Mercurial > hg > CbC > CbC_llvm
view clang/lib/AST/Interp/Integral.h @ 222:81f6424ef0e3 llvm-original
LLVM original branch
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 18 Jul 2021 22:10:01 +0900 |
parents | 1d019706d866 |
children | c4bab56944e8 |
line wrap: on
line source
//===--- Integral.h - Wrapper for numeric types for the VM ------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Defines the VM types and helpers operating on types. // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_AST_INTERP_INTEGRAL_H #define LLVM_CLANG_AST_INTERP_INTEGRAL_H #include "clang/AST/ComparisonCategories.h" #include "clang/AST/APValue.h" #include "llvm/ADT/APSInt.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include <cstddef> #include <cstdint> namespace clang { namespace interp { using APInt = llvm::APInt; using APSInt = llvm::APSInt; /// Helper to compare two comparable types. template <typename T> ComparisonCategoryResult Compare(const T &X, const T &Y) { if (X < Y) return ComparisonCategoryResult::Less; if (X > Y) return ComparisonCategoryResult::Greater; return ComparisonCategoryResult::Equal; } // Helper structure to select the representation. template <unsigned Bits, bool Signed> struct Repr; template <> struct Repr<8, false> { using Type = uint8_t; }; template <> struct Repr<16, false> { using Type = uint16_t; }; template <> struct Repr<32, false> { using Type = uint32_t; }; template <> struct Repr<64, false> { using Type = uint64_t; }; template <> struct Repr<8, true> { using Type = int8_t; }; template <> struct Repr<16, true> { using Type = int16_t; }; template <> struct Repr<32, true> { using Type = int32_t; }; template <> struct Repr<64, true> { using Type = int64_t; }; /// Wrapper around numeric types. /// /// These wrappers are required to shared an interface between APSint and /// builtin primitive numeral types, while optimising for storage and /// allowing methods operating on primitive type to compile to fast code. template <unsigned Bits, bool Signed> class Integral { private: template <unsigned OtherBits, bool OtherSigned> friend class Integral; // The primitive representing the integral. using T = typename Repr<Bits, Signed>::Type; T V; /// Primitive representing limits. static const auto Min = std::numeric_limits<T>::min(); static const auto Max = std::numeric_limits<T>::max(); /// Construct an integral from anything that is convertible to storage. template <typename T> explicit Integral(T V) : V(V) {} public: /// Zero-initializes an integral. Integral() : V(0) {} /// Constructs an integral from another integral. template <unsigned SrcBits, bool SrcSign> explicit Integral(Integral<SrcBits, SrcSign> V) : V(V.V) {} /// Construct an integral from a value based on signedness. explicit Integral(const APSInt &V) : V(V.isSigned() ? V.getSExtValue() : V.getZExtValue()) {} bool operator<(Integral RHS) const { return V < RHS.V; } bool operator>(Integral RHS) const { return V > RHS.V; } bool operator<=(Integral RHS) const { return V <= RHS.V; } bool operator>=(Integral RHS) const { return V >= RHS.V; } bool operator==(Integral RHS) const { return V == RHS.V; } bool operator!=(Integral RHS) const { return V != RHS.V; } bool operator>(unsigned RHS) const { return V >= 0 && static_cast<unsigned>(V) > RHS; } Integral operator-() const { return Integral(-V); } Integral operator~() const { return Integral(~V); } template <unsigned DstBits, bool DstSign> explicit operator Integral<DstBits, DstSign>() const { return Integral<DstBits, DstSign>(V); } explicit operator unsigned() const { return V; } explicit operator int64_t() const { return V; } explicit operator uint64_t() const { return V; } APSInt toAPSInt() const { return APSInt(APInt(Bits, static_cast<uint64_t>(V), Signed), !Signed); } APSInt toAPSInt(unsigned NumBits) const { if (Signed) return APSInt(toAPSInt().sextOrTrunc(NumBits), !Signed); else return APSInt(toAPSInt().zextOrTrunc(NumBits), !Signed); } APValue toAPValue() const { return APValue(toAPSInt()); } Integral<Bits, false> toUnsigned() const { return Integral<Bits, false>(*this); } constexpr static unsigned bitWidth() { return Bits; } bool isZero() const { return !V; } bool isMin() const { return *this == min(bitWidth()); } bool isMinusOne() const { return Signed && V == T(-1); } constexpr static bool isSigned() { return Signed; } bool isNegative() const { return V < T(0); } bool isPositive() const { return !isNegative(); } ComparisonCategoryResult compare(const Integral &RHS) const { return Compare(V, RHS.V); } unsigned countLeadingZeros() const { return llvm::countLeadingZeros<T>(V); } Integral truncate(unsigned TruncBits) const { if (TruncBits >= Bits) return *this; const T BitMask = (T(1) << T(TruncBits)) - 1; const T SignBit = T(1) << (TruncBits - 1); const T ExtMask = ~BitMask; return Integral((V & BitMask) | (Signed && (V & SignBit) ? ExtMask : 0)); } void print(llvm::raw_ostream &OS) const { OS << V; } static Integral min(unsigned NumBits) { return Integral(Min); } static Integral max(unsigned NumBits) { return Integral(Max); } template <typename T> static std::enable_if_t<std::is_integral<T>::value, Integral> from(T Value) { return Integral(Value); } template <unsigned SrcBits, bool SrcSign> static std::enable_if_t<SrcBits != 0, Integral> from(Integral<SrcBits, SrcSign> Value) { return Integral(Value.V); } template <bool SrcSign> static Integral from(Integral<0, SrcSign> Value) { if (SrcSign) return Integral(Value.V.getSExtValue()); else return Integral(Value.V.getZExtValue()); } static Integral zero() { return from(0); } template <typename T> static Integral from(T Value, unsigned NumBits) { return Integral(Value); } static bool inRange(int64_t Value, unsigned NumBits) { return CheckRange<T, Min, Max>(Value); } static bool increment(Integral A, Integral *R) { return add(A, Integral(T(1)), A.bitWidth(), R); } static bool decrement(Integral A, Integral *R) { return sub(A, Integral(T(1)), A.bitWidth(), R); } static bool add(Integral A, Integral B, unsigned OpBits, Integral *R) { return CheckAddUB(A.V, B.V, R->V); } static bool sub(Integral A, Integral B, unsigned OpBits, Integral *R) { return CheckSubUB(A.V, B.V, R->V); } static bool mul(Integral A, Integral B, unsigned OpBits, Integral *R) { return CheckMulUB(A.V, B.V, R->V); } private: template <typename T> static std::enable_if_t<std::is_signed<T>::value, bool> CheckAddUB(T A, T B, T &R) { return llvm::AddOverflow<T>(A, B, R); } template <typename T> static std::enable_if_t<std::is_unsigned<T>::value, bool> CheckAddUB(T A, T B, T &R) { R = A + B; return false; } template <typename T> static std::enable_if_t<std::is_signed<T>::value, bool> CheckSubUB(T A, T B, T &R) { return llvm::SubOverflow<T>(A, B, R); } template <typename T> static std::enable_if_t<std::is_unsigned<T>::value, bool> CheckSubUB(T A, T B, T &R) { R = A - B; return false; } template <typename T> static std::enable_if_t<std::is_signed<T>::value, bool> CheckMulUB(T A, T B, T &R) { return llvm::MulOverflow<T>(A, B, R); } template <typename T> static std::enable_if_t<std::is_unsigned<T>::value, bool> CheckMulUB(T A, T B, T &R) { R = A * B; return false; } template <typename T, T Min, T Max> static std::enable_if_t<std::is_signed<T>::value, bool> CheckRange(int64_t V) { return Min <= V && V <= Max; } template <typename T, T Min, T Max> static std::enable_if_t<std::is_unsigned<T>::value, bool> CheckRange(int64_t V) { return V >= 0 && static_cast<uint64_t>(V) <= Max; } }; template <unsigned Bits, bool Signed> llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, Integral<Bits, Signed> I) { I.print(OS); return OS; } } // namespace interp } // namespace clang #endif