Mercurial > hg > CbC > CbC_llvm
view include/llvm/CodeGen/LiveIntervalAnalysis.h @ 95:afa8332a0e37 LLVM3.8
LLVM 3.8
author | Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 13 Oct 2015 17:48:58 +0900 |
parents | 60c9769439b8 |
children | 7d135dc70f03 |
line wrap: on
line source
//===-- LiveIntervalAnalysis.h - Live Interval Analysis ---------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the LiveInterval analysis pass. Given some numbering of // each the machine instructions (in this implemention depth-first order) an // interval [i, j) is said to be a live interval for register v if there is no // instruction with number j' > j such that v is live at j' and there is no // instruction with number i' < i such that v is live at i'. In this // implementation intervals can have holes, i.e. an interval might look like // [1,20), [50,65), [1000,1001). // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_LIVEINTERVALANALYSIS_H #define LLVM_CODEGEN_LIVEINTERVALANALYSIS_H #include "llvm/ADT/IndexedMap.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/CodeGen/LiveInterval.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/SlotIndexes.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/CommandLine.h" #include "llvm/Target/TargetRegisterInfo.h" #include <cmath> #include <iterator> namespace llvm { extern cl::opt<bool> UseSegmentSetForPhysRegs; class BitVector; class BlockFrequency; class LiveRangeCalc; class LiveVariables; class MachineDominatorTree; class MachineLoopInfo; class TargetRegisterInfo; class MachineRegisterInfo; class TargetInstrInfo; class TargetRegisterClass; class VirtRegMap; class MachineBlockFrequencyInfo; class LiveIntervals : public MachineFunctionPass { MachineFunction* MF; MachineRegisterInfo* MRI; const TargetRegisterInfo* TRI; const TargetInstrInfo* TII; AliasAnalysis *AA; SlotIndexes* Indexes; MachineDominatorTree *DomTree; LiveRangeCalc *LRCalc; /// Special pool allocator for VNInfo's (LiveInterval val#). /// VNInfo::Allocator VNInfoAllocator; /// Live interval pointers for all the virtual registers. IndexedMap<LiveInterval*, VirtReg2IndexFunctor> VirtRegIntervals; /// RegMaskSlots - Sorted list of instructions with register mask operands. /// Always use the 'r' slot, RegMasks are normal clobbers, not early /// clobbers. SmallVector<SlotIndex, 8> RegMaskSlots; /// RegMaskBits - This vector is parallel to RegMaskSlots, it holds a /// pointer to the corresponding register mask. This pointer can be /// recomputed as: /// /// MI = Indexes->getInstructionFromIndex(RegMaskSlot[N]); /// unsigned OpNum = findRegMaskOperand(MI); /// RegMaskBits[N] = MI->getOperand(OpNum).getRegMask(); /// /// This is kept in a separate vector partly because some standard /// libraries don't support lower_bound() with mixed objects, partly to /// improve locality when searching in RegMaskSlots. /// Also see the comment in LiveInterval::find(). SmallVector<const uint32_t*, 8> RegMaskBits; /// For each basic block number, keep (begin, size) pairs indexing into the /// RegMaskSlots and RegMaskBits arrays. /// Note that basic block numbers may not be layout contiguous, that's why /// we can't just keep track of the first register mask in each basic /// block. SmallVector<std::pair<unsigned, unsigned>, 8> RegMaskBlocks; /// Keeps a live range set for each register unit to track fixed physreg /// interference. SmallVector<LiveRange*, 0> RegUnitRanges; public: static char ID; // Pass identification, replacement for typeid LiveIntervals(); ~LiveIntervals() override; // Calculate the spill weight to assign to a single instruction. static float getSpillWeight(bool isDef, bool isUse, const MachineBlockFrequencyInfo *MBFI, const MachineInstr *Instr); LiveInterval &getInterval(unsigned Reg) { if (hasInterval(Reg)) return *VirtRegIntervals[Reg]; else return createAndComputeVirtRegInterval(Reg); } const LiveInterval &getInterval(unsigned Reg) const { return const_cast<LiveIntervals*>(this)->getInterval(Reg); } bool hasInterval(unsigned Reg) const { return VirtRegIntervals.inBounds(Reg) && VirtRegIntervals[Reg]; } // Interval creation. LiveInterval &createEmptyInterval(unsigned Reg) { assert(!hasInterval(Reg) && "Interval already exists!"); VirtRegIntervals.grow(Reg); VirtRegIntervals[Reg] = createInterval(Reg); return *VirtRegIntervals[Reg]; } LiveInterval &createAndComputeVirtRegInterval(unsigned Reg) { LiveInterval &LI = createEmptyInterval(Reg); computeVirtRegInterval(LI); return LI; } // Interval removal. void removeInterval(unsigned Reg) { delete VirtRegIntervals[Reg]; VirtRegIntervals[Reg] = nullptr; } /// Given a register and an instruction, adds a live segment from that /// instruction to the end of its MBB. LiveInterval::Segment addSegmentToEndOfBlock(unsigned reg, MachineInstr* startInst); /// After removing some uses of a register, shrink its live range to just /// the remaining uses. This method does not compute reaching defs for new /// uses, and it doesn't remove dead defs. /// Dead PHIDef values are marked as unused. New dead machine instructions /// are added to the dead vector. Returns true if the interval may have been /// separated into multiple connected components. bool shrinkToUses(LiveInterval *li, SmallVectorImpl<MachineInstr*> *dead = nullptr); /// Specialized version of /// shrinkToUses(LiveInterval *li, SmallVectorImpl<MachineInstr*> *dead) /// that works on a subregister live range and only looks at uses matching /// the lane mask of the subregister range. /// This may leave the subrange empty which needs to be cleaned up with /// LiveInterval::removeEmptySubranges() afterwards. void shrinkToUses(LiveInterval::SubRange &SR, unsigned Reg); /// extendToIndices - Extend the live range of LI to reach all points in /// Indices. The points in the Indices array must be jointly dominated by /// existing defs in LI. PHI-defs are added as needed to maintain SSA form. /// /// If a SlotIndex in Indices is the end index of a basic block, LI will be /// extended to be live out of the basic block. /// /// See also LiveRangeCalc::extend(). void extendToIndices(LiveRange &LR, ArrayRef<SlotIndex> Indices); /// If @p LR has a live value at @p Kill, prune its live range by removing /// any liveness reachable from Kill. Add live range end points to /// EndPoints such that extendToIndices(LI, EndPoints) will reconstruct the /// value's live range. /// /// Calling pruneValue() and extendToIndices() can be used to reconstruct /// SSA form after adding defs to a virtual register. void pruneValue(LiveRange &LR, SlotIndex Kill, SmallVectorImpl<SlotIndex> *EndPoints); SlotIndexes *getSlotIndexes() const { return Indexes; } AliasAnalysis *getAliasAnalysis() const { return AA; } /// isNotInMIMap - returns true if the specified machine instr has been /// removed or was never entered in the map. bool isNotInMIMap(const MachineInstr* Instr) const { return !Indexes->hasIndex(Instr); } /// Returns the base index of the given instruction. SlotIndex getInstructionIndex(const MachineInstr *instr) const { return Indexes->getInstructionIndex(instr); } /// Returns the instruction associated with the given index. MachineInstr* getInstructionFromIndex(SlotIndex index) const { return Indexes->getInstructionFromIndex(index); } /// Return the first index in the given basic block. SlotIndex getMBBStartIdx(const MachineBasicBlock *mbb) const { return Indexes->getMBBStartIdx(mbb); } /// Return the last index in the given basic block. SlotIndex getMBBEndIdx(const MachineBasicBlock *mbb) const { return Indexes->getMBBEndIdx(mbb); } bool isLiveInToMBB(const LiveRange &LR, const MachineBasicBlock *mbb) const { return LR.liveAt(getMBBStartIdx(mbb)); } bool isLiveOutOfMBB(const LiveRange &LR, const MachineBasicBlock *mbb) const { return LR.liveAt(getMBBEndIdx(mbb).getPrevSlot()); } MachineBasicBlock* getMBBFromIndex(SlotIndex index) const { return Indexes->getMBBFromIndex(index); } void insertMBBInMaps(MachineBasicBlock *MBB) { Indexes->insertMBBInMaps(MBB); assert(unsigned(MBB->getNumber()) == RegMaskBlocks.size() && "Blocks must be added in order."); RegMaskBlocks.push_back(std::make_pair(RegMaskSlots.size(), 0)); } SlotIndex InsertMachineInstrInMaps(MachineInstr *MI) { return Indexes->insertMachineInstrInMaps(MI); } void InsertMachineInstrRangeInMaps(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E) { for (MachineBasicBlock::iterator I = B; I != E; ++I) Indexes->insertMachineInstrInMaps(I); } void RemoveMachineInstrFromMaps(MachineInstr *MI) { Indexes->removeMachineInstrFromMaps(MI); } void ReplaceMachineInstrInMaps(MachineInstr *MI, MachineInstr *NewMI) { Indexes->replaceMachineInstrInMaps(MI, NewMI); } VNInfo::Allocator& getVNInfoAllocator() { return VNInfoAllocator; } void getAnalysisUsage(AnalysisUsage &AU) const override; void releaseMemory() override; /// runOnMachineFunction - pass entry point bool runOnMachineFunction(MachineFunction&) override; /// print - Implement the dump method. void print(raw_ostream &O, const Module* = nullptr) const override; /// intervalIsInOneMBB - If LI is confined to a single basic block, return /// a pointer to that block. If LI is live in to or out of any block, /// return NULL. MachineBasicBlock *intervalIsInOneMBB(const LiveInterval &LI) const; /// Returns true if VNI is killed by any PHI-def values in LI. /// This may conservatively return true to avoid expensive computations. bool hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const; /// addKillFlags - Add kill flags to any instruction that kills a virtual /// register. void addKillFlags(const VirtRegMap*); /// handleMove - call this method to notify LiveIntervals that /// instruction 'mi' has been moved within a basic block. This will update /// the live intervals for all operands of mi. Moves between basic blocks /// are not supported. /// /// \param UpdateFlags Update live intervals for nonallocatable physregs. void handleMove(MachineInstr* MI, bool UpdateFlags = false); /// moveIntoBundle - Update intervals for operands of MI so that they /// begin/end on the SlotIndex for BundleStart. /// /// \param UpdateFlags Update live intervals for nonallocatable physregs. /// /// Requires MI and BundleStart to have SlotIndexes, and assumes /// existing liveness is accurate. BundleStart should be the first /// instruction in the Bundle. void handleMoveIntoBundle(MachineInstr* MI, MachineInstr* BundleStart, bool UpdateFlags = false); /// repairIntervalsInRange - Update live intervals for instructions in a /// range of iterators. It is intended for use after target hooks that may /// insert or remove instructions, and is only efficient for a small number /// of instructions. /// /// OrigRegs is a vector of registers that were originally used by the /// instructions in the range between the two iterators. /// /// Currently, the only only changes that are supported are simple removal /// and addition of uses. void repairIntervalsInRange(MachineBasicBlock *MBB, MachineBasicBlock::iterator Begin, MachineBasicBlock::iterator End, ArrayRef<unsigned> OrigRegs); // Register mask functions. // // Machine instructions may use a register mask operand to indicate that a // large number of registers are clobbered by the instruction. This is // typically used for calls. // // For compile time performance reasons, these clobbers are not recorded in // the live intervals for individual physical registers. Instead, // LiveIntervalAnalysis maintains a sorted list of instructions with // register mask operands. /// getRegMaskSlots - Returns a sorted array of slot indices of all /// instructions with register mask operands. ArrayRef<SlotIndex> getRegMaskSlots() const { return RegMaskSlots; } /// getRegMaskSlotsInBlock - Returns a sorted array of slot indices of all /// instructions with register mask operands in the basic block numbered /// MBBNum. ArrayRef<SlotIndex> getRegMaskSlotsInBlock(unsigned MBBNum) const { std::pair<unsigned, unsigned> P = RegMaskBlocks[MBBNum]; return getRegMaskSlots().slice(P.first, P.second); } /// getRegMaskBits() - Returns an array of register mask pointers /// corresponding to getRegMaskSlots(). ArrayRef<const uint32_t*> getRegMaskBits() const { return RegMaskBits; } /// getRegMaskBitsInBlock - Returns an array of mask pointers corresponding /// to getRegMaskSlotsInBlock(MBBNum). ArrayRef<const uint32_t*> getRegMaskBitsInBlock(unsigned MBBNum) const { std::pair<unsigned, unsigned> P = RegMaskBlocks[MBBNum]; return getRegMaskBits().slice(P.first, P.second); } /// checkRegMaskInterference - Test if LI is live across any register mask /// instructions, and compute a bit mask of physical registers that are not /// clobbered by any of them. /// /// Returns false if LI doesn't cross any register mask instructions. In /// that case, the bit vector is not filled in. bool checkRegMaskInterference(LiveInterval &LI, BitVector &UsableRegs); // Register unit functions. // // Fixed interference occurs when MachineInstrs use physregs directly // instead of virtual registers. This typically happens when passing // arguments to a function call, or when instructions require operands in // fixed registers. // // Each physreg has one or more register units, see MCRegisterInfo. We // track liveness per register unit to handle aliasing registers more // efficiently. /// getRegUnit - Return the live range for Unit. /// It will be computed if it doesn't exist. LiveRange &getRegUnit(unsigned Unit) { LiveRange *LR = RegUnitRanges[Unit]; if (!LR) { // Compute missing ranges on demand. // Use segment set to speed-up initial computation of the live range. RegUnitRanges[Unit] = LR = new LiveRange(UseSegmentSetForPhysRegs); computeRegUnitRange(*LR, Unit); } return *LR; } /// getCachedRegUnit - Return the live range for Unit if it has already /// been computed, or NULL if it hasn't been computed yet. LiveRange *getCachedRegUnit(unsigned Unit) { return RegUnitRanges[Unit]; } const LiveRange *getCachedRegUnit(unsigned Unit) const { return RegUnitRanges[Unit]; } /// Remove value numbers and related live segments starting at position /// @p Pos that are part of any liverange of physical register @p Reg or one /// of its subregisters. void removePhysRegDefAt(unsigned Reg, SlotIndex Pos); /// Remove value number and related live segments of @p LI and its subranges /// that start at position @p Pos. void removeVRegDefAt(LiveInterval &LI, SlotIndex Pos); /// Split separate components in LiveInterval \p LI into separate intervals. void splitSeparateComponents(LiveInterval &LI, SmallVectorImpl<LiveInterval*> &SplitLIs); private: /// Compute live intervals for all virtual registers. void computeVirtRegs(); /// Compute RegMaskSlots and RegMaskBits. void computeRegMasks(); /// Walk the values in @p LI and check for dead values: /// - Dead PHIDef values are marked as unused. /// - Dead operands are marked as such. /// - Completely dead machine instructions are added to the @p dead vector /// if it is not nullptr. /// Returns true if any PHI value numbers have been removed which may /// have separated the interval into multiple connected components. bool computeDeadValues(LiveInterval &LI, SmallVectorImpl<MachineInstr*> *dead); static LiveInterval* createInterval(unsigned Reg); void printInstrs(raw_ostream &O) const; void dumpInstrs() const; void computeLiveInRegUnits(); void computeRegUnitRange(LiveRange&, unsigned Unit); void computeVirtRegInterval(LiveInterval&); /// Helper function for repairIntervalsInRange(), walks backwards and /// creates/modifies live segments in @p LR to match the operands found. /// Only full operands or operands with subregisters matching @p LaneMask /// are considered. void repairOldRegInRange(MachineBasicBlock::iterator Begin, MachineBasicBlock::iterator End, const SlotIndex endIdx, LiveRange &LR, unsigned Reg, LaneBitmask LaneMask = ~0u); class HMEditor; }; } // End llvm namespace #endif