Mercurial > hg > CbC > CbC_llvm
view mlir/lib/Transforms/LoopFusion.cpp @ 201:a96fbbdf2d0f
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 04 Jun 2021 21:07:06 +0900 |
parents | 0572611fdcc8 |
children | 2e18cbf3894f |
line wrap: on
line source
//===- LoopFusion.cpp - Code to perform loop fusion -----------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements loop fusion. // //===----------------------------------------------------------------------===// #include "PassDetail.h" #include "mlir/Analysis/AffineAnalysis.h" #include "mlir/Analysis/AffineStructures.h" #include "mlir/Analysis/LoopAnalysis.h" #include "mlir/Analysis/Utils.h" #include "mlir/Dialect/Affine/IR/AffineOps.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/AffineMap.h" #include "mlir/IR/Builders.h" #include "mlir/Transforms/LoopFusionUtils.h" #include "mlir/Transforms/LoopUtils.h" #include "mlir/Transforms/Passes.h" #include "mlir/Transforms/Utils.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/SetVector.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include <iomanip> #include <sstream> #define DEBUG_TYPE "affine-loop-fusion" using llvm::SetVector; using namespace mlir; namespace { /// Loop fusion pass. This pass currently supports a greedy fusion policy, /// which fuses loop nests with single-writer/single-reader memref dependences /// with the goal of improving locality. // TODO(andydavis) Support fusion of source loop nests which write to multiple // memrefs, where each memref can have multiple users (if profitable). // TODO(andydavis) Extend this pass to check for fusion preventing dependences, // and add support for more general loop fusion algorithms. struct LoopFusion : public AffineLoopFusionBase<LoopFusion> { LoopFusion() = default; LoopFusion(unsigned fastMemorySpace, uint64_t localBufSizeThresholdBytes, bool maximalFusion) { this->fastMemorySpace = fastMemorySpace; this->localBufSizeThreshold = localBufSizeThresholdBytes / 1024; this->maximalFusion = maximalFusion; } void runOnFunction() override; }; } // end anonymous namespace std::unique_ptr<OperationPass<FuncOp>> mlir::createLoopFusionPass(unsigned fastMemorySpace, uint64_t localBufSizeThreshold, bool maximalFusion) { return std::make_unique<LoopFusion>(fastMemorySpace, localBufSizeThreshold, maximalFusion); } // TODO(b/117228571) Replace when this is modeled through side-effects/op traits static bool isMemRefDereferencingOp(Operation &op) { if (isa<AffineReadOpInterface>(op) || isa<AffineWriteOpInterface>(op) || isa<AffineDmaStartOp>(op) || isa<AffineDmaWaitOp>(op)) return true; return false; } namespace { // LoopNestStateCollector walks loop nests and collects load and store // operations, and whether or not an IfInst was encountered in the loop nest. struct LoopNestStateCollector { SmallVector<AffineForOp, 4> forOps; SmallVector<Operation *, 4> loadOpInsts; SmallVector<Operation *, 4> storeOpInsts; bool hasNonForRegion = false; void collect(Operation *opToWalk) { opToWalk->walk([&](Operation *op) { if (isa<AffineForOp>(op)) forOps.push_back(cast<AffineForOp>(op)); else if (op->getNumRegions() != 0) hasNonForRegion = true; else if (isa<AffineReadOpInterface>(op)) loadOpInsts.push_back(op); else if (isa<AffineWriteOpInterface>(op)) storeOpInsts.push_back(op); }); } }; // MemRefDependenceGraph is a graph data structure where graph nodes are // top-level operations in a FuncOp which contain load/store ops, and edges // are memref dependences between the nodes. // TODO(andydavis) Add a more flexible dependence graph representation. // TODO(andydavis) Add a depth parameter to dependence graph construction. struct MemRefDependenceGraph { public: // Node represents a node in the graph. A Node is either an entire loop nest // rooted at the top level which contains loads/stores, or a top level // load/store. struct Node { // The unique identifier of this node in the graph. unsigned id; // The top-level statement which is (or contains) a load/store. Operation *op; // List of load operations. SmallVector<Operation *, 4> loads; // List of store op insts. SmallVector<Operation *, 4> stores; Node(unsigned id, Operation *op) : id(id), op(op) {} // Returns the load op count for 'memref'. unsigned getLoadOpCount(Value memref) { unsigned loadOpCount = 0; for (auto *loadOpInst : loads) { if (memref == cast<AffineReadOpInterface>(loadOpInst).getMemRef()) ++loadOpCount; } return loadOpCount; } // Returns the store op count for 'memref'. unsigned getStoreOpCount(Value memref) { unsigned storeOpCount = 0; for (auto *storeOpInst : stores) { if (memref == cast<AffineWriteOpInterface>(storeOpInst).getMemRef()) ++storeOpCount; } return storeOpCount; } // Returns all store ops in 'storeOps' which access 'memref'. void getStoreOpsForMemref(Value memref, SmallVectorImpl<Operation *> *storeOps) { for (auto *storeOpInst : stores) { if (memref == cast<AffineWriteOpInterface>(storeOpInst).getMemRef()) storeOps->push_back(storeOpInst); } } // Returns all load ops in 'loadOps' which access 'memref'. void getLoadOpsForMemref(Value memref, SmallVectorImpl<Operation *> *loadOps) { for (auto *loadOpInst : loads) { if (memref == cast<AffineReadOpInterface>(loadOpInst).getMemRef()) loadOps->push_back(loadOpInst); } } // Returns all memrefs in 'loadAndStoreMemrefSet' for which this node // has at least one load and store operation. void getLoadAndStoreMemrefSet(DenseSet<Value> *loadAndStoreMemrefSet) { llvm::SmallDenseSet<Value, 2> loadMemrefs; for (auto *loadOpInst : loads) { loadMemrefs.insert(cast<AffineReadOpInterface>(loadOpInst).getMemRef()); } for (auto *storeOpInst : stores) { auto memref = cast<AffineWriteOpInterface>(storeOpInst).getMemRef(); if (loadMemrefs.count(memref) > 0) loadAndStoreMemrefSet->insert(memref); } } }; // Edge represents a data dependence between nodes in the graph. struct Edge { // The id of the node at the other end of the edge. // If this edge is stored in Edge = Node.inEdges[i], then // 'Node.inEdges[i].id' is the identifier of the source node of the edge. // If this edge is stored in Edge = Node.outEdges[i], then // 'Node.outEdges[i].id' is the identifier of the dest node of the edge. unsigned id; // The SSA value on which this edge represents a dependence. // If the value is a memref, then the dependence is between graph nodes // which contain accesses to the same memref 'value'. If the value is a // non-memref value, then the dependence is between a graph node which // defines an SSA value and another graph node which uses the SSA value // (e.g. a constant operation defining a value which is used inside a loop // nest). Value value; }; // Map from node id to Node. DenseMap<unsigned, Node> nodes; // Map from node id to list of input edges. DenseMap<unsigned, SmallVector<Edge, 2>> inEdges; // Map from node id to list of output edges. DenseMap<unsigned, SmallVector<Edge, 2>> outEdges; // Map from memref to a count on the dependence edges associated with that // memref. DenseMap<Value, unsigned> memrefEdgeCount; // The next unique identifier to use for newly created graph nodes. unsigned nextNodeId = 0; MemRefDependenceGraph() {} // Initializes the dependence graph based on operations in 'f'. // Returns true on success, false otherwise. bool init(FuncOp f); // Returns the graph node for 'id'. Node *getNode(unsigned id) { auto it = nodes.find(id); assert(it != nodes.end()); return &it->second; } // Returns the graph node for 'forOp'. Node *getForOpNode(AffineForOp forOp) { for (auto &idAndNode : nodes) if (idAndNode.second.op == forOp.getOperation()) return &idAndNode.second; return nullptr; } // Adds a node with 'op' to the graph and returns its unique identifier. unsigned addNode(Operation *op) { Node node(nextNodeId++, op); nodes.insert({node.id, node}); return node.id; } // Remove node 'id' (and its associated edges) from graph. void removeNode(unsigned id) { // Remove each edge in 'inEdges[id]'. if (inEdges.count(id) > 0) { SmallVector<Edge, 2> oldInEdges = inEdges[id]; for (auto &inEdge : oldInEdges) { removeEdge(inEdge.id, id, inEdge.value); } } // Remove each edge in 'outEdges[id]'. if (outEdges.count(id) > 0) { SmallVector<Edge, 2> oldOutEdges = outEdges[id]; for (auto &outEdge : oldOutEdges) { removeEdge(id, outEdge.id, outEdge.value); } } // Erase remaining node state. inEdges.erase(id); outEdges.erase(id); nodes.erase(id); } // Returns true if node 'id' writes to any memref which escapes (or is an // argument to) the function/block. Returns false otherwise. bool writesToLiveInOrEscapingMemrefs(unsigned id) { Node *node = getNode(id); for (auto *storeOpInst : node->stores) { auto memref = cast<AffineWriteOpInterface>(storeOpInst).getMemRef(); auto *op = memref.getDefiningOp(); // Return true if 'memref' is a block argument. if (!op) return true; // Return true if any use of 'memref' escapes the function. for (auto *user : memref.getUsers()) if (!isMemRefDereferencingOp(*user)) return true; } return false; } // Returns the unique AffineWriteOpInterface in `node` that meets all the // following: // *) store is the only one that writes to a function-local memref live out // of `node`, // *) store is not the source of a self-dependence on `node`. // Otherwise, returns a null AffineWriteOpInterface. AffineWriteOpInterface getUniqueOutgoingStore(Node *node) { AffineWriteOpInterface uniqueStore; // Return null if `node` doesn't have any outgoing edges. auto outEdgeIt = outEdges.find(node->id); if (outEdgeIt == outEdges.end()) return nullptr; const auto &nodeOutEdges = outEdgeIt->second; for (auto *op : node->stores) { auto storeOp = cast<AffineWriteOpInterface>(op); auto memref = storeOp.getMemRef(); // Skip this store if there are no dependences on its memref. This means // that store either: // *) writes to a memref that is only read within the same loop nest // (self-dependence edges are not represented in graph at the moment), // *) writes to a function live out memref (function parameter), or // *) is dead. if (llvm::all_of(nodeOutEdges, [=](const Edge &edge) { return (edge.value != memref); })) continue; if (uniqueStore) // Found multiple stores to function-local live-out memrefs. return nullptr; // Found first store to function-local live-out memref. uniqueStore = storeOp; } return uniqueStore; } // Returns true if node 'id' can be removed from the graph. Returns false // otherwise. A node can be removed from the graph iff the following // conditions are met: // *) The node does not write to any memref which escapes (or is a // function/block argument). // *) The node has no successors in the dependence graph. bool canRemoveNode(unsigned id) { if (writesToLiveInOrEscapingMemrefs(id)) return false; Node *node = getNode(id); for (auto *storeOpInst : node->stores) { // Return false if there exist out edges from 'id' on 'memref'. auto storeMemref = cast<AffineWriteOpInterface>(storeOpInst).getMemRef(); if (getOutEdgeCount(id, storeMemref) > 0) return false; } return true; } // Returns true iff there is an edge from node 'srcId' to node 'dstId' which // is for 'value' if non-null, or for any value otherwise. Returns false // otherwise. bool hasEdge(unsigned srcId, unsigned dstId, Value value = nullptr) { if (outEdges.count(srcId) == 0 || inEdges.count(dstId) == 0) { return false; } bool hasOutEdge = llvm::any_of(outEdges[srcId], [=](Edge &edge) { return edge.id == dstId && (!value || edge.value == value); }); bool hasInEdge = llvm::any_of(inEdges[dstId], [=](Edge &edge) { return edge.id == srcId && (!value || edge.value == value); }); return hasOutEdge && hasInEdge; } // Adds an edge from node 'srcId' to node 'dstId' for 'value'. void addEdge(unsigned srcId, unsigned dstId, Value value) { if (!hasEdge(srcId, dstId, value)) { outEdges[srcId].push_back({dstId, value}); inEdges[dstId].push_back({srcId, value}); if (value.getType().isa<MemRefType>()) memrefEdgeCount[value]++; } } // Removes an edge from node 'srcId' to node 'dstId' for 'value'. void removeEdge(unsigned srcId, unsigned dstId, Value value) { assert(inEdges.count(dstId) > 0); assert(outEdges.count(srcId) > 0); if (value.getType().isa<MemRefType>()) { assert(memrefEdgeCount.count(value) > 0); memrefEdgeCount[value]--; } // Remove 'srcId' from 'inEdges[dstId]'. for (auto it = inEdges[dstId].begin(); it != inEdges[dstId].end(); ++it) { if ((*it).id == srcId && (*it).value == value) { inEdges[dstId].erase(it); break; } } // Remove 'dstId' from 'outEdges[srcId]'. for (auto it = outEdges[srcId].begin(); it != outEdges[srcId].end(); ++it) { if ((*it).id == dstId && (*it).value == value) { outEdges[srcId].erase(it); break; } } } // Returns true if there is a path in the dependence graph from node 'srcId' // to node 'dstId'. Returns false otherwise. bool hasDependencePath(unsigned srcId, unsigned dstId) { // Worklist state is: <node-id, next-output-edge-index-to-visit> SmallVector<std::pair<unsigned, unsigned>, 4> worklist; worklist.push_back({srcId, 0}); // Run DFS traversal to see if 'dstId' is reachable from 'srcId'. while (!worklist.empty()) { auto &idAndIndex = worklist.back(); // Return true if we have reached 'dstId'. if (idAndIndex.first == dstId) return true; // Pop and continue if node has no out edges, or if all out edges have // already been visited. if (outEdges.count(idAndIndex.first) == 0 || idAndIndex.second == outEdges[idAndIndex.first].size()) { worklist.pop_back(); continue; } // Get graph edge to traverse. Edge edge = outEdges[idAndIndex.first][idAndIndex.second]; // Increment next output edge index for 'idAndIndex'. ++idAndIndex.second; // Add node at 'edge.id' to worklist. worklist.push_back({edge.id, 0}); } return false; } // Returns the input edge count for node 'id' and 'memref' from src nodes // which access 'memref' with a store operation. unsigned getIncomingMemRefAccesses(unsigned id, Value memref) { unsigned inEdgeCount = 0; if (inEdges.count(id) > 0) for (auto &inEdge : inEdges[id]) if (inEdge.value == memref) { Node *srcNode = getNode(inEdge.id); // Only count in edges from 'srcNode' if 'srcNode' accesses 'memref' if (srcNode->getStoreOpCount(memref) > 0) ++inEdgeCount; } return inEdgeCount; } // Returns the output edge count for node 'id' and 'memref' (if non-null), // otherwise returns the total output edge count from node 'id'. unsigned getOutEdgeCount(unsigned id, Value memref = nullptr) { unsigned outEdgeCount = 0; if (outEdges.count(id) > 0) for (auto &outEdge : outEdges[id]) if (!memref || outEdge.value == memref) ++outEdgeCount; return outEdgeCount; } // Computes and returns an insertion point operation, before which the // the fused <srcId, dstId> loop nest can be inserted while preserving // dependences. Returns nullptr if no such insertion point is found. Operation *getFusedLoopNestInsertionPoint(unsigned srcId, unsigned dstId) { if (outEdges.count(srcId) == 0) return getNode(dstId)->op; // Build set of insts in range (srcId, dstId) which depend on 'srcId'. SmallPtrSet<Operation *, 2> srcDepInsts; for (auto &outEdge : outEdges[srcId]) if (outEdge.id != dstId) srcDepInsts.insert(getNode(outEdge.id)->op); // Build set of insts in range (srcId, dstId) on which 'dstId' depends. SmallPtrSet<Operation *, 2> dstDepInsts; for (auto &inEdge : inEdges[dstId]) if (inEdge.id != srcId) dstDepInsts.insert(getNode(inEdge.id)->op); Operation *srcNodeInst = getNode(srcId)->op; Operation *dstNodeInst = getNode(dstId)->op; // Computing insertion point: // *) Walk all operation positions in Block operation list in the // range (src, dst). For each operation 'op' visited in this search: // *) Store in 'firstSrcDepPos' the first position where 'op' has a // dependence edge from 'srcNode'. // *) Store in 'lastDstDepPost' the last position where 'op' has a // dependence edge to 'dstNode'. // *) Compare 'firstSrcDepPos' and 'lastDstDepPost' to determine the // operation insertion point (or return null pointer if no such // insertion point exists: 'firstSrcDepPos' <= 'lastDstDepPos'). SmallVector<Operation *, 2> depInsts; Optional<unsigned> firstSrcDepPos; Optional<unsigned> lastDstDepPos; unsigned pos = 0; for (Block::iterator it = std::next(Block::iterator(srcNodeInst)); it != Block::iterator(dstNodeInst); ++it) { Operation *op = &(*it); if (srcDepInsts.count(op) > 0 && firstSrcDepPos == None) firstSrcDepPos = pos; if (dstDepInsts.count(op) > 0) lastDstDepPos = pos; depInsts.push_back(op); ++pos; } if (firstSrcDepPos.hasValue()) { if (lastDstDepPos.hasValue()) { if (firstSrcDepPos.getValue() <= lastDstDepPos.getValue()) { // No valid insertion point exists which preserves dependences. return nullptr; } } // Return the insertion point at 'firstSrcDepPos'. return depInsts[firstSrcDepPos.getValue()]; } // No dependence targets in range (or only dst deps in range), return // 'dstNodInst' insertion point. return dstNodeInst; } // Updates edge mappings from node 'srcId' to node 'dstId' after 'oldMemRef' // has been replaced in node at 'dstId' by a private memref depending // on the value of 'createPrivateMemRef'. void updateEdges(unsigned srcId, unsigned dstId, Value oldMemRef, bool createPrivateMemRef) { // For each edge in 'inEdges[srcId]': add new edge remapping to 'dstId'. if (inEdges.count(srcId) > 0) { SmallVector<Edge, 2> oldInEdges = inEdges[srcId]; for (auto &inEdge : oldInEdges) { // Add edge from 'inEdge.id' to 'dstId' if not for 'oldMemRef'. if (inEdge.value != oldMemRef) addEdge(inEdge.id, dstId, inEdge.value); } } // For each edge in 'outEdges[srcId]': remove edge from 'srcId' to 'dstId'. if (outEdges.count(srcId) > 0) { SmallVector<Edge, 2> oldOutEdges = outEdges[srcId]; for (auto &outEdge : oldOutEdges) { // Remove any out edges from 'srcId' to 'dstId' across memrefs. if (outEdge.id == dstId) removeEdge(srcId, outEdge.id, outEdge.value); } } // Remove any edges in 'inEdges[dstId]' on 'oldMemRef' (which is being // replaced by a private memref). These edges could come from nodes // other than 'srcId' which were removed in the previous step. if (inEdges.count(dstId) > 0 && createPrivateMemRef) { SmallVector<Edge, 2> oldInEdges = inEdges[dstId]; for (auto &inEdge : oldInEdges) if (inEdge.value == oldMemRef) removeEdge(inEdge.id, dstId, inEdge.value); } } // Update edge mappings for nodes 'sibId' and 'dstId' to reflect fusion // of sibling node 'sidId' into node 'dstId'. void updateEdges(unsigned sibId, unsigned dstId) { // For each edge in 'inEdges[sibId]': // *) Add new edge from source node 'inEdge.id' to 'dstNode'. // *) Remove edge from source node 'inEdge.id' to 'sibNode'. if (inEdges.count(sibId) > 0) { SmallVector<Edge, 2> oldInEdges = inEdges[sibId]; for (auto &inEdge : oldInEdges) { addEdge(inEdge.id, dstId, inEdge.value); removeEdge(inEdge.id, sibId, inEdge.value); } } // For each edge in 'outEdges[sibId]' to node 'id' // *) Add new edge from 'dstId' to 'outEdge.id'. // *) Remove edge from 'sibId' to 'outEdge.id'. if (outEdges.count(sibId) > 0) { SmallVector<Edge, 2> oldOutEdges = outEdges[sibId]; for (auto &outEdge : oldOutEdges) { addEdge(dstId, outEdge.id, outEdge.value); removeEdge(sibId, outEdge.id, outEdge.value); } } } // Adds ops in 'loads' and 'stores' to node at 'id'. void addToNode(unsigned id, const SmallVectorImpl<Operation *> &loads, const SmallVectorImpl<Operation *> &stores) { Node *node = getNode(id); for (auto *loadOpInst : loads) node->loads.push_back(loadOpInst); for (auto *storeOpInst : stores) node->stores.push_back(storeOpInst); } void clearNodeLoadAndStores(unsigned id) { Node *node = getNode(id); node->loads.clear(); node->stores.clear(); } // Calls 'callback' for each input edge incident to node 'id' which carries a // memref dependence. void forEachMemRefInputEdge(unsigned id, const std::function<void(Edge)> &callback) { if (inEdges.count(id) > 0) forEachMemRefEdge(inEdges[id], callback); } // Calls 'callback' for each output edge from node 'id' which carries a // memref dependence. void forEachMemRefOutputEdge(unsigned id, const std::function<void(Edge)> &callback) { if (outEdges.count(id) > 0) forEachMemRefEdge(outEdges[id], callback); } // Calls 'callback' for each edge in 'edges' which carries a memref // dependence. void forEachMemRefEdge(ArrayRef<Edge> edges, const std::function<void(Edge)> &callback) { for (auto &edge : edges) { // Skip if 'edge' is not a memref dependence edge. if (!edge.value.getType().isa<MemRefType>()) continue; assert(nodes.count(edge.id) > 0); // Skip if 'edge.id' is not a loop nest. if (!isa<AffineForOp>(getNode(edge.id)->op)) continue; // Visit current input edge 'edge'. callback(edge); } } void print(raw_ostream &os) const { os << "\nMemRefDependenceGraph\n"; os << "\nNodes:\n"; for (auto &idAndNode : nodes) { os << "Node: " << idAndNode.first << "\n"; auto it = inEdges.find(idAndNode.first); if (it != inEdges.end()) { for (const auto &e : it->second) os << " InEdge: " << e.id << " " << e.value << "\n"; } it = outEdges.find(idAndNode.first); if (it != outEdges.end()) { for (const auto &e : it->second) os << " OutEdge: " << e.id << " " << e.value << "\n"; } } } void dump() const { print(llvm::errs()); } }; } // end anonymous namespace // Initializes the data dependence graph by walking operations in 'f'. // Assigns each node in the graph a node id based on program order in 'f'. // TODO(andydavis) Add support for taking a Block arg to construct the // dependence graph at a different depth. bool MemRefDependenceGraph::init(FuncOp f) { DenseMap<Value, SetVector<unsigned>> memrefAccesses; // TODO: support multi-block functions. if (f.getBlocks().size() != 1) return false; DenseMap<Operation *, unsigned> forToNodeMap; for (auto &op : f.front()) { if (auto forOp = dyn_cast<AffineForOp>(op)) { // Create graph node 'id' to represent top-level 'forOp' and record // all loads and store accesses it contains. LoopNestStateCollector collector; collector.collect(&op); // Return false if a non 'affine.for' region was found (not currently // supported). if (collector.hasNonForRegion) return false; Node node(nextNodeId++, &op); for (auto *opInst : collector.loadOpInsts) { node.loads.push_back(opInst); auto memref = cast<AffineReadOpInterface>(opInst).getMemRef(); memrefAccesses[memref].insert(node.id); } for (auto *opInst : collector.storeOpInsts) { node.stores.push_back(opInst); auto memref = cast<AffineWriteOpInterface>(opInst).getMemRef(); memrefAccesses[memref].insert(node.id); } forToNodeMap[&op] = node.id; nodes.insert({node.id, node}); } else if (auto loadOp = dyn_cast<AffineReadOpInterface>(op)) { // Create graph node for top-level load op. Node node(nextNodeId++, &op); node.loads.push_back(&op); auto memref = cast<AffineReadOpInterface>(op).getMemRef(); memrefAccesses[memref].insert(node.id); nodes.insert({node.id, node}); } else if (auto storeOp = dyn_cast<AffineWriteOpInterface>(op)) { // Create graph node for top-level store op. Node node(nextNodeId++, &op); node.stores.push_back(&op); auto memref = cast<AffineWriteOpInterface>(op).getMemRef(); memrefAccesses[memref].insert(node.id); nodes.insert({node.id, node}); } else if (op.getNumRegions() != 0) { // Return false if another region is found (not currently supported). return false; } else if (op.getNumResults() > 0 && !op.use_empty()) { // Create graph node for top-level producer of SSA values, which // could be used by loop nest nodes. Node node(nextNodeId++, &op); nodes.insert({node.id, node}); } } // Add dependence edges between nodes which produce SSA values and their // users. for (auto &idAndNode : nodes) { const Node &node = idAndNode.second; if (!node.loads.empty() || !node.stores.empty()) continue; auto *opInst = node.op; for (auto value : opInst->getResults()) { for (auto *user : value.getUsers()) { SmallVector<AffineForOp, 4> loops; getLoopIVs(*user, &loops); if (loops.empty()) continue; assert(forToNodeMap.count(loops[0].getOperation()) > 0); unsigned userLoopNestId = forToNodeMap[loops[0].getOperation()]; addEdge(node.id, userLoopNestId, value); } } } // Walk memref access lists and add graph edges between dependent nodes. for (auto &memrefAndList : memrefAccesses) { unsigned n = memrefAndList.second.size(); for (unsigned i = 0; i < n; ++i) { unsigned srcId = memrefAndList.second[i]; bool srcHasStore = getNode(srcId)->getStoreOpCount(memrefAndList.first) > 0; for (unsigned j = i + 1; j < n; ++j) { unsigned dstId = memrefAndList.second[j]; bool dstHasStore = getNode(dstId)->getStoreOpCount(memrefAndList.first) > 0; if (srcHasStore || dstHasStore) addEdge(srcId, dstId, memrefAndList.first); } } } return true; } // Removes load operations from 'srcLoads' which operate on 'memref', and // adds them to 'dstLoads'. static void moveLoadsAccessingMemrefTo(Value memref, SmallVectorImpl<Operation *> *srcLoads, SmallVectorImpl<Operation *> *dstLoads) { dstLoads->clear(); SmallVector<Operation *, 4> srcLoadsToKeep; for (auto *load : *srcLoads) { if (cast<AffineReadOpInterface>(load).getMemRef() == memref) dstLoads->push_back(load); else srcLoadsToKeep.push_back(load); } srcLoads->swap(srcLoadsToKeep); } // Returns the innermost common loop depth for the set of operations in 'ops'. static unsigned getInnermostCommonLoopDepth(ArrayRef<Operation *> ops) { unsigned numOps = ops.size(); assert(numOps > 0); std::vector<SmallVector<AffineForOp, 4>> loops(numOps); unsigned loopDepthLimit = std::numeric_limits<unsigned>::max(); for (unsigned i = 0; i < numOps; ++i) { getLoopIVs(*ops[i], &loops[i]); loopDepthLimit = std::min(loopDepthLimit, static_cast<unsigned>(loops[i].size())); } unsigned loopDepth = 0; for (unsigned d = 0; d < loopDepthLimit; ++d) { unsigned i; for (i = 1; i < numOps; ++i) { if (loops[i - 1][d] != loops[i][d]) break; } if (i != numOps) break; ++loopDepth; } return loopDepth; } // Returns the maximum loop depth at which no dependences between 'loadOpInsts' // and 'storeOpInsts' are satisfied. static unsigned getMaxLoopDepth(ArrayRef<Operation *> loadOpInsts, ArrayRef<Operation *> storeOpInsts) { // Merge loads and stores into the same array. SmallVector<Operation *, 2> ops(loadOpInsts.begin(), loadOpInsts.end()); ops.append(storeOpInsts.begin(), storeOpInsts.end()); // Compute the innermost common loop depth for loads and stores. unsigned loopDepth = getInnermostCommonLoopDepth(ops); // Return common loop depth for loads if there are no store ops. if (storeOpInsts.empty()) return loopDepth; // Check dependences on all pairs of ops in 'ops' and store the minimum // loop depth at which a dependence is satisfied. for (unsigned i = 0, e = ops.size(); i < e; ++i) { auto *srcOpInst = ops[i]; MemRefAccess srcAccess(srcOpInst); for (unsigned j = 0; j < e; ++j) { auto *dstOpInst = ops[j]; MemRefAccess dstAccess(dstOpInst); unsigned numCommonLoops = getNumCommonSurroundingLoops(*srcOpInst, *dstOpInst); for (unsigned d = 1; d <= numCommonLoops + 1; ++d) { FlatAffineConstraints dependenceConstraints; // TODO(andydavis) Cache dependence analysis results, check cache here. DependenceResult result = checkMemrefAccessDependence( srcAccess, dstAccess, d, &dependenceConstraints, /*dependenceComponents=*/nullptr); if (hasDependence(result)) { // Store minimum loop depth and break because we want the min 'd' at // which there is a dependence. loopDepth = std::min(loopDepth, d - 1); break; } } } } return loopDepth; } // Sinks all sequential loops to the innermost levels (while preserving // relative order among them) and moves all parallel loops to the // outermost (while again preserving relative order among them). // This can increase the loop depth at which we can fuse a slice, since we are // pushing loop carried dependence to a greater depth in the loop nest. static void sinkSequentialLoops(MemRefDependenceGraph::Node *node) { assert(isa<AffineForOp>(node->op)); AffineForOp newRootForOp = sinkSequentialLoops(cast<AffineForOp>(node->op)); node->op = newRootForOp.getOperation(); } // TODO(mlir-team): improve/complete this when we have target data. static unsigned getMemRefEltSizeInBytes(MemRefType memRefType) { auto elementType = memRefType.getElementType(); unsigned sizeInBits; if (elementType.isIntOrFloat()) { sizeInBits = elementType.getIntOrFloatBitWidth(); } else { auto vectorType = elementType.cast<VectorType>(); sizeInBits = vectorType.getElementTypeBitWidth() * vectorType.getNumElements(); } return llvm::divideCeil(sizeInBits, 8); } // Creates and returns a private (single-user) memref for fused loop rooted // at 'forOp', with (potentially reduced) memref size based on the // MemRefRegion written to by 'srcStoreOpInst' at depth 'dstLoopDepth'. // TODO(bondhugula): consider refactoring the common code from generateDma and // this one. static Value createPrivateMemRef(AffineForOp forOp, Operation *srcStoreOpInst, unsigned dstLoopDepth, Optional<unsigned> fastMemorySpace, uint64_t localBufSizeThreshold) { auto *forInst = forOp.getOperation(); // Create builder to insert alloc op just before 'forOp'. OpBuilder b(forInst); // Builder to create constants at the top level. OpBuilder top(forInst->getParentOfType<FuncOp>().getBody()); // Create new memref type based on slice bounds. auto oldMemRef = cast<AffineWriteOpInterface>(srcStoreOpInst).getMemRef(); auto oldMemRefType = oldMemRef.getType().cast<MemRefType>(); unsigned rank = oldMemRefType.getRank(); // Compute MemRefRegion for 'srcStoreOpInst' at depth 'dstLoopDepth'. MemRefRegion region(srcStoreOpInst->getLoc()); bool validRegion = succeeded(region.compute(srcStoreOpInst, dstLoopDepth)); (void)validRegion; assert(validRegion && "unexpected memref region failure"); SmallVector<int64_t, 4> newShape; std::vector<SmallVector<int64_t, 4>> lbs; SmallVector<int64_t, 8> lbDivisors; lbs.reserve(rank); // Query 'region' for 'newShape' and lower bounds of MemRefRegion accessed // by 'srcStoreOpInst' at depth 'dstLoopDepth'. Optional<int64_t> numElements = region.getConstantBoundingSizeAndShape(&newShape, &lbs, &lbDivisors); assert(numElements.hasValue() && "non-constant number of elts in local buffer"); const FlatAffineConstraints *cst = region.getConstraints(); // 'outerIVs' holds the values that this memory region is symbolic/parametric // on; this would correspond to loop IVs surrounding the level at which the // slice is being materialized. SmallVector<Value, 8> outerIVs; cst->getIdValues(rank, cst->getNumIds(), &outerIVs); // Build 'rank' AffineExprs from MemRefRegion 'lbs' SmallVector<AffineExpr, 4> offsets; offsets.reserve(rank); for (unsigned d = 0; d < rank; ++d) { assert(lbs[d].size() == cst->getNumCols() - rank && "incorrect bound size"); AffineExpr offset = top.getAffineConstantExpr(0); for (unsigned j = 0, e = cst->getNumCols() - rank - 1; j < e; j++) { offset = offset + lbs[d][j] * top.getAffineDimExpr(j); } assert(lbDivisors[d] > 0); offset = (offset + lbs[d][cst->getNumCols() - 1 - rank]).floorDiv(lbDivisors[d]); offsets.push_back(offset); } // Create 'newMemRefType' using 'newShape' from MemRefRegion accessed // by 'srcStoreOpInst'. uint64_t bufSize = getMemRefEltSizeInBytes(oldMemRefType) * numElements.getValue(); unsigned newMemSpace; if (bufSize <= localBufSizeThreshold && fastMemorySpace.hasValue()) { newMemSpace = fastMemorySpace.getValue(); } else { newMemSpace = oldMemRefType.getMemorySpace(); } auto newMemRefType = MemRefType::get(newShape, oldMemRefType.getElementType(), {}, newMemSpace); // Gather alloc operands for the dynamic dimensions of the memref. SmallVector<Value, 4> allocOperands; unsigned dynamicDimCount = 0; for (auto dimSize : oldMemRefType.getShape()) { if (dimSize == -1) allocOperands.push_back( top.create<DimOp>(forOp.getLoc(), oldMemRef, dynamicDimCount++)); } // Create new private memref for fused loop 'forOp'. // TODO(andydavis) Create/move alloc ops for private memrefs closer to their // consumer loop nests to reduce their live range. Currently they are added // at the beginning of the function, because loop nests can be reordered // during the fusion pass. Value newMemRef = top.create<AllocOp>(forOp.getLoc(), newMemRefType, allocOperands); // Build an AffineMap to remap access functions based on lower bound offsets. SmallVector<AffineExpr, 4> remapExprs; remapExprs.reserve(rank); unsigned zeroOffsetCount = 0; for (unsigned i = 0; i < rank; i++) { if (auto constExpr = offsets[i].dyn_cast<AffineConstantExpr>()) if (constExpr.getValue() == 0) ++zeroOffsetCount; auto dimExpr = b.getAffineDimExpr(outerIVs.size() + i); auto remapExpr = simplifyAffineExpr(dimExpr - offsets[i], outerIVs.size() + rank, 0); remapExprs.push_back(remapExpr); } auto indexRemap = zeroOffsetCount == rank ? AffineMap() : AffineMap::get(outerIVs.size() + rank, 0, remapExprs, forOp.getContext()); // Replace all users of 'oldMemRef' with 'newMemRef'. LogicalResult res = replaceAllMemRefUsesWith(oldMemRef, newMemRef, {}, indexRemap, /*extraOperands=*/outerIVs, /*symbolOperands=*/{}, /*domInstFilter=*/&*forOp.getBody()->begin()); assert(succeeded(res) && "replaceAllMemrefUsesWith should always succeed here"); (void)res; return newMemRef; } // Checks if node 'srcId' can be safely fused into node 'dstId'. Node 'srcId' // may write to multiple memrefs but it is required that only one of them, // 'srcLiveOutStoreOp', has output edges. // Returns true if 'dstNode's read/write region to 'memref' is a super set of // 'srcNode's write region to 'memref' and 'srcId' has only one output edge. // TODO(andydavis) Generalize this to handle more live in/out cases. static bool canFuseSrcWhichWritesToLiveOut(unsigned srcId, unsigned dstId, AffineWriteOpInterface srcLiveOutStoreOp, MemRefDependenceGraph *mdg) { assert(srcLiveOutStoreOp && "Expected a valid store op"); auto *dstNode = mdg->getNode(dstId); Value memref = srcLiveOutStoreOp.getMemRef(); // Return false if 'srcNode' has more than one output edge on 'memref'. if (mdg->getOutEdgeCount(srcId, memref) > 1) return false; // Compute MemRefRegion 'srcWriteRegion' for 'srcStoreOp' on 'memref'. MemRefRegion srcWriteRegion(srcLiveOutStoreOp.getLoc()); if (failed(srcWriteRegion.compute(srcLiveOutStoreOp, /*loopDepth=*/0))) { LLVM_DEBUG(llvm::dbgs() << "Unable to compute MemRefRegion for source operation\n."); return false; } SmallVector<int64_t, 4> srcShape; // Query 'srcWriteRegion' for 'srcShape' and 'srcNumElements'. // by 'srcStoreOp' at depth 'dstLoopDepth'. Optional<int64_t> srcNumElements = srcWriteRegion.getConstantBoundingSizeAndShape(&srcShape); if (!srcNumElements.hasValue()) return false; // Compute MemRefRegion 'dstRegion' for 'dstStore/LoadOpInst' on 'memref'. // TODO(andydavis) Compute 'unionboundingbox' of all write regions (one for // each store op in 'dstStoreOps'). SmallVector<Operation *, 2> dstStoreOps; dstNode->getStoreOpsForMemref(memref, &dstStoreOps); SmallVector<Operation *, 2> dstLoadOps; dstNode->getLoadOpsForMemref(memref, &dstLoadOps); auto *dstOpInst = dstStoreOps.empty() ? dstLoadOps[0] : dstStoreOps[0]; MemRefRegion dstRegion(dstOpInst->getLoc()); if (failed(dstRegion.compute(dstOpInst, /*loopDepth=*/0))) { LLVM_DEBUG(llvm::dbgs() << "Unable to compute MemRefRegion for dest operation\n."); return false; } SmallVector<int64_t, 4> dstShape; // Query 'dstRegion' for 'dstShape' and 'dstNumElements'. // by 'dstOpInst' at depth 'dstLoopDepth'. Optional<int64_t> dstNumElements = dstRegion.getConstantBoundingSizeAndShape(&dstShape); if (!dstNumElements.hasValue()) return false; // Return false if write region is not a superset of 'srcNodes' write // region to 'memref'. // TODO(andydavis) Check the shape and lower bounds here too. if (srcNumElements != dstNumElements) return false; return true; } // Checks the profitability of fusing a backwards slice of the loop nest // surrounding 'srcOpInst' into the loop nest surrounding 'dstLoadOpInsts'. // The argument 'srcStoreOpInst' is used to calculate the storage reduction on // the memref being produced and consumed, which is an input to the cost model. // For producer-consumer fusion, 'srcStoreOpInst' will be the same as // 'srcOpInst', as we are slicing w.r.t to that producer. // For input-reuse fusion, 'srcOpInst' will be the src loop nest LoadOp which // reads from the same memref as dst loop nest load ops, and 'srcStoreOpInst' // will be the unique store op in the src node, which will be used to check // that the write region is the same after input-reuse fusion. // Returns true if it is profitable to fuse the candidate loop nests. Returns // false otherwise. `dstLoopDepth` is set to the most profitable depth at which // to materialize the source loop nest slice. // The profitability model executes the following steps: // *) Computes the backward computation slice at 'srcOpInst'. This // computation slice of the loop nest surrounding 'srcOpInst' is // represented by modified src loop bounds in 'sliceState', which are // functions of loop IVs in the loop nest surrounding 'srcOpInst'. // *) Computes the cost of unfused src/dst loop nests (currently the cost of a // loop nest is the total number of dynamic operation instances in the loop // nest). // *) Computes the cost of fusing a slice of the src loop nest into the dst // loop nest at various values of dst loop depth, attempting to fuse // the largest computation slice at the maximal dst loop depth (closest to // the load) to minimize reuse distance and potentially enable subsequent // load/store forwarding. // NOTE: If the dst loop nest includes multiple loads in 'dstLoadOpInsts' for // the same memref as is written by 'srcOpInst', then the union of slice // loop bounds is used to compute the slice and associated slice cost. // NOTE: 'dstLoopDepth' refers to the loop depth within the destination loop // nest, at which the src computation slice is inserted/fused. // NOTE: We attempt to maximize the dst loop depth, but there are cases // where a particular setting for 'dstLoopNest' might fuse an unsliced // loop (within the src computation slice) at a depth which results in // excessive recomputation (see unit tests for examples). // *) Compares the total cost of the unfused loop nests to the min cost fused // loop nest computed in the previous step, and returns true if the latter // is lower. static bool isFusionProfitable(Operation *srcOpInst, Operation *srcStoreOpInst, ArrayRef<Operation *> dstLoadOpInsts, ArrayRef<Operation *> dstStoreOpInsts, ComputationSliceState *sliceState, unsigned *dstLoopDepth, bool maximalFusion, double computeToleranceThreshold) { LLVM_DEBUG({ llvm::dbgs() << "Checking whether fusion is profitable between src op:\n"; llvm::dbgs() << ' ' << *srcOpInst << " and destination op(s)\n"; for (auto dstOpInst : dstLoadOpInsts) { llvm::dbgs() << " " << *dstOpInst << "\n"; }; }); // Compute cost of sliced and unsliced src loop nest. SmallVector<AffineForOp, 4> srcLoopIVs; getLoopIVs(*srcOpInst, &srcLoopIVs); unsigned numSrcLoopIVs = srcLoopIVs.size(); // Walk src loop nest and collect stats. LoopNestStats srcLoopNestStats; if (!getLoopNestStats(srcLoopIVs[0], &srcLoopNestStats)) return false; // Compute cost of dst loop nest. SmallVector<AffineForOp, 4> dstLoopIVs; getLoopIVs(*dstLoadOpInsts[0], &dstLoopIVs); LoopNestStats dstLoopNestStats; if (!getLoopNestStats(dstLoopIVs[0], &dstLoopNestStats)) return false; // Compute the maximum loop depth at which we can can insert the src slice // and still satisfy dest loop nest dependences, for producer-consumer fusion. unsigned maxDstLoopDepth = (srcOpInst == srcStoreOpInst) ? getMaxLoopDepth(dstLoadOpInsts, dstStoreOpInsts) : dstLoopIVs.size(); if (maxDstLoopDepth == 0) { LLVM_DEBUG(llvm::dbgs() << "Can't fuse: maxDstLoopDepth == 0 .\n"); return false; } // Search for min cost value for 'dstLoopDepth'. At each value of // 'dstLoopDepth' from 'maxDstLoopDepth' to '1', compute computation slice // bounds between 'srcOpInst' and each op in 'dstOpinsts' (taking the union // of these bounds). Next the union slice bounds are used to calculate // the cost of the slice and the cost of the slice inserted into the dst // loop nest at 'dstLoopDepth'. uint64_t minFusedLoopNestComputeCost = std::numeric_limits<uint64_t>::max(); double maxStorageReduction = 0.0; Optional<uint64_t> sliceMemEstimate = None; SmallVector<ComputationSliceState, 4> sliceStates; sliceStates.resize(maxDstLoopDepth); // The best loop depth at which to materialize the slice. Optional<unsigned> bestDstLoopDepth = None; // Compute op instance count for the src loop nest without iteration slicing. uint64_t srcLoopNestCost = getComputeCost(srcLoopIVs[0], srcLoopNestStats); // Compute src loop nest write region size. MemRefRegion srcWriteRegion(srcStoreOpInst->getLoc()); if (failed(srcWriteRegion.compute(srcStoreOpInst, /*loopDepth=*/0))) { LLVM_DEBUG(llvm::dbgs() << "Unable to compute MemRefRegion for source operation\n."); return false; } Optional<int64_t> maybeSrcWriteRegionSizeBytes = srcWriteRegion.getRegionSize(); if (!maybeSrcWriteRegionSizeBytes.hasValue()) return false; int64_t srcWriteRegionSizeBytes = maybeSrcWriteRegionSizeBytes.getValue(); // Compute op instance count for the src loop nest. uint64_t dstLoopNestCost = getComputeCost(dstLoopIVs[0], dstLoopNestStats); // Evaluate all depth choices for materializing the slice in the destination // loop nest. for (unsigned i = maxDstLoopDepth; i >= 1; --i) { // Compute the union of slice bounds of all ops in 'dstLoadOpInsts'. if (failed(mlir::computeSliceUnion({srcOpInst}, dstLoadOpInsts, /*loopDepth=*/i, /*numCommonLoops=*/0, /*isBackwardSlice=*/true, &sliceStates[i - 1]))) { LLVM_DEBUG(llvm::dbgs() << "computeSliceUnion failed for loopDepth: " << i << "\n"); continue; } int64_t fusedLoopNestComputeCost; if (!getFusionComputeCost(srcLoopIVs[0], srcLoopNestStats, dstLoopIVs[0], dstLoopNestStats, &sliceStates[i - 1], &fusedLoopNestComputeCost)) { LLVM_DEBUG(llvm::dbgs() << "Unable to compute fusion compute cost.\n."); continue; } double additionalComputeFraction = fusedLoopNestComputeCost / (static_cast<double>(srcLoopNestCost) + dstLoopNestCost) - 1; // Determine what the slice write MemRefRegion would be, if the src loop // nest slice 'sliceStates[i - 1]' were to be inserted into the dst loop // nest at loop depth 'i' MemRefRegion sliceWriteRegion(srcStoreOpInst->getLoc()); if (failed(sliceWriteRegion.compute(srcStoreOpInst, /*loopDepth=*/0, &sliceStates[i - 1]))) { LLVM_DEBUG(llvm::dbgs() << "Failed to compute slice write region at loopDepth: " << i << "\n"); continue; } Optional<int64_t> maybeSliceWriteRegionSizeBytes = sliceWriteRegion.getRegionSize(); if (!maybeSliceWriteRegionSizeBytes.hasValue() || maybeSliceWriteRegionSizeBytes.getValue() == 0) { LLVM_DEBUG(llvm::dbgs() << "Failed to get slice write region size at loopDepth: " << i << "\n"); continue; } int64_t sliceWriteRegionSizeBytes = maybeSliceWriteRegionSizeBytes.getValue(); // If we are fusing for reuse, check that write regions remain the same. // TODO(andydavis) Write region check should check sizes and offsets in // each dimension, so that we are sure they are covering the same memref // region. Also, move this out to a isMemRefRegionSuperSet helper function. if (srcOpInst != srcStoreOpInst && sliceWriteRegionSizeBytes != srcWriteRegionSizeBytes) continue; double storageReduction = static_cast<double>(srcWriteRegionSizeBytes) / static_cast<double>(sliceWriteRegionSizeBytes); LLVM_DEBUG({ std::stringstream msg; msg << " evaluating fusion profitability at depth : " << i << "\n" << std::fixed << std::setprecision(2) << " additional compute fraction: " << 100.0 * additionalComputeFraction << "%\n" << " storage reduction factor: " << storageReduction << "x\n" << " fused nest cost: " << fusedLoopNestComputeCost << "\n" << " src write region size: " << srcWriteRegionSizeBytes << "\n" << " slice write region size: " << sliceWriteRegionSizeBytes << "\n"; llvm::dbgs() << msg.str(); }); // TODO(b/123247369): This is a placeholder cost model. // Among all choices that add an acceptable amount of redundant computation // (as per computeToleranceThreshold), we will simply pick the one that // reduces the intermediary size the most. if ((storageReduction > maxStorageReduction) && (maximalFusion || (additionalComputeFraction < computeToleranceThreshold))) { maxStorageReduction = storageReduction; bestDstLoopDepth = i; minFusedLoopNestComputeCost = fusedLoopNestComputeCost; sliceMemEstimate = sliceWriteRegionSizeBytes; } } // A simple cost model: fuse if it reduces the memory footprint. If // -maximal-fusion is set, fuse nevertheless. if (!maximalFusion && !bestDstLoopDepth.hasValue()) { LLVM_DEBUG( llvm::dbgs() << "All fusion choices involve more than the threshold amount of " "redundant computation; NOT fusing.\n"); return false; } if (!bestDstLoopDepth.hasValue()) { LLVM_DEBUG(llvm::dbgs() << "no fusion depth could be evaluated.\n"); return false; } // Set dstLoopDepth based on best values from search. *dstLoopDepth = bestDstLoopDepth.getValue(); LLVM_DEBUG( llvm::dbgs() << " LoopFusion fusion stats:" << "\n best loop depth: " << bestDstLoopDepth << "\n src loop nest compute cost: " << srcLoopNestCost << "\n dst loop nest compute cost: " << dstLoopNestCost << "\n fused loop nest compute cost: " << minFusedLoopNestComputeCost << "\n"); auto dstMemSize = getMemoryFootprintBytes(dstLoopIVs[0]); auto srcMemSize = getMemoryFootprintBytes(srcLoopIVs[0]); Optional<double> storageReduction = None; if (!maximalFusion) { if (!dstMemSize.hasValue() || !srcMemSize.hasValue()) { LLVM_DEBUG( llvm::dbgs() << " fusion memory benefit cannot be evaluated; NOT fusing.\n"); return false; } auto srcMemSizeVal = srcMemSize.getValue(); auto dstMemSizeVal = dstMemSize.getValue(); assert(sliceMemEstimate.hasValue() && "expected value"); auto fusedMem = dstMemSizeVal + sliceMemEstimate.getValue(); LLVM_DEBUG(llvm::dbgs() << " src mem: " << srcMemSizeVal << "\n" << " dst mem: " << dstMemSizeVal << "\n" << " fused mem: " << fusedMem << "\n" << " slice mem: " << sliceMemEstimate << "\n"); if (static_cast<long>(fusedMem) > srcMemSizeVal + dstMemSizeVal) { LLVM_DEBUG(llvm::dbgs() << "Fusion is not profitable; NOT fusing.\n"); return false; } storageReduction = 100.0 * (1.0 - fusedMem / (static_cast<double>(srcMemSizeVal) + dstMemSizeVal)); } double additionalComputeFraction = 100.0 * (minFusedLoopNestComputeCost / (static_cast<double>(srcLoopNestCost) + dstLoopNestCost) - 1); (void)additionalComputeFraction; LLVM_DEBUG({ std::stringstream msg; msg << " fusion is most profitable at depth " << *dstLoopDepth << " with " << std::setprecision(2) << additionalComputeFraction << "% redundant computation and a "; msg << (storageReduction.hasValue() ? std::to_string(storageReduction.getValue()) : "<unknown>"); msg << "% storage reduction.\n"; llvm::dbgs() << msg.str(); }); // Update return parameter 'sliceState' with 'bestSliceState'. ComputationSliceState *bestSliceState = &sliceStates[*dstLoopDepth - 1]; sliceState->lbs = bestSliceState->lbs; sliceState->ubs = bestSliceState->ubs; sliceState->lbOperands = bestSliceState->lbOperands; sliceState->ubOperands = bestSliceState->ubOperands; // Canonicalize slice bound affine maps. for (unsigned i = 0; i < numSrcLoopIVs; ++i) { if (sliceState->lbs[i] != AffineMap()) { canonicalizeMapAndOperands(&sliceState->lbs[i], &sliceState->lbOperands[i]); } if (sliceState->ubs[i] != AffineMap()) { canonicalizeMapAndOperands(&sliceState->ubs[i], &sliceState->ubOperands[i]); } } return true; } namespace { // GreedyFusion greedily fuses loop nests which have a producer/consumer or // input-reuse relationship on a memref, with the goal of improving locality. // // The steps of the producer-consumer fusion algorithm are as follows: // // *) A worklist is initialized with node ids from the dependence graph. // *) For each node id in the worklist: // *) Pop an AffineForOp of the worklist. This 'dstAffineForOp' will be a // candidate destination AffineForOp into which fusion will be attempted. // *) Add each LoadOp currently in 'dstAffineForOp' into list 'dstLoadOps'. // *) For each LoadOp in 'dstLoadOps' do: // *) Look up dependent loop nests which have a single store op to the same // memref. // *) Check if dependences would be violated by the fusion. // *) Get a computation slice of 'srcLoopNest', which adjusts its loop // bounds to be functions of 'dstLoopNest' IVs and symbols. // *) Fuse the 'srcLoopNest' computation slice into the 'dstLoopNest', // at a loop depth determined by the cost model in 'isFusionProfitable'. // *) Add the newly fused load/store operations to the state, // and also add newly fused load ops to 'dstLoopOps' to be considered // as fusion dst load ops in another iteration. // *) Remove old src loop nest and its associated state. // // The steps of the input-reuse fusion algorithm are as follows: // // *) Initialize 'worklist' with node ids from the dependence graph. // *) For each 'dstNode' in the worklist: // *) Find a candidate sibling node 'sibNode' to fuse with 'dstNode' which // loads from the same memref, but which has no dependence paths to/from. // *) Get a computation slice of 'sibLoopNest', which adjusts its loop // bounds to be functions of 'dstLoopNest' IVs and symbols. // *) Fuse the 'sibLoopNest' computation slice into the 'dstLoopNest', // at a loop depth determined by the cost model in 'isFusionProfitable'. // This function also checks that the memref write region of 'sibLoopNest', // is preserved in the fused loop nest. // *) Update graph state to reflect the fusion of 'sibNode' into 'dstNode'. // // Given a graph where top-level operations are vertices in the set 'V' and // edges in the set 'E' are dependences between vertices, this algorithm // takes O(V) time for initialization, and has runtime O(V + E). // // This greedy algorithm is not 'maximal' due to the current restriction of // fusing along single producer consumer edges, but there is a TODO to fix this. // // TODO(andydavis) Experiment with other fusion policies. struct GreedyFusion { public: // The data dependence graph to traverse during fusion. MemRefDependenceGraph *mdg; // Worklist of graph nodes visited during the fusion pass. SmallVector<unsigned, 8> worklist; // Set of graph nodes which are present on the worklist. llvm::SmallDenseSet<unsigned, 16> worklistSet; // Parameter for local buffer size threshold. unsigned localBufSizeThreshold; // Parameter for fast memory space. Optional<unsigned> fastMemorySpace; // If true, ignore any additional (redundant) computation tolerance threshold // that would have prevented fusion. bool maximalFusion; // The amount of additional computation that is tolerated while fusing // pair-wise as a fraction of the total computation. double computeToleranceThreshold; using Node = MemRefDependenceGraph::Node; GreedyFusion(MemRefDependenceGraph *mdg, unsigned localBufSizeThreshold, Optional<unsigned> fastMemorySpace, bool maximalFusion, double computeToleranceThreshold) : mdg(mdg), localBufSizeThreshold(localBufSizeThreshold), fastMemorySpace(fastMemorySpace), maximalFusion(maximalFusion), computeToleranceThreshold(computeToleranceThreshold) {} // Initializes 'worklist' with nodes from 'mdg' void init() { // TODO(andydavis) Add a priority queue for prioritizing nodes by different // metrics (e.g. arithmetic intensity/flops-to-bytes ratio). worklist.clear(); worklistSet.clear(); for (auto &idAndNode : mdg->nodes) { const Node &node = idAndNode.second; worklist.push_back(node.id); worklistSet.insert(node.id); } } // Run the GreedyFusion pass. // *) First pass through the nodes fuses single-use producer nodes into their // unique consumer. // *) Second pass fuses sibling nodes which share no dependence edges. // *) Third pass fuses any remaining producer nodes into their users. void run() { // TODO(andydavis) Run this repeatedly until a fixed-point is reached. fuseProducerConsumerNodes(/*maxSrcUserCount=*/1); fuseSiblingNodes(); fuseProducerConsumerNodes( /*maxSrcUserCount=*/std::numeric_limits<unsigned>::max()); eraseUnusedMemRefAllocations(); } void fuseProducerConsumerNodes(unsigned maxSrcUserCount) { init(); while (!worklist.empty()) { unsigned dstId = worklist.back(); worklist.pop_back(); worklistSet.erase(dstId); // Skip if this node was removed (fused into another node). if (mdg->nodes.count(dstId) == 0) continue; // Get 'dstNode' into which to attempt fusion. auto *dstNode = mdg->getNode(dstId); // Skip if 'dstNode' is not a loop nest. if (!isa<AffineForOp>(dstNode->op)) continue; // Sink sequential loops in 'dstNode' (and thus raise parallel loops) // while preserving relative order. This can increase the maximum loop // depth at which we can fuse a slice of a producer loop nest into a // consumer loop nest. sinkSequentialLoops(dstNode); SmallVector<Operation *, 4> loads = dstNode->loads; SmallVector<Operation *, 4> dstLoadOpInsts; DenseSet<Value> visitedMemrefs; while (!loads.empty()) { // Get memref of load on top of the stack. auto memref = cast<AffineReadOpInterface>(loads.back()).getMemRef(); if (visitedMemrefs.count(memref) > 0) continue; visitedMemrefs.insert(memref); // Move all loads in 'loads' accessing 'memref' to 'dstLoadOpInsts'. moveLoadsAccessingMemrefTo(memref, &loads, &dstLoadOpInsts); // Skip if no input edges along which to fuse. if (mdg->inEdges.count(dstId) == 0) continue; // Iterate through in-edges for 'dstId' and src node id for any // edges on 'memref'. SmallVector<unsigned, 2> srcNodeIds; for (auto &srcEdge : mdg->inEdges[dstId]) { // Skip 'srcEdge' if not for 'memref'. if (srcEdge.value != memref) continue; srcNodeIds.push_back(srcEdge.id); } for (unsigned srcId : srcNodeIds) { // Skip if this node was removed (fused into another node). if (mdg->nodes.count(srcId) == 0) continue; // Get 'srcNode' from which to attempt fusion into 'dstNode'. auto *srcNode = mdg->getNode(srcId); // Skip if 'srcNode' is not a loop nest. if (!isa<AffineForOp>(srcNode->op)) continue; // Skip if 'srcNode' has more than one live-out store to a // function-local memref. // TODO(andydavis) Support more generic multi-output src loop nests // fusion. auto srcStoreOp = mdg->getUniqueOutgoingStore(srcNode); if (!srcStoreOp) { // Get the src store op at the deepest loop depth. // We will use 'LoopFusionUtils::canFuseLoops' to check fusion // feasibility for loops with multiple stores. unsigned maxLoopDepth = 0; for (auto *op : srcNode->stores) { auto storeOp = cast<AffineWriteOpInterface>(op); if (storeOp.getMemRef() != memref) { srcStoreOp = nullptr; break; } unsigned loopDepth = getNestingDepth(storeOp); if (loopDepth > maxLoopDepth) { maxLoopDepth = loopDepth; srcStoreOp = storeOp; } } if (!srcStoreOp) continue; } // Unique outgoing store found must write to 'memref' since 'memref' // is the one that established the producer-consumer relationship // between 'srcNode' and 'dstNode'. assert(srcStoreOp.getMemRef() == memref && "Found store to unexpected memref"); // Skip if 'srcNode' writes to any live in or escaping memrefs, // and cannot be fused. bool writesToLiveInOrOut = mdg->writesToLiveInOrEscapingMemrefs(srcNode->id); if (writesToLiveInOrOut && !canFuseSrcWhichWritesToLiveOut(srcId, dstId, srcStoreOp, mdg)) continue; // Don't create a private memref if 'writesToLiveInOrOut'. bool createPrivateMemref = !writesToLiveInOrOut; // Don't create a private memref if 'srcNode' has in edges on // 'memref', or if 'dstNode' has out edges on 'memref'. if (mdg->getIncomingMemRefAccesses(srcNode->id, memref) > 0 || mdg->getOutEdgeCount(dstNode->id, memref) > 0) { createPrivateMemref = false; } // Skip if 'srcNode' out edge count on 'memref' > 'maxSrcUserCount'. if (mdg->getOutEdgeCount(srcNode->id, memref) > maxSrcUserCount) continue; // Compute an operation list insertion point for the fused loop // nest which preserves dependences. Operation *insertPointInst = mdg->getFusedLoopNestInsertionPoint(srcNode->id, dstNode->id); if (insertPointInst == nullptr) continue; // Compute the innermost common loop depth for dstNode loads/stores. SmallVector<Operation *, 2> dstOps(dstNode->loads.begin(), dstNode->loads.end()); dstOps.append(dstNode->stores.begin(), dstNode->stores.end()); unsigned dstLoopDepthTest = getInnermostCommonLoopDepth(dstOps); // Check the feasibility of fusing src loop nest into dst loop nest // at loop depths in range [1, dstLoopDepthTest]. // TODO(andydavis) Use slice union computation and union of memref // read/write regions to cost model and fusion. bool canFuse = false; for (unsigned i = 1; i <= dstLoopDepthTest; ++i) { ComputationSliceState sliceUnion; FusionResult result = mlir::canFuseLoops( cast<AffineForOp>(srcNode->op), cast<AffineForOp>(dstNode->op), /*dstLoopDepth=*/i, &sliceUnion); if (result.value == FusionResult::Success) canFuse = true; } // Skip if fusion is not feasible at all loop depths. if (!canFuse) continue; // Gather 'dstNode' store ops to 'memref'. SmallVector<Operation *, 2> dstStoreOpInsts; for (auto *storeOpInst : dstNode->stores) if (cast<AffineWriteOpInterface>(storeOpInst).getMemRef() == memref) dstStoreOpInsts.push_back(storeOpInst); unsigned bestDstLoopDepth; mlir::ComputationSliceState sliceState; // Check if fusion would be profitable. if (!isFusionProfitable(srcStoreOp, srcStoreOp, dstLoadOpInsts, dstStoreOpInsts, &sliceState, &bestDstLoopDepth, maximalFusion, computeToleranceThreshold)) continue; // Fuse computation slice of 'srcLoopNest' into 'dstLoopNest'. auto sliceLoopNest = mlir::insertBackwardComputationSlice( srcStoreOp, dstLoadOpInsts[0], bestDstLoopDepth, &sliceState); if (sliceLoopNest) { LLVM_DEBUG(llvm::dbgs() << "\tslice loop nest:\n" << *sliceLoopNest.getOperation() << "\n"); // Move 'dstAffineForOp' before 'insertPointInst' if needed. auto dstAffineForOp = cast<AffineForOp>(dstNode->op); if (insertPointInst != dstAffineForOp.getOperation()) { dstAffineForOp.getOperation()->moveBefore(insertPointInst); } // Update edges between 'srcNode' and 'dstNode'. mdg->updateEdges(srcNode->id, dstNode->id, memref, createPrivateMemref); // Collect slice loop stats. LoopNestStateCollector sliceCollector; sliceCollector.collect(sliceLoopNest.getOperation()); // Promote single iteration slice loops to single IV value. for (auto forOp : sliceCollector.forOps) { promoteIfSingleIteration(forOp); } if (createPrivateMemref) { // Create private memref for 'memref' in 'dstAffineForOp'. SmallVector<Operation *, 4> storesForMemref; for (auto *storeOpInst : sliceCollector.storeOpInsts) { if (cast<AffineWriteOpInterface>(storeOpInst).getMemRef() == memref) storesForMemref.push_back(storeOpInst); } // TODO(andydavis) Use union of memref write regions to compute // private memref footprint. auto newMemRef = createPrivateMemRef( dstAffineForOp, storesForMemref[0], bestDstLoopDepth, fastMemorySpace, localBufSizeThreshold); visitedMemrefs.insert(newMemRef); // Create new node in dependence graph for 'newMemRef' alloc op. unsigned newMemRefNodeId = mdg->addNode(newMemRef.getDefiningOp()); // Add edge from 'newMemRef' node to dstNode. mdg->addEdge(newMemRefNodeId, dstId, newMemRef); } // Collect dst loop stats after memref privatization transformation. LoopNestStateCollector dstLoopCollector; dstLoopCollector.collect(dstAffineForOp.getOperation()); // Add new load ops to current Node load op list 'loads' to // continue fusing based on new operands. for (auto *loadOpInst : dstLoopCollector.loadOpInsts) { auto loadMemRef = cast<AffineReadOpInterface>(loadOpInst).getMemRef(); // NOTE: Change 'loads' to a hash set in case efficiency is an // issue. We still use a vector since it's expected to be small. if (visitedMemrefs.count(loadMemRef) == 0 && !llvm::is_contained(loads, loadOpInst)) loads.push_back(loadOpInst); } // Clear and add back loads and stores. mdg->clearNodeLoadAndStores(dstNode->id); mdg->addToNode(dstId, dstLoopCollector.loadOpInsts, dstLoopCollector.storeOpInsts); // Remove old src loop nest if it no longer has outgoing dependence // edges, and if it does not write to a memref which escapes the // function. If 'writesToLiveInOrOut' is true, then 'srcNode' has // been fused into 'dstNode' and write region of 'dstNode' covers // the write region of 'srcNode', and 'srcNode' has no other users // so it is safe to remove. if (writesToLiveInOrOut || mdg->canRemoveNode(srcNode->id)) { mdg->removeNode(srcNode->id); srcNode->op->erase(); } else { // Add remaining users of 'oldMemRef' back on the worklist (if not // already there), as its replacement with a local/private memref // has reduced dependences on 'oldMemRef' which may have created // new fusion opportunities. if (mdg->outEdges.count(srcNode->id) > 0) { SmallVector<MemRefDependenceGraph::Edge, 2> oldOutEdges = mdg->outEdges[srcNode->id]; for (auto &outEdge : oldOutEdges) { if (outEdge.value == memref && worklistSet.count(outEdge.id) == 0) { worklist.push_back(outEdge.id); worklistSet.insert(outEdge.id); } } } } } } } } } // Visits each node in the graph, and for each node, attempts to fuse it with // its sibling nodes (nodes which share a parent, but no dependence edges). void fuseSiblingNodes() { init(); while (!worklist.empty()) { unsigned dstId = worklist.back(); worklist.pop_back(); worklistSet.erase(dstId); // Skip if this node was removed (fused into another node). if (mdg->nodes.count(dstId) == 0) continue; // Get 'dstNode' into which to attempt fusion. auto *dstNode = mdg->getNode(dstId); // Skip if 'dstNode' is not a loop nest. if (!isa<AffineForOp>(dstNode->op)) continue; // Attempt to fuse 'dstNode' with its sibling nodes in the graph. fuseWithSiblingNodes(dstNode); } } // Attempt to fuse 'dstNode' with sibling nodes in the graph. void fuseWithSiblingNodes(Node *dstNode) { DenseSet<unsigned> visitedSibNodeIds; std::pair<unsigned, Value> idAndMemref; while (findSiblingNodeToFuse(dstNode, &visitedSibNodeIds, &idAndMemref)) { unsigned sibId = idAndMemref.first; Value memref = idAndMemref.second; // TODO(andydavis) Check that 'sibStoreOpInst' post-dominates all other // stores to the same memref in 'sibNode' loop nest. auto *sibNode = mdg->getNode(sibId); // Compute an operation list insertion point for the fused loop // nest which preserves dependences. assert(sibNode->op->getBlock() == dstNode->op->getBlock()); Operation *insertPointInst = sibNode->op->isBeforeInBlock(dstNode->op) ? mdg->getFusedLoopNestInsertionPoint(sibNode->id, dstNode->id) : mdg->getFusedLoopNestInsertionPoint(dstNode->id, sibNode->id); if (insertPointInst == nullptr) continue; // Check if fusion would be profitable and at what depth. // Get unique 'sibNode' load op to 'memref'. SmallVector<Operation *, 2> sibLoadOpInsts; sibNode->getLoadOpsForMemref(memref, &sibLoadOpInsts); // Currently findSiblingNodeToFuse searches for siblings with one load. assert(sibLoadOpInsts.size() == 1); Operation *sibLoadOpInst = sibLoadOpInsts[0]; assert(!sibNode->stores.empty()); // TODO(andydavis) Choose the store which postdominates all other stores. auto *sibStoreOpInst = sibNode->stores.back(); // Gather 'dstNode' load ops to 'memref'. SmallVector<Operation *, 2> dstLoadOpInsts; dstNode->getLoadOpsForMemref(memref, &dstLoadOpInsts); // Gather 'dstNode' store ops to 'memref'. SmallVector<Operation *, 2> dstStoreOpInsts; dstNode->getStoreOpsForMemref(memref, &dstStoreOpInsts); unsigned bestDstLoopDepth; mlir::ComputationSliceState sliceState; // Check if fusion would be profitable. if (!isFusionProfitable(sibLoadOpInst, sibStoreOpInst, dstLoadOpInsts, dstStoreOpInsts, &sliceState, &bestDstLoopDepth, maximalFusion, computeToleranceThreshold)) continue; // Fuse computation slice of 'sibLoopNest' into 'dstLoopNest'. auto sliceLoopNest = mlir::insertBackwardComputationSlice( sibLoadOpInst, dstLoadOpInsts[0], bestDstLoopDepth, &sliceState); if (sliceLoopNest != nullptr) { auto dstForInst = cast<AffineForOp>(dstNode->op); // Update operation position of fused loop nest (if needed). if (insertPointInst != dstForInst.getOperation()) { dstForInst.getOperation()->moveBefore(insertPointInst); } // Update data dependence graph state post fusion. updateStateAfterSiblingFusion(sliceLoopNest, sibNode, dstNode); } } } // Searches function argument uses and the graph from 'dstNode' looking for a // fusion candidate sibling node which shares no dependences with 'dstNode' // but which loads from the same memref. Returns true and sets // 'idAndMemrefToFuse' on success. Returns false otherwise. bool findSiblingNodeToFuse(Node *dstNode, DenseSet<unsigned> *visitedSibNodeIds, std::pair<unsigned, Value> *idAndMemrefToFuse) { // Returns true if 'sibNode' can be fused with 'dstNode' for input reuse // on 'memref'. auto canFuseWithSibNode = [&](Node *sibNode, Value memref) { // Skip if 'outEdge' is not a read-after-write dependence. // TODO(andydavis) Remove restrict to single load op restriction. if (sibNode->getLoadOpCount(memref) != 1) return false; // Skip if there exists a path of dependent edges between // 'sibNode' and 'dstNode'. if (mdg->hasDependencePath(sibNode->id, dstNode->id) || mdg->hasDependencePath(dstNode->id, sibNode->id)) return false; // Skip sib node if it loads to (and stores from) the same memref on // which it also has an input dependence edge. DenseSet<Value> loadAndStoreMemrefSet; sibNode->getLoadAndStoreMemrefSet(&loadAndStoreMemrefSet); if (llvm::any_of(loadAndStoreMemrefSet, [=](Value memref) { return mdg->getIncomingMemRefAccesses(sibNode->id, memref) > 0; })) return false; // Check that all stores are to the same memref. DenseSet<Value> storeMemrefs; for (auto *storeOpInst : sibNode->stores) { storeMemrefs.insert( cast<AffineWriteOpInterface>(storeOpInst).getMemRef()); } if (storeMemrefs.size() != 1) return false; return true; }; // Search for siblings which load the same memref function argument. auto fn = dstNode->op->getParentOfType<FuncOp>(); for (unsigned i = 0, e = fn.getNumArguments(); i != e; ++i) { for (auto *user : fn.getArgument(i).getUsers()) { if (auto loadOp = dyn_cast<AffineReadOpInterface>(user)) { // Gather loops surrounding 'use'. SmallVector<AffineForOp, 4> loops; getLoopIVs(*user, &loops); // Skip 'use' if it is not within a loop nest. if (loops.empty()) continue; Node *sibNode = mdg->getForOpNode(loops[0]); assert(sibNode != nullptr); // Skip 'use' if it not a sibling to 'dstNode'. if (sibNode->id == dstNode->id) continue; // Skip 'use' if it has been visited. if (visitedSibNodeIds->count(sibNode->id) > 0) continue; // Skip 'use' if it does not load from the same memref as 'dstNode'. auto memref = loadOp.getMemRef(); if (dstNode->getLoadOpCount(memref) == 0) continue; // Check if 'sibNode/dstNode' can be input-reuse fused on 'memref'. if (canFuseWithSibNode(sibNode, memref)) { visitedSibNodeIds->insert(sibNode->id); idAndMemrefToFuse->first = sibNode->id; idAndMemrefToFuse->second = memref; return true; } } } } // Search for siblings by following edges through an intermediate src node. // Collect candidate 'dstNode' input edges in 'inEdges'. SmallVector<MemRefDependenceGraph::Edge, 2> inEdges; mdg->forEachMemRefInputEdge( dstNode->id, [&](MemRefDependenceGraph::Edge inEdge) { // Add 'inEdge' if it is a read-after-write dependence. if (dstNode->getLoadOpCount(inEdge.value) > 0 && mdg->getNode(inEdge.id)->getStoreOpCount(inEdge.value) > 0) inEdges.push_back(inEdge); }); // Search for sibling nodes to fuse by visiting output edges from each input // edge in 'inEdges'. for (auto &inEdge : inEdges) { // Collect candidate output edges from each node 'inEdge.id' in 'inEdges'. SmallVector<MemRefDependenceGraph::Edge, 2> outEdges; mdg->forEachMemRefOutputEdge( inEdge.id, [&](MemRefDependenceGraph::Edge outEdge) { unsigned sibNodeId = outEdge.id; if (visitedSibNodeIds->count(sibNodeId) > 0) return; // Skip output edge if not a sibling using the same memref. if (outEdge.id == dstNode->id || outEdge.value != inEdge.value) return; auto *sibNode = mdg->getNode(sibNodeId); if (!isa<AffineForOp>(sibNode->op)) return; // Check if 'sibNode/dstNode' can be input-reuse fused on 'memref'. if (canFuseWithSibNode(sibNode, outEdge.value)) { // Add candidate 'outEdge' to sibling node. outEdges.push_back(outEdge); } }); // Add first candidate if any were returned. if (!outEdges.empty()) { visitedSibNodeIds->insert(outEdges[0].id); idAndMemrefToFuse->first = outEdges[0].id; idAndMemrefToFuse->second = outEdges[0].value; return true; } } return false; } void updateStateAfterSiblingFusion(AffineForOp sliceLoopNest, Node *sibNode, Node *dstNode) { // Update 'sibNode' and 'dstNode' input/output edges to reflect fusion. mdg->updateEdges(sibNode->id, dstNode->id); // Collect slice loop stats. LoopNestStateCollector sliceCollector; sliceCollector.collect(sliceLoopNest.getOperation()); // Promote single iteration slice loops to single IV value. for (auto forOp : sliceCollector.forOps) { promoteIfSingleIteration(forOp); } // Collect dst loop stats after memref privatization transformation. auto dstForInst = cast<AffineForOp>(dstNode->op); LoopNestStateCollector dstLoopCollector; dstLoopCollector.collect(dstForInst.getOperation()); // Clear and add back loads and stores mdg->clearNodeLoadAndStores(dstNode->id); mdg->addToNode(dstNode->id, dstLoopCollector.loadOpInsts, dstLoopCollector.storeOpInsts); // Remove old sibling loop nest if it no longer has outgoing dependence // edges, and it does not write to a memref which escapes the // function. if (mdg->getOutEdgeCount(sibNode->id) == 0) { mdg->removeNode(sibNode->id); sibNode->op->erase(); } } // Clean up any allocs with no users. void eraseUnusedMemRefAllocations() { for (auto &pair : mdg->memrefEdgeCount) { if (pair.second > 0) continue; auto memref = pair.first; // Skip if there exist other uses (return operation or function calls). if (!memref.use_empty()) continue; // Use list expected to match the dep graph info. auto *op = memref.getDefiningOp(); if (isa_and_nonnull<AllocOp>(op)) op->erase(); } } }; } // end anonymous namespace void LoopFusion::runOnFunction() { MemRefDependenceGraph g; if (!g.init(getFunction())) return; Optional<unsigned> fastMemorySpaceOpt; if (fastMemorySpace.hasValue()) fastMemorySpaceOpt = fastMemorySpace; unsigned localBufSizeThresholdBytes = localBufSizeThreshold * 1024; GreedyFusion fusion(&g, localBufSizeThresholdBytes, fastMemorySpaceOpt, maximalFusion, computeToleranceThreshold); fusion.run(); }