Mercurial > hg > CbC > CbC_llvm
view mlir/lib/IR/Operation.cpp @ 201:a96fbbdf2d0f
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 04 Jun 2021 21:07:06 +0900 |
parents | 0572611fdcc8 |
children | 2e18cbf3894f |
line wrap: on
line source
//===- Operation.cpp - Operation support code -----------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "mlir/IR/Operation.h" #include "mlir/IR/BlockAndValueMapping.h" #include "mlir/IR/Dialect.h" #include "mlir/IR/OpImplementation.h" #include "mlir/IR/PatternMatch.h" #include "mlir/IR/StandardTypes.h" #include "mlir/IR/TypeUtilities.h" #include <numeric> using namespace mlir; OpAsmParser::~OpAsmParser() {} //===----------------------------------------------------------------------===// // OperationName //===----------------------------------------------------------------------===// /// Form the OperationName for an op with the specified string. This either is /// a reference to an AbstractOperation if one is known, or a uniqued Identifier /// if not. OperationName::OperationName(StringRef name, MLIRContext *context) { if (auto *op = AbstractOperation::lookup(name, context)) representation = op; else representation = Identifier::get(name, context); } /// Return the name of the dialect this operation is registered to. StringRef OperationName::getDialect() const { return getStringRef().split('.').first; } /// Return the name of this operation. This always succeeds. StringRef OperationName::getStringRef() const { if (auto *op = representation.dyn_cast<const AbstractOperation *>()) return op->name; return representation.get<Identifier>().strref(); } const AbstractOperation *OperationName::getAbstractOperation() const { return representation.dyn_cast<const AbstractOperation *>(); } OperationName OperationName::getFromOpaquePointer(void *pointer) { return OperationName(RepresentationUnion::getFromOpaqueValue(pointer)); } //===----------------------------------------------------------------------===// // Operation //===----------------------------------------------------------------------===// /// Create a new Operation with the specific fields. Operation *Operation::create(Location location, OperationName name, ArrayRef<Type> resultTypes, ArrayRef<Value> operands, ArrayRef<NamedAttribute> attributes, ArrayRef<Block *> successors, unsigned numRegions) { return create(location, name, resultTypes, operands, MutableDictionaryAttr(attributes), successors, numRegions); } /// Create a new Operation from operation state. Operation *Operation::create(const OperationState &state) { return Operation::create(state.location, state.name, state.types, state.operands, state.attributes, state.successors, state.regions); } /// Create a new Operation with the specific fields. Operation *Operation::create(Location location, OperationName name, ArrayRef<Type> resultTypes, ArrayRef<Value> operands, MutableDictionaryAttr attributes, ArrayRef<Block *> successors, RegionRange regions) { unsigned numRegions = regions.size(); Operation *op = create(location, name, resultTypes, operands, attributes, successors, numRegions); for (unsigned i = 0; i < numRegions; ++i) if (regions[i]) op->getRegion(i).takeBody(*regions[i]); return op; } /// Overload of create that takes an existing MutableDictionaryAttr to avoid /// unnecessarily uniquing a list of attributes. Operation *Operation::create(Location location, OperationName name, ArrayRef<Type> resultTypes, ArrayRef<Value> operands, MutableDictionaryAttr attributes, ArrayRef<Block *> successors, unsigned numRegions) { // We only need to allocate additional memory for a subset of results. unsigned numTrailingResults = OpResult::getNumTrailing(resultTypes.size()); unsigned numInlineResults = OpResult::getNumInline(resultTypes.size()); unsigned numSuccessors = successors.size(); unsigned numOperands = operands.size(); // If the operation is known to have no operands, don't allocate an operand // storage. bool needsOperandStorage = true; if (operands.empty()) { if (const AbstractOperation *abstractOp = name.getAbstractOperation()) needsOperandStorage = !abstractOp->hasTrait<OpTrait::ZeroOperands>(); } // Compute the byte size for the operation and the operand storage. auto byteSize = totalSizeToAlloc<detail::InLineOpResult, detail::TrailingOpResult, BlockOperand, Region, detail::OperandStorage>( numInlineResults, numTrailingResults, numSuccessors, numRegions, needsOperandStorage ? 1 : 0); byteSize += llvm::alignTo(detail::OperandStorage::additionalAllocSize(numOperands), alignof(Operation)); void *rawMem = malloc(byteSize); // Create the new Operation. Operation *op = ::new (rawMem) Operation(location, name, resultTypes, numSuccessors, numRegions, attributes, needsOperandStorage); assert((numSuccessors == 0 || !op->isKnownNonTerminator()) && "unexpected successors in a non-terminator operation"); // Initialize the results. for (unsigned i = 0; i < numInlineResults; ++i) new (op->getInlineResult(i)) detail::InLineOpResult(); for (unsigned i = 0; i < numTrailingResults; ++i) new (op->getTrailingResult(i)) detail::TrailingOpResult(i); // Initialize the regions. for (unsigned i = 0; i != numRegions; ++i) new (&op->getRegion(i)) Region(op); // Initialize the operands. if (needsOperandStorage) new (&op->getOperandStorage()) detail::OperandStorage(op, operands); // Initialize the successors. auto blockOperands = op->getBlockOperands(); for (unsigned i = 0; i != numSuccessors; ++i) new (&blockOperands[i]) BlockOperand(op, successors[i]); return op; } Operation::Operation(Location location, OperationName name, ArrayRef<Type> resultTypes, unsigned numSuccessors, unsigned numRegions, const MutableDictionaryAttr &attributes, bool hasOperandStorage) : location(location), numSuccs(numSuccessors), numRegions(numRegions), hasOperandStorage(hasOperandStorage), hasSingleResult(false), name(name), attrs(attributes) { if (!resultTypes.empty()) { // If there is a single result it is stored in-place, otherwise use a tuple. hasSingleResult = resultTypes.size() == 1; if (hasSingleResult) resultType = resultTypes.front(); else resultType = TupleType::get(resultTypes, location->getContext()); } } // Operations are deleted through the destroy() member because they are // allocated via malloc. Operation::~Operation() { assert(block == nullptr && "operation destroyed but still in a block"); // Explicitly run the destructors for the operands. if (hasOperandStorage) getOperandStorage().~OperandStorage(); // Explicitly run the destructors for the successors. for (auto &successor : getBlockOperands()) successor.~BlockOperand(); // Explicitly destroy the regions. for (auto ®ion : getRegions()) region.~Region(); } /// Destroy this operation or one of its subclasses. void Operation::destroy() { this->~Operation(); free(this); } /// Return the context this operation is associated with. MLIRContext *Operation::getContext() { return location->getContext(); } /// Return the dialect this operation is associated with, or nullptr if the /// associated dialect is not registered. Dialect *Operation::getDialect() { if (auto *abstractOp = getAbstractOperation()) return &abstractOp->dialect; // If this operation hasn't been registered or doesn't have abstract // operation, try looking up the dialect name in the context. return getContext()->getRegisteredDialect(getName().getDialect()); } Region *Operation::getParentRegion() { return block ? block->getParent() : nullptr; } Operation *Operation::getParentOp() { return block ? block->getParentOp() : nullptr; } /// Return true if this operation is a proper ancestor of the `other` /// operation. bool Operation::isProperAncestor(Operation *other) { while ((other = other->getParentOp())) if (this == other) return true; return false; } /// Replace any uses of 'from' with 'to' within this operation. void Operation::replaceUsesOfWith(Value from, Value to) { if (from == to) return; for (auto &operand : getOpOperands()) if (operand.get() == from) operand.set(to); } /// Replace the current operands of this operation with the ones provided in /// 'operands'. void Operation::setOperands(ValueRange operands) { if (LLVM_LIKELY(hasOperandStorage)) return getOperandStorage().setOperands(this, operands); assert(operands.empty() && "setting operands without an operand storage"); } /// Replace the operands beginning at 'start' and ending at 'start' + 'length' /// with the ones provided in 'operands'. 'operands' may be smaller or larger /// than the range pointed to by 'start'+'length'. void Operation::setOperands(unsigned start, unsigned length, ValueRange operands) { assert((start + length) <= getNumOperands() && "invalid operand range specified"); if (LLVM_LIKELY(hasOperandStorage)) return getOperandStorage().setOperands(this, start, length, operands); assert(operands.empty() && "setting operands without an operand storage"); } /// Insert the given operands into the operand list at the given 'index'. void Operation::insertOperands(unsigned index, ValueRange operands) { if (LLVM_LIKELY(hasOperandStorage)) return setOperands(index, /*length=*/0, operands); assert(operands.empty() && "inserting operands without an operand storage"); } //===----------------------------------------------------------------------===// // Diagnostics //===----------------------------------------------------------------------===// /// Emit an error about fatal conditions with this operation, reporting up to /// any diagnostic handlers that may be listening. InFlightDiagnostic Operation::emitError(const Twine &message) { InFlightDiagnostic diag = mlir::emitError(getLoc(), message); if (getContext()->shouldPrintOpOnDiagnostic()) { // Print out the operation explicitly here so that we can print the generic // form. // TODO(riverriddle) It would be nice if we could instead provide the // specific printing flags when adding the operation as an argument to the // diagnostic. std::string printedOp; { llvm::raw_string_ostream os(printedOp); print(os, OpPrintingFlags().printGenericOpForm().useLocalScope()); } diag.attachNote(getLoc()) << "see current operation: " << printedOp; } return diag; } /// Emit a warning about this operation, reporting up to any diagnostic /// handlers that may be listening. InFlightDiagnostic Operation::emitWarning(const Twine &message) { InFlightDiagnostic diag = mlir::emitWarning(getLoc(), message); if (getContext()->shouldPrintOpOnDiagnostic()) diag.attachNote(getLoc()) << "see current operation: " << *this; return diag; } /// Emit a remark about this operation, reporting up to any diagnostic /// handlers that may be listening. InFlightDiagnostic Operation::emitRemark(const Twine &message) { InFlightDiagnostic diag = mlir::emitRemark(getLoc(), message); if (getContext()->shouldPrintOpOnDiagnostic()) diag.attachNote(getLoc()) << "see current operation: " << *this; return diag; } //===----------------------------------------------------------------------===// // Operation Ordering //===----------------------------------------------------------------------===// constexpr unsigned Operation::kInvalidOrderIdx; constexpr unsigned Operation::kOrderStride; /// Given an operation 'other' that is within the same parent block, return /// whether the current operation is before 'other' in the operation list /// of the parent block. /// Note: This function has an average complexity of O(1), but worst case may /// take O(N) where N is the number of operations within the parent block. bool Operation::isBeforeInBlock(Operation *other) { assert(block && "Operations without parent blocks have no order."); assert(other && other->block == block && "Expected other operation to have the same parent block."); // If the order of the block is already invalid, directly recompute the // parent. if (!block->isOpOrderValid()) { block->recomputeOpOrder(); } else { // Update the order either operation if necessary. updateOrderIfNecessary(); other->updateOrderIfNecessary(); } return orderIndex < other->orderIndex; } /// Update the order index of this operation of this operation if necessary, /// potentially recomputing the order of the parent block. void Operation::updateOrderIfNecessary() { assert(block && "expected valid parent"); // If the order is valid for this operation there is nothing to do. if (hasValidOrder()) return; Operation *blockFront = &block->front(); Operation *blockBack = &block->back(); // This method is expected to only be invoked on blocks with more than one // operation. assert(blockFront != blockBack && "expected more than one operation"); // If the operation is at the end of the block. if (this == blockBack) { Operation *prevNode = getPrevNode(); if (!prevNode->hasValidOrder()) return block->recomputeOpOrder(); // Add the stride to the previous operation. orderIndex = prevNode->orderIndex + kOrderStride; return; } // If this is the first operation try to use the next operation to compute the // ordering. if (this == blockFront) { Operation *nextNode = getNextNode(); if (!nextNode->hasValidOrder()) return block->recomputeOpOrder(); // There is no order to give this operation. if (nextNode->orderIndex == 0) return block->recomputeOpOrder(); // If we can't use the stride, just take the middle value left. This is safe // because we know there is at least one valid index to assign to. if (nextNode->orderIndex <= kOrderStride) orderIndex = (nextNode->orderIndex / 2); else orderIndex = kOrderStride; return; } // Otherwise, this operation is between two others. Place this operation in // the middle of the previous and next if possible. Operation *prevNode = getPrevNode(), *nextNode = getNextNode(); if (!prevNode->hasValidOrder() || !nextNode->hasValidOrder()) return block->recomputeOpOrder(); unsigned prevOrder = prevNode->orderIndex, nextOrder = nextNode->orderIndex; // Check to see if there is a valid order between the two. if (prevOrder + 1 == nextOrder) return block->recomputeOpOrder(); orderIndex = prevOrder + 1 + ((nextOrder - prevOrder) / 2); } //===----------------------------------------------------------------------===// // ilist_traits for Operation //===----------------------------------------------------------------------===// auto llvm::ilist_detail::SpecificNodeAccess< typename llvm::ilist_detail::compute_node_options< ::mlir::Operation>::type>::getNodePtr(pointer N) -> node_type * { return NodeAccess::getNodePtr<OptionsT>(N); } auto llvm::ilist_detail::SpecificNodeAccess< typename llvm::ilist_detail::compute_node_options< ::mlir::Operation>::type>::getNodePtr(const_pointer N) -> const node_type * { return NodeAccess::getNodePtr<OptionsT>(N); } auto llvm::ilist_detail::SpecificNodeAccess< typename llvm::ilist_detail::compute_node_options< ::mlir::Operation>::type>::getValuePtr(node_type *N) -> pointer { return NodeAccess::getValuePtr<OptionsT>(N); } auto llvm::ilist_detail::SpecificNodeAccess< typename llvm::ilist_detail::compute_node_options< ::mlir::Operation>::type>::getValuePtr(const node_type *N) -> const_pointer { return NodeAccess::getValuePtr<OptionsT>(N); } void llvm::ilist_traits<::mlir::Operation>::deleteNode(Operation *op) { op->destroy(); } Block *llvm::ilist_traits<::mlir::Operation>::getContainingBlock() { size_t Offset(size_t(&((Block *)nullptr->*Block::getSublistAccess(nullptr)))); iplist<Operation> *Anchor(static_cast<iplist<Operation> *>(this)); return reinterpret_cast<Block *>(reinterpret_cast<char *>(Anchor) - Offset); } /// This is a trait method invoked when an operation is added to a block. We /// keep the block pointer up to date. void llvm::ilist_traits<::mlir::Operation>::addNodeToList(Operation *op) { assert(!op->getBlock() && "already in an operation block!"); op->block = getContainingBlock(); // Invalidate the order on the operation. op->orderIndex = Operation::kInvalidOrderIdx; } /// This is a trait method invoked when an operation is removed from a block. /// We keep the block pointer up to date. void llvm::ilist_traits<::mlir::Operation>::removeNodeFromList(Operation *op) { assert(op->block && "not already in an operation block!"); op->block = nullptr; } /// This is a trait method invoked when an operation is moved from one block /// to another. We keep the block pointer up to date. void llvm::ilist_traits<::mlir::Operation>::transferNodesFromList( ilist_traits<Operation> &otherList, op_iterator first, op_iterator last) { Block *curParent = getContainingBlock(); // Invalidate the ordering of the parent block. curParent->invalidateOpOrder(); // If we are transferring operations within the same block, the block // pointer doesn't need to be updated. if (curParent == otherList.getContainingBlock()) return; // Update the 'block' member of each operation. for (; first != last; ++first) first->block = curParent; } /// Remove this operation (and its descendants) from its Block and delete /// all of them. void Operation::erase() { if (auto *parent = getBlock()) parent->getOperations().erase(this); else destroy(); } /// Unlink this operation from its current block and insert it right before /// `existingOp` which may be in the same or another block in the same /// function. void Operation::moveBefore(Operation *existingOp) { moveBefore(existingOp->getBlock(), existingOp->getIterator()); } /// Unlink this operation from its current basic block and insert it right /// before `iterator` in the specified basic block. void Operation::moveBefore(Block *block, llvm::iplist<Operation>::iterator iterator) { block->getOperations().splice(iterator, getBlock()->getOperations(), getIterator()); } /// Unlink this operation from its current block and insert it right after /// `existingOp` which may be in the same or another block in the same function. void Operation::moveAfter(Operation *existingOp) { moveAfter(existingOp->getBlock(), existingOp->getIterator()); } /// Unlink this operation from its current block and insert it right after /// `iterator` in the specified block. void Operation::moveAfter(Block *block, llvm::iplist<Operation>::iterator iterator) { assert(iterator != block->end() && "cannot move after end of block"); moveBefore(&*std::next(iterator)); } /// This drops all operand uses from this operation, which is an essential /// step in breaking cyclic dependences between references when they are to /// be deleted. void Operation::dropAllReferences() { for (auto &op : getOpOperands()) op.drop(); for (auto ®ion : getRegions()) region.dropAllReferences(); for (auto &dest : getBlockOperands()) dest.drop(); } /// This drops all uses of any values defined by this operation or its nested /// regions, wherever they are located. void Operation::dropAllDefinedValueUses() { dropAllUses(); for (auto ®ion : getRegions()) for (auto &block : region) block.dropAllDefinedValueUses(); } /// Return the number of results held by this operation. unsigned Operation::getNumResults() { if (!resultType) return 0; return hasSingleResult ? 1 : resultType.cast<TupleType>().size(); } auto Operation::getResultTypes() -> result_type_range { if (!resultType) return llvm::None; if (hasSingleResult) return resultType; return resultType.cast<TupleType>().getTypes(); } void Operation::setSuccessor(Block *block, unsigned index) { assert(index < getNumSuccessors()); getBlockOperands()[index].set(block); } /// Attempt to fold this operation using the Op's registered foldHook. LogicalResult Operation::fold(ArrayRef<Attribute> operands, SmallVectorImpl<OpFoldResult> &results) { // If we have a registered operation definition matching this one, use it to // try to constant fold the operation. auto *abstractOp = getAbstractOperation(); if (abstractOp && succeeded(abstractOp->foldHook(this, operands, results))) return success(); // Otherwise, fall back on the dialect hook to handle it. Dialect *dialect = getDialect(); if (!dialect) return failure(); SmallVector<Attribute, 8> constants; if (failed(dialect->constantFoldHook(this, operands, constants))) return failure(); results.assign(constants.begin(), constants.end()); return success(); } /// Emit an error with the op name prefixed, like "'dim' op " which is /// convenient for verifiers. InFlightDiagnostic Operation::emitOpError(const Twine &message) { return emitError() << "'" << getName() << "' op " << message; } //===----------------------------------------------------------------------===// // Operation Cloning //===----------------------------------------------------------------------===// /// Create a deep copy of this operation but keep the operation regions empty. /// Operands are remapped using `mapper` (if present), and `mapper` is updated /// to contain the results. Operation *Operation::cloneWithoutRegions(BlockAndValueMapping &mapper) { SmallVector<Value, 8> operands; SmallVector<Block *, 2> successors; // Remap the operands. operands.reserve(getNumOperands()); for (auto opValue : getOperands()) operands.push_back(mapper.lookupOrDefault(opValue)); // Remap the successors. successors.reserve(getNumSuccessors()); for (Block *successor : getSuccessors()) successors.push_back(mapper.lookupOrDefault(successor)); // Create the new operation. auto *newOp = Operation::create(getLoc(), getName(), getResultTypes(), operands, attrs, successors, getNumRegions()); // Remember the mapping of any results. for (unsigned i = 0, e = getNumResults(); i != e; ++i) mapper.map(getResult(i), newOp->getResult(i)); return newOp; } Operation *Operation::cloneWithoutRegions() { BlockAndValueMapping mapper; return cloneWithoutRegions(mapper); } /// Create a deep copy of this operation, remapping any operands that use /// values outside of the operation using the map that is provided (leaving /// them alone if no entry is present). Replaces references to cloned /// sub-operations to the corresponding operation that is copied, and adds /// those mappings to the map. Operation *Operation::clone(BlockAndValueMapping &mapper) { auto *newOp = cloneWithoutRegions(mapper); // Clone the regions. for (unsigned i = 0; i != numRegions; ++i) getRegion(i).cloneInto(&newOp->getRegion(i), mapper); return newOp; } Operation *Operation::clone() { BlockAndValueMapping mapper; return clone(mapper); } //===----------------------------------------------------------------------===// // OpState trait class. //===----------------------------------------------------------------------===// // The fallback for the parser is to reject the custom assembly form. ParseResult OpState::parse(OpAsmParser &parser, OperationState &result) { return parser.emitError(parser.getNameLoc(), "has no custom assembly form"); } // The fallback for the printer is to print in the generic assembly form. void OpState::print(OpAsmPrinter &p) { p.printGenericOp(getOperation()); } /// Emit an error about fatal conditions with this operation, reporting up to /// any diagnostic handlers that may be listening. InFlightDiagnostic OpState::emitError(const Twine &message) { return getOperation()->emitError(message); } /// Emit an error with the op name prefixed, like "'dim' op " which is /// convenient for verifiers. InFlightDiagnostic OpState::emitOpError(const Twine &message) { return getOperation()->emitOpError(message); } /// Emit a warning about this operation, reporting up to any diagnostic /// handlers that may be listening. InFlightDiagnostic OpState::emitWarning(const Twine &message) { return getOperation()->emitWarning(message); } /// Emit a remark about this operation, reporting up to any diagnostic /// handlers that may be listening. InFlightDiagnostic OpState::emitRemark(const Twine &message) { return getOperation()->emitRemark(message); } //===----------------------------------------------------------------------===// // Op Trait implementations //===----------------------------------------------------------------------===// LogicalResult OpTrait::impl::verifyZeroOperands(Operation *op) { if (op->getNumOperands() != 0) return op->emitOpError() << "requires zero operands"; return success(); } LogicalResult OpTrait::impl::verifyOneOperand(Operation *op) { if (op->getNumOperands() != 1) return op->emitOpError() << "requires a single operand"; return success(); } LogicalResult OpTrait::impl::verifyNOperands(Operation *op, unsigned numOperands) { if (op->getNumOperands() != numOperands) { return op->emitOpError() << "expected " << numOperands << " operands, but found " << op->getNumOperands(); } return success(); } LogicalResult OpTrait::impl::verifyAtLeastNOperands(Operation *op, unsigned numOperands) { if (op->getNumOperands() < numOperands) return op->emitOpError() << "expected " << numOperands << " or more operands"; return success(); } /// If this is a vector type, or a tensor type, return the scalar element type /// that it is built around, otherwise return the type unmodified. static Type getTensorOrVectorElementType(Type type) { if (auto vec = type.dyn_cast<VectorType>()) return vec.getElementType(); // Look through tensor<vector<...>> to find the underlying element type. if (auto tensor = type.dyn_cast<TensorType>()) return getTensorOrVectorElementType(tensor.getElementType()); return type; } LogicalResult OpTrait::impl::verifyOperandsAreSignlessIntegerLike(Operation *op) { for (auto opType : op->getOperandTypes()) { auto type = getTensorOrVectorElementType(opType); if (!type.isSignlessIntOrIndex()) return op->emitOpError() << "requires an integer or index type"; } return success(); } LogicalResult OpTrait::impl::verifyOperandsAreFloatLike(Operation *op) { for (auto opType : op->getOperandTypes()) { auto type = getTensorOrVectorElementType(opType); if (!type.isa<FloatType>()) return op->emitOpError("requires a float type"); } return success(); } LogicalResult OpTrait::impl::verifySameTypeOperands(Operation *op) { // Zero or one operand always have the "same" type. unsigned nOperands = op->getNumOperands(); if (nOperands < 2) return success(); auto type = op->getOperand(0).getType(); for (auto opType : llvm::drop_begin(op->getOperandTypes(), 1)) if (opType != type) return op->emitOpError() << "requires all operands to have the same type"; return success(); } LogicalResult OpTrait::impl::verifyZeroRegion(Operation *op) { if (op->getNumRegions() != 0) return op->emitOpError() << "requires zero regions"; return success(); } LogicalResult OpTrait::impl::verifyOneRegion(Operation *op) { if (op->getNumRegions() != 1) return op->emitOpError() << "requires one region"; return success(); } LogicalResult OpTrait::impl::verifyNRegions(Operation *op, unsigned numRegions) { if (op->getNumRegions() != numRegions) return op->emitOpError() << "expected " << numRegions << " regions"; return success(); } LogicalResult OpTrait::impl::verifyAtLeastNRegions(Operation *op, unsigned numRegions) { if (op->getNumRegions() < numRegions) return op->emitOpError() << "expected " << numRegions << " or more regions"; return success(); } LogicalResult OpTrait::impl::verifyZeroResult(Operation *op) { if (op->getNumResults() != 0) return op->emitOpError() << "requires zero results"; return success(); } LogicalResult OpTrait::impl::verifyOneResult(Operation *op) { if (op->getNumResults() != 1) return op->emitOpError() << "requires one result"; return success(); } LogicalResult OpTrait::impl::verifyNResults(Operation *op, unsigned numOperands) { if (op->getNumResults() != numOperands) return op->emitOpError() << "expected " << numOperands << " results"; return success(); } LogicalResult OpTrait::impl::verifyAtLeastNResults(Operation *op, unsigned numOperands) { if (op->getNumResults() < numOperands) return op->emitOpError() << "expected " << numOperands << " or more results"; return success(); } LogicalResult OpTrait::impl::verifySameOperandsShape(Operation *op) { if (failed(verifyAtLeastNOperands(op, 1))) return failure(); auto type = op->getOperand(0).getType(); for (auto opType : llvm::drop_begin(op->getOperandTypes(), 1)) { if (failed(verifyCompatibleShape(opType, type))) return op->emitOpError() << "requires the same shape for all operands"; } return success(); } LogicalResult OpTrait::impl::verifySameOperandsAndResultShape(Operation *op) { if (failed(verifyAtLeastNOperands(op, 1)) || failed(verifyAtLeastNResults(op, 1))) return failure(); auto type = op->getOperand(0).getType(); for (auto resultType : op->getResultTypes()) { if (failed(verifyCompatibleShape(resultType, type))) return op->emitOpError() << "requires the same shape for all operands and results"; } for (auto opType : llvm::drop_begin(op->getOperandTypes(), 1)) { if (failed(verifyCompatibleShape(opType, type))) return op->emitOpError() << "requires the same shape for all operands and results"; } return success(); } LogicalResult OpTrait::impl::verifySameOperandsElementType(Operation *op) { if (failed(verifyAtLeastNOperands(op, 1))) return failure(); auto elementType = getElementTypeOrSelf(op->getOperand(0)); for (auto operand : llvm::drop_begin(op->getOperands(), 1)) { if (getElementTypeOrSelf(operand) != elementType) return op->emitOpError("requires the same element type for all operands"); } return success(); } LogicalResult OpTrait::impl::verifySameOperandsAndResultElementType(Operation *op) { if (failed(verifyAtLeastNOperands(op, 1)) || failed(verifyAtLeastNResults(op, 1))) return failure(); auto elementType = getElementTypeOrSelf(op->getResult(0)); // Verify result element type matches first result's element type. for (auto result : llvm::drop_begin(op->getResults(), 1)) { if (getElementTypeOrSelf(result) != elementType) return op->emitOpError( "requires the same element type for all operands and results"); } // Verify operand's element type matches first result's element type. for (auto operand : op->getOperands()) { if (getElementTypeOrSelf(operand) != elementType) return op->emitOpError( "requires the same element type for all operands and results"); } return success(); } LogicalResult OpTrait::impl::verifySameOperandsAndResultType(Operation *op) { if (failed(verifyAtLeastNOperands(op, 1)) || failed(verifyAtLeastNResults(op, 1))) return failure(); auto type = op->getResult(0).getType(); auto elementType = getElementTypeOrSelf(type); for (auto resultType : op->getResultTypes().drop_front(1)) { if (getElementTypeOrSelf(resultType) != elementType || failed(verifyCompatibleShape(resultType, type))) return op->emitOpError() << "requires the same type for all operands and results"; } for (auto opType : op->getOperandTypes()) { if (getElementTypeOrSelf(opType) != elementType || failed(verifyCompatibleShape(opType, type))) return op->emitOpError() << "requires the same type for all operands and results"; } return success(); } LogicalResult OpTrait::impl::verifyIsTerminator(Operation *op) { Block *block = op->getBlock(); // Verify that the operation is at the end of the respective parent block. if (!block || &block->back() != op) return op->emitOpError("must be the last operation in the parent block"); return success(); } static LogicalResult verifyTerminatorSuccessors(Operation *op) { auto *parent = op->getParentRegion(); // Verify that the operands lines up with the BB arguments in the successor. for (Block *succ : op->getSuccessors()) if (succ->getParent() != parent) return op->emitError("reference to block defined in another region"); return success(); } LogicalResult OpTrait::impl::verifyZeroSuccessor(Operation *op) { if (op->getNumSuccessors() != 0) { return op->emitOpError("requires 0 successors but found ") << op->getNumSuccessors(); } return success(); } LogicalResult OpTrait::impl::verifyOneSuccessor(Operation *op) { if (op->getNumSuccessors() != 1) { return op->emitOpError("requires 1 successor but found ") << op->getNumSuccessors(); } return verifyTerminatorSuccessors(op); } LogicalResult OpTrait::impl::verifyNSuccessors(Operation *op, unsigned numSuccessors) { if (op->getNumSuccessors() != numSuccessors) { return op->emitOpError("requires ") << numSuccessors << " successors but found " << op->getNumSuccessors(); } return verifyTerminatorSuccessors(op); } LogicalResult OpTrait::impl::verifyAtLeastNSuccessors(Operation *op, unsigned numSuccessors) { if (op->getNumSuccessors() < numSuccessors) { return op->emitOpError("requires at least ") << numSuccessors << " successors but found " << op->getNumSuccessors(); } return verifyTerminatorSuccessors(op); } LogicalResult OpTrait::impl::verifyResultsAreBoolLike(Operation *op) { for (auto resultType : op->getResultTypes()) { auto elementType = getTensorOrVectorElementType(resultType); bool isBoolType = elementType.isInteger(1); if (!isBoolType) return op->emitOpError() << "requires a bool result type"; } return success(); } LogicalResult OpTrait::impl::verifyResultsAreFloatLike(Operation *op) { for (auto resultType : op->getResultTypes()) if (!getTensorOrVectorElementType(resultType).isa<FloatType>()) return op->emitOpError() << "requires a floating point type"; return success(); } LogicalResult OpTrait::impl::verifyResultsAreSignlessIntegerLike(Operation *op) { for (auto resultType : op->getResultTypes()) if (!getTensorOrVectorElementType(resultType).isSignlessIntOrIndex()) return op->emitOpError() << "requires an integer or index type"; return success(); } static LogicalResult verifyValueSizeAttr(Operation *op, StringRef attrName, bool isOperand) { auto sizeAttr = op->getAttrOfType<DenseIntElementsAttr>(attrName); if (!sizeAttr) return op->emitOpError("requires 1D vector attribute '") << attrName << "'"; auto sizeAttrType = sizeAttr.getType().dyn_cast<VectorType>(); if (!sizeAttrType || sizeAttrType.getRank() != 1) return op->emitOpError("requires 1D vector attribute '") << attrName << "'"; if (llvm::any_of(sizeAttr.getIntValues(), [](const APInt &element) { return !element.isNonNegative(); })) return op->emitOpError("'") << attrName << "' attribute cannot have negative elements"; size_t totalCount = std::accumulate( sizeAttr.begin(), sizeAttr.end(), 0, [](unsigned all, APInt one) { return all + one.getZExtValue(); }); if (isOperand && totalCount != op->getNumOperands()) return op->emitOpError("operand count (") << op->getNumOperands() << ") does not match with the total size (" << totalCount << ") specified in attribute '" << attrName << "'"; else if (!isOperand && totalCount != op->getNumResults()) return op->emitOpError("result count (") << op->getNumResults() << ") does not match with the total size (" << totalCount << ") specified in attribute '" << attrName << "'"; return success(); } LogicalResult OpTrait::impl::verifyOperandSizeAttr(Operation *op, StringRef attrName) { return verifyValueSizeAttr(op, attrName, /*isOperand=*/true); } LogicalResult OpTrait::impl::verifyResultSizeAttr(Operation *op, StringRef attrName) { return verifyValueSizeAttr(op, attrName, /*isOperand=*/false); } //===----------------------------------------------------------------------===// // BinaryOp implementation //===----------------------------------------------------------------------===// // These functions are out-of-line implementations of the methods in BinaryOp, // which avoids them being template instantiated/duplicated. void impl::buildBinaryOp(OpBuilder &builder, OperationState &result, Value lhs, Value rhs) { assert(lhs.getType() == rhs.getType()); result.addOperands({lhs, rhs}); result.types.push_back(lhs.getType()); } ParseResult impl::parseOneResultSameOperandTypeOp(OpAsmParser &parser, OperationState &result) { SmallVector<OpAsmParser::OperandType, 2> ops; Type type; return failure(parser.parseOperandList(ops) || parser.parseOptionalAttrDict(result.attributes) || parser.parseColonType(type) || parser.resolveOperands(ops, type, result.operands) || parser.addTypeToList(type, result.types)); } void impl::printOneResultOp(Operation *op, OpAsmPrinter &p) { assert(op->getNumResults() == 1 && "op should have one result"); // If not all the operand and result types are the same, just use the // generic assembly form to avoid omitting information in printing. auto resultType = op->getResult(0).getType(); if (llvm::any_of(op->getOperandTypes(), [&](Type type) { return type != resultType; })) { p.printGenericOp(op); return; } p << op->getName() << ' '; p.printOperands(op->getOperands()); p.printOptionalAttrDict(op->getAttrs()); // Now we can output only one type for all operands and the result. p << " : " << resultType; } //===----------------------------------------------------------------------===// // CastOp implementation //===----------------------------------------------------------------------===// void impl::buildCastOp(OpBuilder &builder, OperationState &result, Value source, Type destType) { result.addOperands(source); result.addTypes(destType); } ParseResult impl::parseCastOp(OpAsmParser &parser, OperationState &result) { OpAsmParser::OperandType srcInfo; Type srcType, dstType; return failure(parser.parseOperand(srcInfo) || parser.parseOptionalAttrDict(result.attributes) || parser.parseColonType(srcType) || parser.resolveOperand(srcInfo, srcType, result.operands) || parser.parseKeywordType("to", dstType) || parser.addTypeToList(dstType, result.types)); } void impl::printCastOp(Operation *op, OpAsmPrinter &p) { p << op->getName() << ' ' << op->getOperand(0); p.printOptionalAttrDict(op->getAttrs()); p << " : " << op->getOperand(0).getType() << " to " << op->getResult(0).getType(); } Value impl::foldCastOp(Operation *op) { // Identity cast if (op->getOperand(0).getType() == op->getResult(0).getType()) return op->getOperand(0); return nullptr; } //===----------------------------------------------------------------------===// // Misc. utils //===----------------------------------------------------------------------===// /// Insert an operation, generated by `buildTerminatorOp`, at the end of the /// region's only block if it does not have a terminator already. If the region /// is empty, insert a new block first. `buildTerminatorOp` should return the /// terminator operation to insert. void impl::ensureRegionTerminator( Region ®ion, OpBuilder &builder, Location loc, function_ref<Operation *(OpBuilder &, Location)> buildTerminatorOp) { OpBuilder::InsertionGuard guard(builder); if (region.empty()) builder.createBlock(®ion); Block &block = region.back(); if (!block.empty() && block.back().isKnownTerminator()) return; builder.setInsertionPointToEnd(&block); builder.insert(buildTerminatorOp(builder, loc)); } /// Create a simple OpBuilder and forward to the OpBuilder version of this /// function. void impl::ensureRegionTerminator( Region ®ion, Builder &builder, Location loc, function_ref<Operation *(OpBuilder &, Location)> buildTerminatorOp) { OpBuilder opBuilder(builder.getContext()); ensureRegionTerminator(region, opBuilder, loc, buildTerminatorOp); } //===----------------------------------------------------------------------===// // UseIterator //===----------------------------------------------------------------------===// Operation::UseIterator::UseIterator(Operation *op, bool end) : op(op), res(end ? op->result_end() : op->result_begin()) { // Only initialize current use if there are results/can be uses. if (op->getNumResults()) skipOverResultsWithNoUsers(); } Operation::UseIterator &Operation::UseIterator::operator++() { // We increment over uses, if we reach the last use then move to next // result. if (use != (*res).use_end()) ++use; if (use == (*res).use_end()) { ++res; skipOverResultsWithNoUsers(); } return *this; } void Operation::UseIterator::skipOverResultsWithNoUsers() { while (res != op->result_end() && (*res).use_empty()) ++res; // If we are at the last result, then set use to first use of // first result (sentinel value used for end). if (res == op->result_end()) use = {}; else use = (*res).use_begin(); }