Mercurial > hg > CbC > CbC_llvm
view mlir/lib/Dialect/Traits.cpp @ 190:b1364f705114
relax tail call error on goto from normal function. args.c worked.
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 06 Jun 2020 13:15:35 +0900 |
parents | 0572611fdcc8 |
children | 2e18cbf3894f |
line wrap: on
line source
//===- Traits.cpp - Common op traits shared by dialects -------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "mlir/Dialect/Traits.h" #include "mlir/IR/StandardTypes.h" #include "mlir/IR/TypeUtilities.h" #include "llvm/Support/FormatVariadic.h" using namespace mlir; bool OpTrait::util::getBroadcastedShape(ArrayRef<int64_t> shape1, ArrayRef<int64_t> shape2, SmallVectorImpl<int64_t> &resultShape) { // To compute the result broadcasted shape, we compare operand shapes // element-wise: starting with the trailing dimensions, and working the // way backward. Two dimensions are compatible when // 1. they are equal, or // 2. one of them is 1 // The result shape has the maximum among the two inputs at every // dimension index. resultShape.clear(); if (shape1.size() > shape2.size()) { std::copy(shape1.begin(), shape1.end(), std::back_inserter(resultShape)); } else { std::copy(shape2.begin(), shape2.end(), std::back_inserter(resultShape)); } auto i1 = shape1.rbegin(), e1 = shape1.rend(); auto i2 = shape2.rbegin(), e2 = shape2.rend(); auto iR = resultShape.rbegin(); // Check each dimension is consistent. for (; i1 != e1 && i2 != e2; ++i1, ++i2, ++iR) { if (*i1 == -1 || *i2 == -1) { // One or both dimensions is unknown. Follow TensorFlow behavior: // - If either dimension is greater than 1, we assume that the program is // correct, and the other dimension will be broadcast to match it. // - If either dimension is 1, the other dimension is the output. if (*i1 > 1) { *iR = *i1; } else if (*i2 > 1) { *iR = *i2; } else if (*i1 == 1) { *iR = *i2; } else if (*i2 == 1) { *iR = *i1; } else { *iR = -1; } } else { if (*i1 == *i2 || *i2 == 1) { *iR = *i1; } else if (*i1 == 1) { *iR = *i2; } else { // This dimension of the two operand types is incompatible. resultShape.clear(); return false; } } } return true; } /// Returns the shape of the given type. Scalars will be considered as having a /// shape with zero dimensions. static ArrayRef<int64_t> getShape(Type type) { if (auto sType = type.dyn_cast<ShapedType>()) return sType.getShape(); return {}; } /// Returns the result broadcast composition type from the two given types by /// following NumPy broadcast semantics. Returned type may have dynamic shape if /// either of the input types has dynamic shape. Returns null type if the two /// given types are not broadcast-compatible. /// /// elementType, if specified, will be used as the element type of the /// broadcasted result type. Otherwise it is required that the element type of /// type1 and type2 is the same and this element type will be used as the /// resultant element type. Type OpTrait::util::getBroadcastedType(Type type1, Type type2, Type elementType) { // If the elementType is not specified, then the use the common element type // of the inputs or fail if there is no common element type. if (!elementType) { elementType = getElementTypeOrSelf(type1); if (elementType != getElementTypeOrSelf(type2)) return {}; } // If one of the types is unranked tensor, then the other type shouldn't be // vector and the result should have unranked tensor type. if (type1.isa<UnrankedTensorType>() || type2.isa<UnrankedTensorType>()) { if (type1.isa<VectorType>() || type2.isa<VectorType>()) return {}; return UnrankedTensorType::get(elementType); } // Returns the type kind if the given type is a vector or ranked tensor type. // Returns llvm::None otherwise. auto getCompositeTypeKind = [](Type type) -> Optional<StandardTypes::Kind> { if (type.isa<VectorType>() || type.isa<RankedTensorType>()) return static_cast<StandardTypes::Kind>(type.getKind()); return llvm::None; }; // Make sure the composite type, if has, is consistent. auto compositeKind1 = getCompositeTypeKind(type1); auto compositeKind2 = getCompositeTypeKind(type2); Optional<StandardTypes::Kind> resultCompositeKind; if (compositeKind1 && compositeKind2) { // Disallow mixing vector and tensor. if (compositeKind1 != compositeKind2) return {}; resultCompositeKind = compositeKind1; } else if (compositeKind1) { resultCompositeKind = compositeKind1; } else if (compositeKind2) { resultCompositeKind = compositeKind2; } // Get the shape of each type. SmallVector<int64_t, 4> resultShape; if (!getBroadcastedShape(getShape(type1), getShape(type2), resultShape)) return {}; // Compose the final broadcasted type if (resultCompositeKind == StandardTypes::Vector) return VectorType::get(resultShape, elementType); if (resultCompositeKind == StandardTypes::RankedTensor) return RankedTensorType::get(resultShape, elementType); return elementType; } /// Returns a tuple corresponding to whether range has tensor or vector type. template <typename iterator_range> static std::tuple<bool, bool> hasTensorOrVectorType(iterator_range types) { return std::make_tuple( llvm::any_of(types, [](Type t) { return t.isa<TensorType>(); }), llvm::any_of(types, [](Type t) { return t.isa<VectorType>(); })); } static bool areCompatibleShapes(ArrayRef<int64_t> shape1, ArrayRef<int64_t> shape2) { auto isCompatible = [](int64_t dim1, int64_t dim2) { return dim1 == dim2 || dim1 == -1 || dim2 == -1; }; if (shape1.size() != shape2.size()) return false; for (auto p : llvm::zip(shape1, shape2)) if (!isCompatible(std::get<0>(p), std::get<1>(p))) return false; return true; } static std::string getShapeString(ArrayRef<int64_t> shape) { // TODO: should replace with printing shape more uniformly across here and // when in type. return std::string( formatv("'{0:$[x]}'", llvm::make_range(shape.begin(), shape.end()))); } LogicalResult OpTrait::impl::verifyCompatibleOperandBroadcast(Operation *op) { // Ensure broadcasting only tensor or only vector types. auto operandsHasTensorVectorType = hasTensorOrVectorType(op->getOperandTypes()); auto resultsHasTensorVectorType = hasTensorOrVectorType(op->getResultTypes()); if ((std::get<0>(operandsHasTensorVectorType) || std::get<0>(resultsHasTensorVectorType)) && (std::get<1>(operandsHasTensorVectorType) || std::get<1>(resultsHasTensorVectorType))) return op->emitError("cannot broadcast vector with tensor"); auto rankedOperands = make_filter_range( op->getOperandTypes(), [](Type t) { return t.isa<RankedTensorType>(); }); // If all operands are unranked, then all result shapes are possible. if (rankedOperands.empty()) return success(); // Compute broadcasted shape of operands (which requires that operands are // broadcast compatible). The results need to be broadcast compatible with // this result shape. SmallVector<int64_t, 4> resultShape; (void)util::getBroadcastedShape(getShape(*rankedOperands.begin()), {}, resultShape); for (auto other : make_early_inc_range(rankedOperands)) { SmallVector<int64_t, 4> temp = resultShape; if (!util::getBroadcastedShape(temp, getShape(other), resultShape)) return op->emitOpError("operands don't have broadcast-compatible shapes"); } auto rankedResults = make_filter_range( op->getResultTypes(), [](Type t) { return t.isa<RankedTensorType>(); }); // If all of the results are unranked then no further verification. if (rankedResults.empty()) return success(); for (auto type : rankedResults) { ArrayRef<int64_t> actualSuffix = getShape(type).take_back(resultShape.size()); if (!areCompatibleShapes(actualSuffix, resultShape)) return op->emitOpError() << "result type " << getShapeString(getShape(type)) << " not broadcast compatible with broadcasted operands's shapes " << getShapeString(resultShape); } return success(); }