } CXXDynamicCastExpr *CXXDynamicCastExpr::CreateEmpty(const ASTContext &C, unsigned PathSize) { void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize)); return new (Buffer) CXXDynamicCastExpr(EmptyShell(), PathSize); } /// isAlwaysNull - Return whether the result of the dynamic_cast is proven /// to always be null. For example: /// /// struct A { }; /// struct B final : A { }; /// struct C { }; /// /// C *f(B* b) { return dynamic_cast<C*>(b); } bool CXXDynamicCastExpr::isAlwaysNull() const { QualType SrcType = getSubExpr()->getType(); QualType DestType = getType(); if (const auto *SrcPTy = SrcType->getAs<PointerType>()) { SrcType = SrcPTy->getPointeeType(); DestType = DestType->castAs<PointerType>()->getPointeeType(); } if (DestType->isVoidType()) return false; const auto *SrcRD = cast<CXXRecordDecl>(SrcType->castAs<RecordType>()->getDecl()); if (!SrcRD->hasAttr<FinalAttr>()) return false; const auto *DestRD = cast<CXXRecordDecl>(DestType->castAs<RecordType>()->getDecl()); return !DestRD->isDerivedFrom(SrcRD); } CXXReinterpretCastExpr * CXXReinterpretCastExpr::Create(const ASTContext &C, QualType T, ExprValueKind VK, CastKind K, Expr *Op, const CXXCastPath *BasePath, TypeSourceInfo *WrittenTy, SourceLocation L, SourceLocation RParenLoc, SourceRange AngleBrackets) { unsigned PathSize = (BasePath ? BasePath->size() : 0); void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize)); auto *E = new (Buffer) CXXReinterpretCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, RParenLoc, AngleBrackets); if (PathSize) std::uninitialized_copy_n(BasePath->data(), BasePath->size(), E->getTrailingObjects<CXXBaseSpecifier *>()); return E; } CXXReinterpretCastExpr * CXXReinterpretCastExpr::CreateEmpty(const ASTContext &C, unsigned PathSize) { void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize)); return new (Buffer) CXXReinterpretCastExpr(EmptyShell(), PathSize); } CXXConstCastExpr *CXXConstCastExpr::Create(const ASTContext &C, QualType T, ExprValueKind VK, Expr *Op, TypeSourceInfo *WrittenTy, SourceLocation L, SourceLocation RParenLoc, SourceRange AngleBrackets) { return new (C) CXXConstCastExpr(T, VK, Op, WrittenTy, L, RParenLoc, AngleBrackets); } CXXConstCastExpr *CXXConstCastExpr::CreateEmpty(const ASTContext &C) { return new (C) CXXConstCastExpr(EmptyShell()); } CXXAddrspaceCastExpr * CXXAddrspaceCastExpr::Create(const ASTContext &C, QualType T, ExprValueKind VK, CastKind K, Expr *Op, TypeSourceInfo *WrittenTy, SourceLocation L, SourceLocation RParenLoc, SourceRange AngleBrackets) { return new (C) CXXAddrspaceCastExpr(T, VK, K, Op, WrittenTy, L, RParenLoc, AngleBrackets); } CXXAddrspaceCastExpr *CXXAddrspaceCastExpr::CreateEmpty(const ASTContext &C) { return new (C) CXXAddrspaceCastExpr(EmptyShell()); } CXXFunctionalCastExpr *CXXFunctionalCastExpr::Create( const ASTContext &C, QualType T, ExprValueKind VK, TypeSourceInfo *Written, CastKind K, Expr *Op, const CXXCastPath *BasePath, FPOptionsOverride FPO, SourceLocation L, SourceLocation R) { unsigned PathSize = (BasePath ? BasePath->size() : 0); void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>( PathSize, FPO.requiresTrailingStorage())); auto *E = new (Buffer) CXXFunctionalCastExpr(T, VK, Written, K, Op, PathSize, FPO, L, R); if (PathSize) std::uninitialized_copy_n(BasePath->data(), BasePath->size(), E->getTrailingObjects<CXXBaseSpecifier *>()); return E; } CXXFunctionalCastExpr *CXXFunctionalCastExpr::CreateEmpty(const ASTContext &C, unsigned PathSize, bool HasFPFeatures) { void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>( PathSize, HasFPFeatures)); return new (Buffer) CXXFunctionalCastExpr(EmptyShell(), PathSize, HasFPFeatures); } SourceLocation CXXFunctionalCastExpr::getBeginLoc() const { return getTypeInfoAsWritten()->getTypeLoc().getBeginLoc(); } SourceLocation CXXFunctionalCastExpr::getEndLoc() const { return RParenLoc.isValid() ? RParenLoc : getSubExpr()->getEndLoc(); } UserDefinedLiteral::UserDefinedLiteral(Expr *Fn, ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK, SourceLocation LitEndLoc, SourceLocation SuffixLoc, FPOptionsOverride FPFeatures) : CallExpr(UserDefinedLiteralClass, Fn, /*PreArgs=*/{}, Args, Ty, VK, LitEndLoc, FPFeatures, /*MinNumArgs=*/0, NotADL), UDSuffixLoc(SuffixLoc) {} UserDefinedLiteral::UserDefinedLiteral(unsigned NumArgs, bool HasFPFeatures, EmptyShell Empty) : CallExpr(UserDefinedLiteralClass, /*NumPreArgs=*/0, NumArgs, HasFPFeatures, Empty) {} UserDefinedLiteral *UserDefinedLiteral::Create(const ASTContext &Ctx, Expr *Fn, ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK, SourceLocation LitEndLoc, SourceLocation SuffixLoc, FPOptionsOverride FPFeatures) { // Allocate storage for the trailing objects of CallExpr. unsigned NumArgs = Args.size(); unsigned SizeOfTrailingObjects = CallExpr::sizeOfTrailingObjects( /*NumPreArgs=*/0, NumArgs, FPFeatures.requiresTrailingStorage()); void *Mem = Ctx.Allocate(sizeof(UserDefinedLiteral) + SizeOfTrailingObjects, alignof(UserDefinedLiteral)); return new (Mem) UserDefinedLiteral(Fn, Args, Ty, VK, LitEndLoc, SuffixLoc, FPFeatures); } UserDefinedLiteral *UserDefinedLiteral::CreateEmpty(const ASTContext &Ctx, unsigned NumArgs, bool HasFPOptions, EmptyShell Empty) { // Allocate storage for the trailing objects of CallExpr. unsigned SizeOfTrailingObjects = CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs, HasFPOptions); void *Mem = Ctx.Allocate(sizeof(UserDefinedLiteral) + SizeOfTrailingObjects, alignof(UserDefinedLiteral)); return new (Mem) UserDefinedLiteral(NumArgs, HasFPOptions, Empty); } UserDefinedLiteral::LiteralOperatorKind UserDefinedLiteral::getLiteralOperatorKind() const { if (getNumArgs() == 0) return LOK_Template; if (getNumArgs() == 2) return LOK_String; assert(getNumArgs() == 1 && "unexpected #args in literal operator call"); QualType ParamTy = cast<FunctionDecl>(getCalleeDecl())->getParamDecl(0)->getType(); if (ParamTy->isPointerType()) return LOK_Raw; if (ParamTy->isAnyCharacterType()) return LOK_Character; if (ParamTy->isIntegerType()) return LOK_Integer; if (ParamTy->isFloatingType()) return LOK_Floating; llvm_unreachable("unknown kind of literal operator"); } Expr *UserDefinedLiteral::getCookedLiteral() { #ifndef NDEBUG LiteralOperatorKind LOK = getLiteralOperatorKind(); assert(LOK != LOK_Template && LOK != LOK_Raw && "not a cooked literal"); #endif return getArg(0); } const IdentifierInfo *UserDefinedLiteral::getUDSuffix() const { return cast<FunctionDecl>(getCalleeDecl())->getLiteralIdentifier(); } CXXDefaultInitExpr::CXXDefaultInitExpr(const ASTContext &Ctx, SourceLocation Loc, FieldDecl *Field, QualType Ty, DeclContext *UsedContext) : Expr(CXXDefaultInitExprClass, Ty.getNonLValueExprType(Ctx), Ty->isLValueReferenceType() ? VK_LValue : Ty->isRValueReferenceType() ? VK_XValue : VK_RValue, /*FIXME*/ OK_Ordinary), Field(Field), UsedContext(UsedContext) { CXXDefaultInitExprBits.Loc = Loc; assert(Field->hasInClassInitializer()); setDependence(computeDependence(this)); } CXXTemporary *CXXTemporary::Create(const ASTContext &C, const CXXDestructorDecl *Destructor) { return new (C) CXXTemporary(Destructor); } CXXBindTemporaryExpr *CXXBindTemporaryExpr::Create(const ASTContext &C, CXXTemporary *Temp, Expr* SubExpr) { assert((SubExpr->getType()->isRecordType() || SubExpr->getType()->isArrayType()) && "Expression bound to a temporary must have record or array type!"); return new (C) CXXBindTemporaryExpr(Temp, SubExpr); } CXXTemporaryObjectExpr::CXXTemporaryObjectExpr( CXXConstructorDecl *Cons, QualType Ty, TypeSourceInfo *TSI, ArrayRef<Expr *> Args, SourceRange ParenOrBraceRange, bool HadMultipleCandidates, bool ListInitialization, bool StdInitListInitialization, bool ZeroInitialization) : CXXConstructExpr( CXXTemporaryObjectExprClass, Ty, TSI->getTypeLoc().getBeginLoc(), Cons, /* Elidable=*/false, Args, HadMultipleCandidates, ListInitialization, StdInitListInitialization, ZeroInitialization, CXXConstructExpr::CK_Complete, ParenOrBraceRange), TSI(TSI) {} CXXTemporaryObjectExpr::CXXTemporaryObjectExpr(EmptyShell Empty, unsigned NumArgs) : CXXConstructExpr(CXXTemporaryObjectExprClass, Empty, NumArgs) {} CXXTemporaryObjectExpr *CXXTemporaryObjectExpr::Create( const ASTContext &Ctx, CXXConstructorDecl *Cons, QualType Ty, TypeSourceInfo *TSI, ArrayRef<Expr *> Args, SourceRange ParenOrBraceRange, bool HadMultipleCandidates, bool ListInitialization, bool StdInitListInitialization, bool ZeroInitialization) { unsigned SizeOfTrailingObjects = sizeOfTrailingObjects(Args.size()); void *Mem = Ctx.Allocate(sizeof(CXXTemporaryObjectExpr) + SizeOfTrailingObjects, alignof(CXXTemporaryObjectExpr)); return new (Mem) CXXTemporaryObjectExpr( Cons, Ty, TSI, Args, ParenOrBraceRange, HadMultipleCandidates, ListInitialization, StdInitListInitialization, ZeroInitialization); } CXXTemporaryObjectExpr * CXXTemporaryObjectExpr::CreateEmpty(const ASTContext &Ctx, unsigned NumArgs) { unsigned SizeOfTrailingObjects = sizeOfTrailingObjects(NumArgs); void *Mem = Ctx.Allocate(sizeof(CXXTemporaryObjectExpr) + SizeOfTrailingObjects, alignof(CXXTemporaryObjectExpr)); return new (Mem) CXXTemporaryObjectExpr(EmptyShell(), NumArgs); } SourceLocation CXXTemporaryObjectExpr::getBeginLoc() const { return getTypeSourceInfo()->getTypeLoc().getBeginLoc(); } SourceLocation CXXTemporaryObjectExpr::getEndLoc() const { SourceLocation Loc = getParenOrBraceRange().getEnd(); if (Loc.isInvalid() && getNumArgs()) Loc = getArg(getNumArgs() - 1)->getEndLoc(); return Loc; } CXXConstructExpr *CXXConstructExpr::Create( const ASTContext &Ctx, QualType Ty, SourceLocation Loc, CXXConstructorDecl *Ctor, bool Elidable, ArrayRef<Expr *> Args, bool HadMultipleCandidates, bool ListInitialization, bool StdInitListInitialization, bool ZeroInitialization, ConstructionKind ConstructKind, SourceRange ParenOrBraceRange) { unsigned SizeOfTrailingObjects = sizeOfTrailingObjects(Args.size()); void *Mem = Ctx.Allocate(sizeof(CXXConstructExpr) + SizeOfTrailingObjects, alignof(CXXConstructExpr)); return new (Mem) CXXConstructExpr( CXXConstructExprClass, Ty, Loc, Ctor, Elidable, Args, HadMultipleCandidates, ListInitialization, StdInitListInitialization, ZeroInitialization, ConstructKind, ParenOrBraceRange); } CXXConstructExpr *CXXConstructExpr::CreateEmpty(const ASTContext &Ctx, unsigned NumArgs) { unsigned SizeOfTrailingObjects = sizeOfTrailingObjects(NumArgs); void *Mem = Ctx.Allocate(sizeof(CXXConstructExpr) + SizeOfTrailingObjects, alignof(CXXConstructExpr)); return new (Mem) CXXConstructExpr(CXXConstructExprClass, EmptyShell(), NumArgs); } CXXConstructExpr::CXXConstructExpr( StmtClass SC, QualType Ty, SourceLocation Loc, CXXConstructorDecl *Ctor, bool Elidable, ArrayRef<Expr *> Args, bool HadMultipleCandidates, bool ListInitialization, bool StdInitListInitialization, bool ZeroInitialization, ConstructionKind ConstructKind, SourceRange ParenOrBraceRange) : Expr(SC, Ty, VK_RValue, OK_Ordinary), Constructor(Ctor), ParenOrBraceRange(ParenOrBraceRange), NumArgs(Args.size()) { CXXConstructExprBits.Elidable = Elidable; CXXConstructExprBits.HadMultipleCandidates = HadMultipleCandidates; CXXConstructExprBits.ListInitialization = ListInitialization; CXXConstructExprBits.StdInitListInitialization = StdInitListInitialization; CXXConstructExprBits.ZeroInitialization = ZeroInitialization; CXXConstructExprBits.ConstructionKind = ConstructKind; CXXConstructExprBits.Loc = Loc; Stmt **TrailingArgs = getTrailingArgs(); for (unsigned I = 0, N = Args.size(); I != N; ++I) { assert(Args[I] && "NULL argument in CXXConstructExpr!"); TrailingArgs[I] = Args[I]; } setDependence(computeDependence(this)); } CXXConstructExpr::CXXConstructExpr(StmtClass SC, EmptyShell Empty, unsigned NumArgs) : Expr(SC, Empty), NumArgs(NumArgs) {} LambdaCapture::LambdaCapture(SourceLocation Loc, bool Implicit, LambdaCaptureKind Kind, VarDecl *Var, SourceLocation EllipsisLoc) : DeclAndBits(Var, 0), Loc(Loc), EllipsisLoc(EllipsisLoc) { unsigned Bits = 0; if (Implicit) Bits |= Capture_Implicit; switch (Kind) { case LCK_StarThis: Bits |= Capture_ByCopy; LLVM_FALLTHROUGH; case LCK_This: assert(!Var && "'this' capture cannot have a variable!"); Bits |= Capture_This; break; case LCK_ByCopy: Bits |= Capture_ByCopy; LLVM_FALLTHROUGH; case LCK_ByRef: assert(Var && "capture must have a variable!"); break; case LCK_VLAType: assert(!Var && "VLA type capture cannot have a variable!"); break; } DeclAndBits.setInt(Bits); } LambdaCaptureKind LambdaCapture::getCaptureKind() const { if (capturesVLAType()) return LCK_VLAType; bool CapByCopy = DeclAndBits.getInt() & Capture_ByCopy; if (capturesThis()) return CapByCopy ? LCK_StarThis : LCK_This; return CapByCopy ? LCK_ByCopy : LCK_ByRef; } LambdaExpr::LambdaExpr(QualType T, SourceRange IntroducerRange, LambdaCaptureDefault CaptureDefault, SourceLocation CaptureDefaultLoc, bool ExplicitParams, bool ExplicitResultType, ArrayRef<Expr *> CaptureInits, SourceLocation ClosingBrace, bool ContainsUnexpandedParameterPack) : Expr(LambdaExprClass, T, VK_RValue, OK_Ordinary), IntroducerRange(IntroducerRange), CaptureDefaultLoc(CaptureDefaultLoc), ClosingBrace(ClosingBrace) { LambdaExprBits.NumCaptures = CaptureInits.size(); LambdaExprBits.CaptureDefault = CaptureDefault; LambdaExprBits.ExplicitParams = ExplicitParams; LambdaExprBits.ExplicitResultType = ExplicitResultType; CXXRecordDecl *Class = getLambdaClass(); (void)Class; assert(capture_size() == Class->capture_size() && "Wrong number of captures"); assert(getCaptureDefault() == Class->getLambdaCaptureDefault()); // Copy initialization expressions for the non-static data members. Stmt **Stored = getStoredStmts(); for (unsigned I = 0, N = CaptureInits.size(); I != N; ++I) *Stored++ = CaptureInits[I]; // Copy the body of the lambda. *Stored++ = getCallOperator()->getBody(); setDependence(computeDependence(this, ContainsUnexpandedParameterPack)); } LambdaExpr::LambdaExpr(EmptyShell Empty, unsigned NumCaptures) : Expr(LambdaExprClass, Empty) { LambdaExprBits.NumCaptures = NumCaptures; // Initially don't initialize the body of the LambdaExpr. The body will // be lazily deserialized when needed. getStoredStmts()[NumCaptures] = nullptr; // Not one past the end. } LambdaExpr *LambdaExpr::Create(const ASTContext &Context, CXXRecordDecl *Class, SourceRange IntroducerRange, LambdaCaptureDefault CaptureDefault, SourceLocation CaptureDefaultLoc, bool ExplicitParams, bool ExplicitResultType, ArrayRef<Expr *> CaptureInits, SourceLocation ClosingBrace, bool ContainsUnexpandedParameterPack) { // Determine the type of the expression (i.e., the type of the // function object we're creating). QualType T = Context.getTypeDeclType(Class); unsigned Size = totalSizeToAlloc<Stmt *>(CaptureInits.size() + 1); void *Mem = Context.Allocate(Size); return new (Mem) LambdaExpr(T, IntroducerRange, CaptureDefault, CaptureDefaultLoc, ExplicitParams, ExplicitResultType, CaptureInits, ClosingBrace, ContainsUnexpandedParameterPack); } LambdaExpr *LambdaExpr::CreateDeserialized(const ASTContext &C, unsigned NumCaptures) { unsigned Size = totalSizeToAlloc<Stmt *>(NumCaptures + 1); void *Mem = C.Allocate(Size); return new (Mem) LambdaExpr(EmptyShell(), NumCaptures); } void LambdaExpr::initBodyIfNeeded() const { if (!getStoredStmts()[capture_size()]) { auto *This = const_cast<LambdaExpr *>(this); This->getStoredStmts()[capture_size()] = getCallOperator()->getBody(); } } Stmt *LambdaExpr::getBody() const { initBodyIfNeeded(); return getStoredStmts()[capture_size()]; } const CompoundStmt *LambdaExpr::getCompoundStmtBody() const { Stmt *Body = getBody(); if (const auto *CoroBody = dyn_cast<CoroutineBodyStmt>(Body)) return cast<CompoundStmt>(CoroBody->getBody()); return cast<CompoundStmt>(Body); } bool LambdaExpr::isInitCapture(const LambdaCapture *C) const { return (C->capturesVariable() && C->getCapturedVar()->isInitCapture() && (getCallOperator() == C->getCapturedVar()->getDeclContext())); } LambdaExpr::capture_iterator LambdaExpr::capture_begin() const { return getLambdaClass()->getLambdaData().Captures; } LambdaExpr::capture_iterator LambdaExpr::capture_end() const { return capture_begin() + capture_size(); } LambdaExpr::capture_range LambdaExpr::captures() const { return capture_range(capture_begin(), capture_end()); } LambdaExpr::capture_iterator LambdaExpr::explicit_capture_begin() const { return capture_begin(); } LambdaExpr::capture_iterator LambdaExpr::explicit_capture_end() const { struct CXXRecordDecl::LambdaDefinitionData &Data = getLambdaClass()->getLambdaData(); return Data.Captures + Data.NumExplicitCaptures; } LambdaExpr::capture_range LambdaExpr::explicit_captures() const { return capture_range(explicit_capture_begin(), explicit_capture_end()); } LambdaExpr::capture_iterator LambdaExpr::implicit_capture_begin() const { return explicit_capture_end(); } LambdaExpr::capture_iterator LambdaExpr::implicit_capture_end() const { return capture_end(); } LambdaExpr::capture_range LambdaExpr::implicit_captures() const { return capture_range(implicit_capture_begin(), implicit_capture_end()); } CXXRecordDecl *LambdaExpr::getLambdaClass() const { return getType()->getAsCXXRecordDecl(); } CXXMethodDecl *LambdaExpr::getCallOperator() const { CXXRecordDecl *Record = getLambdaClass(); return Record->getLambdaCallOperator(); } FunctionTemplateDecl *LambdaExpr::getDependentCallOperator() const { CXXRecordDecl *Record = getLambdaClass(); return Record->getDependentLambdaCallOperator(); } TemplateParameterList *LambdaExpr::getTemplateParameterList() const { CXXRecordDecl *Record = getLambdaClass(); return Record->getGenericLambdaTemplateParameterList(); } ArrayRef<NamedDecl *> LambdaExpr::getExplicitTemplateParameters() const { const CXXRecordDecl *Record = getLambdaClass(); return Record->getLambdaExplicitTemplateParameters(); } Expr *LambdaExpr::getTrailingRequiresClause() const { return getCallOperator()->getTrailingRequiresClause(); } bool LambdaExpr::isMutable() const { return !getCallOperator()->isConst(); } LambdaExpr::child_range LambdaExpr::children() { initBodyIfNeeded(); return child_range(getStoredStmts(), getStoredStmts() + capture_size() + 1); } LambdaExpr::const_child_range LambdaExpr::children() const { initBodyIfNeeded(); return const_child_range(getStoredStmts(), getStoredStmts() + capture_size() + 1); } ExprWithCleanups::ExprWithCleanups(Expr *subexpr, bool CleanupsHaveSideEffects, ArrayRef<CleanupObject> objects) : FullExpr(ExprWithCleanupsClass, subexpr) { ExprWithCleanupsBits.CleanupsHaveSideEffects = CleanupsHaveSideEffects; ExprWithCleanupsBits.NumObjects = objects.size(); for (unsigned i = 0, e = objects.size(); i != e; ++i) getTrailingObjects<CleanupObject>()[i] = objects[i]; } ExprWithCleanups *ExprWithCleanups::Create(const ASTContext &C, Expr *subexpr, bool CleanupsHaveSideEffects, ArrayRef<CleanupObject> objects) { void *buffer = C.Allocate(totalSizeToAlloc<CleanupObject>(objects.size()), alignof(ExprWithCleanups)); return new (buffer) ExprWithCleanups(subexpr, CleanupsHaveSideEffects, objects); } ExprWithCleanups::ExprWithCleanups(EmptyShell empty, unsigned numObjects) : FullExpr(ExprWithCleanupsClass, empty) { ExprWithCleanupsBits.NumObjects = numObjects; } ExprWithCleanups *ExprWithCleanups::Create(const ASTContext &C, EmptyShell empty, unsigned numObjects) { void *buffer = C.Allocate(totalSizeToAlloc<CleanupObject>(numObjects), alignof(ExprWithCleanups)); return new (buffer) ExprWithCleanups(empty, numObjects); } CXXUnresolvedConstructExpr::CXXUnresolvedConstructExpr(QualType T, TypeSourceInfo *TSI, SourceLocation LParenLoc, ArrayRef<Expr *> Args, SourceLocation RParenLoc) : Expr(CXXUnresolvedConstructExprClass, T, (TSI->getType()->isLValueReferenceType() ? VK_LValue : TSI->getType()->isRValueReferenceType() ? VK_XValue : VK_RValue), OK_Ordinary), TSI(TSI), LParenLoc(LParenLoc), RParenLoc(RParenLoc) { CXXUnresolvedConstructExprBits.NumArgs = Args.size(); auto **StoredArgs = getTrailingObjects<Expr *>(); for (unsigned I = 0; I != Args.size(); ++I) StoredArgs[I] = Args[I]; setDependence(computeDependence(this)); } CXXUnresolvedConstructExpr *CXXUnresolvedConstructExpr::Create( const ASTContext &Context, QualType T, TypeSourceInfo *TSI, SourceLocation LParenLoc, ArrayRef<Expr *> Args, SourceLocation RParenLoc) { void *Mem = Context.Allocate(totalSizeToAlloc<Expr *>(Args.size())); return new (Mem) CXXUnresolvedConstructExpr(T, TSI, LParenLoc, Args, RParenLoc); } CXXUnresolvedConstructExpr * CXXUnresolvedConstructExpr::CreateEmpty(const ASTContext &Context, unsigned NumArgs) { void *Mem = Context.Allocate(totalSizeToAlloc<Expr *>(NumArgs)); return new (Mem) CXXUnresolvedConstructExpr(EmptyShell(), NumArgs); } SourceLocation CXXUnresolvedConstructExpr::getBeginLoc() const { return TSI->getTypeLoc().getBeginLoc(); } CXXDependentScopeMemberExpr::CXXDependentScopeMemberExpr( const ASTContext &Ctx, Expr *Base, QualType BaseType, bool IsArrow, SourceLocation OperatorLoc, NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, NamedDecl *FirstQualifierFoundInScope, DeclarationNameInfo MemberNameInfo, const TemplateArgumentListInfo *TemplateArgs) : Expr(CXXDependentScopeMemberExprClass, Ctx.DependentTy, VK_LValue, OK_Ordinary), Base(Base), BaseType(BaseType), QualifierLoc(QualifierLoc), MemberNameInfo(MemberNameInfo) { CXXDependentScopeMemberExprBits.IsArrow = IsArrow; CXXDependentScopeMemberExprBits.HasTemplateKWAndArgsInfo = (TemplateArgs != nullptr) || TemplateKWLoc.isValid(); CXXDependentScopeMemberExprBits.HasFirstQualifierFoundInScope = FirstQualifierFoundInScope != nullptr; CXXDependentScopeMemberExprBits.OperatorLoc = OperatorLoc; if (TemplateArgs) { auto Deps = TemplateArgumentDependence::None; getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(), Deps); } else if (TemplateKWLoc.isValid()) { getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( TemplateKWLoc); } if (hasFirstQualifierFoundInScope()) *getTrailingObjects<NamedDecl *>() = FirstQualifierFoundInScope; setDependence(computeDependence(this)); } CXXDependentScopeMemberExpr::CXXDependentScopeMemberExpr( EmptyShell Empty, bool HasTemplateKWAndArgsInfo, bool HasFirstQualifierFoundInScope) : Expr(CXXDependentScopeMemberExprClass, Empty) { CXXDependentScopeMemberExprBits.HasTemplateKWAndArgsInfo = HasTemplateKWAndArgsInfo; CXXDependentScopeMemberExprBits.HasFirstQualifierFoundInScope = HasFirstQualifierFoundInScope; } CXXDependentScopeMemberExpr *CXXDependentScopeMemberExpr::Create( const ASTContext &Ctx, Expr *Base, QualType BaseType, bool IsArrow, SourceLocation OperatorLoc, NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, NamedDecl *FirstQualifierFoundInScope, DeclarationNameInfo MemberNameInfo, const TemplateArgumentListInfo *TemplateArgs) { bool HasTemplateKWAndArgsInfo = (TemplateArgs != nullptr) || TemplateKWLoc.isValid(); unsigned NumTemplateArgs = TemplateArgs ? TemplateArgs->size() : 0; bool HasFirstQualifierFoundInScope = FirstQualifierFoundInScope != nullptr; unsigned Size = totalSizeToAlloc<ASTTemplateKWAndArgsInfo, TemplateArgumentLoc, NamedDecl *>( HasTemplateKWAndArgsInfo, NumTemplateArgs, HasFirstQualifierFoundInScope); void *Mem = Ctx.Allocate(Size, alignof(CXXDependentScopeMemberExpr)); return new (Mem) CXXDependentScopeMemberExpr( Ctx, Base, BaseType, IsArrow, OperatorLoc, QualifierLoc, TemplateKWLoc, FirstQualifierFoundInScope, MemberNameInfo, TemplateArgs); } CXXDependentScopeMemberExpr *CXXDependentScopeMemberExpr::CreateEmpty( const ASTContext &Ctx, bool HasTemplateKWAndArgsInfo, unsigned NumTemplateArgs, bool HasFirstQualifierFoundInScope) { assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo); unsigned Size = totalSizeToAlloc<ASTTemplateKWAndArgsInfo, TemplateArgumentLoc, NamedDecl *>( HasTemplateKWAndArgsInfo, NumTemplateArgs, HasFirstQualifierFoundInScope); void *Mem = Ctx.Allocate(Size, alignof(CXXDependentScopeMemberExpr)); return new (Mem) CXXDependentScopeMemberExpr( EmptyShell(), HasTemplateKWAndArgsInfo, HasFirstQualifierFoundInScope); } static bool hasOnlyNonStaticMemberFunctions(UnresolvedSetIterator begin, UnresolvedSetIterator end) { do { NamedDecl *decl = *begin; if (isa<UnresolvedUsingValueDecl>(decl)) return false; // Unresolved member expressions should only contain methods and // method templates. if (cast<CXXMethodDecl>(decl->getUnderlyingDecl()->getAsFunction()) ->isStatic()) return false; } while (++begin != end); return true; } UnresolvedMemberExpr::UnresolvedMemberExpr( const ASTContext &Context, bool HasUnresolvedUsing, Expr *Base, QualType BaseType, bool IsArrow, SourceLocation OperatorLoc, NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, const DeclarationNameInfo &MemberNameInfo, const TemplateArgumentListInfo *TemplateArgs, UnresolvedSetIterator Begin, UnresolvedSetIterator End) : OverloadExpr( UnresolvedMemberExprClass, Context, QualifierLoc, TemplateKWLoc, MemberNameInfo, TemplateArgs, Begin, End, // Dependent ((Base && Base->isTypeDependent()) || BaseType->isDependentType()), ((Base && Base->isInstantiationDependent()) || BaseType->isInstantiationDependentType()), // Contains unexpanded parameter pack ((Base && Base->containsUnexpandedParameterPack()) || BaseType->containsUnexpandedParameterPack())), Base(Base), BaseType(BaseType), OperatorLoc(OperatorLoc) { UnresolvedMemberExprBits.IsArrow = IsArrow; UnresolvedMemberExprBits.HasUnresolvedUsing = HasUnresolvedUsing; // Check whether all of the members are non-static member functions, // and if so, mark give this bound-member type instead of overload type. if (hasOnlyNonStaticMemberFunctions(Begin, End)) setType(Context.BoundMemberTy); } UnresolvedMemberExpr::UnresolvedMemberExpr(EmptyShell Empty, unsigned NumResults, bool HasTemplateKWAndArgsInfo) : OverloadExpr(UnresolvedMemberExprClass, Empty, NumResults, HasTemplateKWAndArgsInfo) {} bool UnresolvedMemberExpr::isImplicitAccess() const { if (!Base) return true; return cast<Expr>(Base)->isImplicitCXXThis(); } UnresolvedMemberExpr *UnresolvedMemberExpr::Create( const ASTContext &Context, bool HasUnresolvedUsing, Expr *Base, QualType BaseType, bool IsArrow, SourceLocation OperatorLoc, NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, const DeclarationNameInfo &MemberNameInfo, const TemplateArgumentListInfo *TemplateArgs, UnresolvedSetIterator Begin, UnresolvedSetIterator End) { unsigned NumResults = End - Begin; bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid(); unsigned NumTemplateArgs = TemplateArgs ? TemplateArgs->size() : 0; unsigned Size = totalSizeToAlloc<DeclAccessPair, ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>( NumResults, HasTemplateKWAndArgsInfo, NumTemplateArgs); void *Mem = Context.Allocate(Size, alignof(UnresolvedMemberExpr)); return new (Mem) UnresolvedMemberExpr( Context, HasUnresolvedUsing, Base, BaseType, IsArrow, OperatorLoc, QualifierLoc, TemplateKWLoc, MemberNameInfo, TemplateArgs, Begin, End); } UnresolvedMemberExpr *UnresolvedMemberExpr::CreateEmpty( const ASTContext &Context, unsigned NumResults, bool HasTemplateKWAndArgsInfo, unsigned NumTemplateArgs) { assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo); unsigned Size = totalSizeToAlloc<DeclAccessPair, ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>( NumResults, HasTemplateKWAndArgsInfo, NumTemplateArgs); void *Mem = Context.Allocate(Size, alignof(UnresolvedMemberExpr)); return new (Mem) UnresolvedMemberExpr(EmptyShell(), NumResults, HasTemplateKWAndArgsInfo); } CXXRecordDecl *UnresolvedMemberExpr::getNamingClass() { // Unlike for UnresolvedLookupExpr, it is very easy to re-derive this. // If there was a nested name specifier, it names the naming class. // It can't be dependent: after all, we were actually able to do the // lookup. CXXRecordDecl *Record = nullptr; auto *NNS = getQualifier(); if (NNS && NNS->getKind() != NestedNameSpecifier::Super) { const Type *T = getQualifier()->getAsType(); assert(T && "qualifier in member expression does not name type"); Record = T->getAsCXXRecordDecl(); assert(Record && "qualifier in member expression does not name record"); } // Otherwise the naming class must have been the base class. else { QualType BaseType = getBaseType().getNonReferenceType(); if (isArrow()) BaseType = BaseType->castAs<PointerType>()->getPointeeType(); Record = BaseType->getAsCXXRecordDecl(); assert(Record && "base of member expression does not name record"); } return Record; } SizeOfPackExpr * SizeOfPackExpr::Create(ASTContext &Context, SourceLocation OperatorLoc, NamedDecl *Pack, SourceLocation PackLoc, SourceLocation RParenLoc, Optional<unsigned> Length, ArrayRef<TemplateArgument> PartialArgs) { void *Storage = Context.Allocate(totalSizeToAlloc<TemplateArgument>(PartialArgs.size())); return new (Storage) SizeOfPackExpr(Context.getSizeType(), OperatorLoc, Pack, PackLoc, RParenLoc, Length, PartialArgs); } SizeOfPackExpr *SizeOfPackExpr::CreateDeserialized(ASTContext &Context, unsigned NumPartialArgs) { void *Storage = Context.Allocate(totalSizeToAlloc<TemplateArgument>(NumPartialArgs)); return new (Storage) SizeOfPackExpr(EmptyShell(), NumPartialArgs); } QualType SubstNonTypeTemplateParmExpr::getParameterType( const ASTContext &Context) const { // Note that, for a class type NTTP, we will have an lvalue of type 'const // T', so we can't just compute this from the type and value category. if (isReferenceParameter()) return Context.getLValueReferenceType(getType()); return getType().getUnqualifiedType(); } SubstNonTypeTemplateParmPackExpr::SubstNonTypeTemplateParmPackExpr( QualType T, ExprValueKind ValueKind, NonTypeTemplateParmDecl *Param, SourceLocation NameLoc, const TemplateArgument &ArgPack) : Expr(SubstNonTypeTemplateParmPackExprClass, T, ValueKind, OK_Ordinary), Param(Param), Arguments(ArgPack.pack_begin()), NumArguments(ArgPack.pack_size()), NameLoc(NameLoc) { setDependence(ExprDependence::TypeValueInstantiation | ExprDependence::UnexpandedPack); } TemplateArgument SubstNonTypeTemplateParmPackExpr::getArgumentPack() const { return TemplateArgument(llvm::makeArrayRef(Arguments, NumArguments)); } FunctionParmPackExpr::FunctionParmPackExpr(QualType T, VarDecl *ParamPack, SourceLocation NameLoc, unsigned NumParams, VarDecl *const *Params) : Expr(FunctionParmPackExprClass, T, VK_LValue, OK_Ordinary), ParamPack(ParamPack), NameLoc(NameLoc), NumParameters(NumParams) { if (Params) std::uninitialized_copy(Params, Params + NumParams, getTrailingObjects<VarDecl *>()); setDependence(ExprDependence::TypeValueInstantiation | ExprDependence::UnexpandedPack); } FunctionParmPackExpr * FunctionParmPackExpr::Create(const ASTContext &Context, QualType T, VarDecl *ParamPack, SourceLocation NameLoc, ArrayRef<VarDecl *> Params) { return new (Context.Allocate(totalSizeToAlloc<VarDecl *>(Params.size()))) FunctionParmPackExpr(T, ParamPack, NameLoc, Params.size(), Params.data()); } FunctionParmPackExpr * FunctionParmPackExpr::CreateEmpty(const ASTContext &Context, unsigned NumParams) { return new (Context.Allocate(totalSizeToAlloc<VarDecl *>(NumParams))) FunctionParmPackExpr(QualType(), nullptr, SourceLocation(), 0, nullptr); } MaterializeTemporaryExpr::MaterializeTemporaryExpr( QualType T, Expr *Temporary, bool BoundToLvalueReference, LifetimeExtendedTemporaryDecl *MTD) : Expr(MaterializeTemporaryExprClass, T, BoundToLvalueReference ? VK_LValue : VK_XValue, OK_Ordinary) { if (MTD) { State = MTD; MTD->ExprWithTemporary = Temporary; return; } State = Temporary; setDependence(computeDependence(this)); } void MaterializeTemporaryExpr::setExtendingDecl(ValueDecl *ExtendedBy, unsigned ManglingNumber) { // We only need extra state if we have to remember more than just the Stmt. if (!ExtendedBy) return; // We may need to allocate extra storage for the mangling number and the // extended-by ValueDecl. if (!State.is<LifetimeExtendedTemporaryDecl *>()) State = LifetimeExtendedTemporaryDecl::Create( cast<Expr>(State.get<Stmt *>()), ExtendedBy, ManglingNumber); auto ES = State.get<LifetimeExtendedTemporaryDecl *>(); ES->ExtendingDecl = ExtendedBy; ES->ManglingNumber = ManglingNumber; } bool MaterializeTemporaryExpr::isUsableInConstantExpressions( const ASTContext &Context) const { // C++20 [expr.const]p4: // An object or reference is usable in constant expressions if it is [...] // a temporary object of non-volatile const-qualified literal type // whose lifetime is extended to that of a variable that is usable // in constant expressions auto *VD = dyn_cast_or_null<VarDecl>(getExtendingDecl()); return VD && getType().isConstant(Context) && !getType().isVolatileQualified() && getType()->isLiteralType(Context) && VD->isUsableInConstantExpressions(Context); } TypeTraitExpr::TypeTraitExpr(QualType T, SourceLocation Loc, TypeTrait Kind, ArrayRef<TypeSourceInfo *> Args, SourceLocation RParenLoc, bool Value) : Expr(TypeTraitExprClass, T, VK_RValue, OK_Ordinary), Loc(Loc), RParenLoc(RParenLoc) { assert(Kind <= TT_Last && "invalid enum value!"); TypeTraitExprBits.Kind = Kind; assert(static_cast<unsigned>(Kind) == TypeTraitExprBits.Kind && "TypeTraitExprBits.Kind overflow!"); TypeTraitExprBits.Value = Value; TypeTraitExprBits.NumArgs = Args.size(); assert(Args.size() == TypeTraitExprBits.NumArgs && "TypeTraitExprBits.NumArgs overflow!"); auto **ToArgs = getTrailingObjects<TypeSourceInfo *>(); for (unsigned I = 0, N = Args.size(); I != N; ++I) ToArgs[I] = Args[I]; setDependence(computeDependence(this)); } TypeTraitExpr *TypeTraitExpr::Create(const ASTContext &C, QualType T, SourceLocation Loc, TypeTrait Kind, ArrayRef<TypeSourceInfo *> Args, SourceLocation RParenLoc, bool Value) { void *Mem = C.Allocate(totalSizeToAlloc<TypeSourceInfo *>(Args.size())); return new (Mem) TypeTraitExpr(T, Loc, Kind, Args, RParenLoc, Value); } TypeTraitExpr *TypeTraitExpr::CreateDeserialized(const ASTContext &C, unsigned NumArgs) { void *Mem = C.Allocate(totalSizeToAlloc<TypeSourceInfo *>(NumArgs)); return new (Mem) TypeTraitExpr(EmptyShell()); } CUDAKernelCallExpr::CUDAKernelCallExpr(Expr *Fn, CallExpr *Config, ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK, SourceLocation RP, FPOptionsOverride FPFeatures, unsigned MinNumArgs) : CallExpr(CUDAKernelCallExprClass, Fn, /*PreArgs=*/Config, Args, Ty, VK, RP, FPFeatures, MinNumArgs, NotADL) {} CUDAKernelCallExpr::CUDAKernelCallExpr(unsigned NumArgs, bool HasFPFeatures, EmptyShell Empty) : CallExpr(CUDAKernelCallExprClass, /*NumPreArgs=*/END_PREARG, NumArgs, HasFPFeatures, Empty) {} CUDAKernelCallExpr * CUDAKernelCallExpr::Create(const ASTContext &Ctx, Expr *Fn, CallExpr *Config, ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK, SourceLocation RP, FPOptionsOverride FPFeatures, unsigned MinNumArgs) { // Allocate storage for the trailing objects of CallExpr. unsigned NumArgs = std::max<unsigned>(Args.size(), MinNumArgs); unsigned SizeOfTrailingObjects = CallExpr::sizeOfTrailingObjects( /*NumPreArgs=*/END_PREARG, NumArgs, FPFeatures.requiresTrailingStorage()); void *Mem = Ctx.Allocate(sizeof(CUDAKernelCallExpr) + SizeOfTrailingObjects, alignof(CUDAKernelCallExpr)); return new (Mem) CUDAKernelCallExpr(Fn, Config, Args, Ty, VK, RP, FPFeatures, MinNumArgs); } CUDAKernelCallExpr *CUDAKernelCallExpr::CreateEmpty(const ASTContext &Ctx, unsigned NumArgs, bool HasFPFeatures, EmptyShell Empty) { // Allocate storage for the trailing objects of CallExpr. unsigned SizeOfTrailingObjects = CallExpr::sizeOfTrailingObjects( /*NumPreArgs=*/END_PREARG, NumArgs, HasFPFeatures); void *Mem = Ctx.Allocate(sizeof(CUDAKernelCallExpr) + SizeOfTrailingObjects, alignof(CUDAKernelCallExpr)); return new (Mem) CUDAKernelCallExpr(NumArgs, HasFPFeatures, Empty); }