Mercurial > hg > CbC > CbC_llvm
view lib/Transforms/Instrumentation/AddressSanitizer.cpp @ 56:bdef5c940791
copy the previous function's return type to return value
author | Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 23 Jan 2014 23:14:57 +0900 |
parents | e4204d083e25 |
children | 54457678186b |
line wrap: on
line source
//===-- AddressSanitizer.cpp - memory error detector ------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is a part of AddressSanitizer, an address sanity checker. // Details of the algorithm: // http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "asan" #include "llvm/Transforms/Instrumentation.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/OwningPtr.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/Triple.h" #include "llvm/DIBuilder.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InlineAsm.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/IR/Type.h" #include "llvm/InstVisitor.h" #include "llvm/Support/CallSite.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/DataTypes.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Endian.h" #include "llvm/Support/system_error.h" #include "llvm/Transforms/Utils/ASanStackFrameLayout.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Cloning.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/ModuleUtils.h" #include "llvm/Transforms/Utils/SpecialCaseList.h" #include <algorithm> #include <string> using namespace llvm; static const uint64_t kDefaultShadowScale = 3; static const uint64_t kDefaultShadowOffset32 = 1ULL << 29; static const uint64_t kDefaultShadowOffset64 = 1ULL << 44; static const uint64_t kDefaultShort64bitShadowOffset = 0x7FFF8000; // < 2G. static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 41; static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa8000; static const size_t kMinStackMallocSize = 1 << 6; // 64B static const size_t kMaxStackMallocSize = 1 << 16; // 64K static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3; static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E; static const char *const kAsanModuleCtorName = "asan.module_ctor"; static const char *const kAsanModuleDtorName = "asan.module_dtor"; static const int kAsanCtorAndCtorPriority = 1; static const char *const kAsanReportErrorTemplate = "__asan_report_"; static const char *const kAsanReportLoadN = "__asan_report_load_n"; static const char *const kAsanReportStoreN = "__asan_report_store_n"; static const char *const kAsanRegisterGlobalsName = "__asan_register_globals"; static const char *const kAsanUnregisterGlobalsName = "__asan_unregister_globals"; static const char *const kAsanPoisonGlobalsName = "__asan_before_dynamic_init"; static const char *const kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init"; static const char *const kAsanInitName = "__asan_init_v3"; static const char *const kAsanCovName = "__sanitizer_cov"; static const char *const kAsanHandleNoReturnName = "__asan_handle_no_return"; static const char *const kAsanMappingOffsetName = "__asan_mapping_offset"; static const char *const kAsanMappingScaleName = "__asan_mapping_scale"; static const int kMaxAsanStackMallocSizeClass = 10; static const char *const kAsanStackMallocNameTemplate = "__asan_stack_malloc_"; static const char *const kAsanStackFreeNameTemplate = "__asan_stack_free_"; static const char *const kAsanGenPrefix = "__asan_gen_"; static const char *const kAsanPoisonStackMemoryName = "__asan_poison_stack_memory"; static const char *const kAsanUnpoisonStackMemoryName = "__asan_unpoison_stack_memory"; static const char *const kAsanOptionDetectUAR = "__asan_option_detect_stack_use_after_return"; #ifndef NDEBUG static const int kAsanStackAfterReturnMagic = 0xf5; #endif // Accesses sizes are powers of two: 1, 2, 4, 8, 16. static const size_t kNumberOfAccessSizes = 5; // Command-line flags. // This flag may need to be replaced with -f[no-]asan-reads. static cl::opt<bool> ClInstrumentReads("asan-instrument-reads", cl::desc("instrument read instructions"), cl::Hidden, cl::init(true)); static cl::opt<bool> ClInstrumentWrites("asan-instrument-writes", cl::desc("instrument write instructions"), cl::Hidden, cl::init(true)); static cl::opt<bool> ClInstrumentAtomics("asan-instrument-atomics", cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden, cl::init(true)); static cl::opt<bool> ClAlwaysSlowPath("asan-always-slow-path", cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden, cl::init(false)); // This flag limits the number of instructions to be instrumented // in any given BB. Normally, this should be set to unlimited (INT_MAX), // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary // set it to 10000. static cl::opt<int> ClMaxInsnsToInstrumentPerBB("asan-max-ins-per-bb", cl::init(10000), cl::desc("maximal number of instructions to instrument in any given BB"), cl::Hidden); // This flag may need to be replaced with -f[no]asan-stack. static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"), cl::Hidden, cl::init(true)); // This flag may need to be replaced with -f[no]asan-use-after-return. static cl::opt<bool> ClUseAfterReturn("asan-use-after-return", cl::desc("Check return-after-free"), cl::Hidden, cl::init(false)); // This flag may need to be replaced with -f[no]asan-globals. static cl::opt<bool> ClGlobals("asan-globals", cl::desc("Handle global objects"), cl::Hidden, cl::init(true)); static cl::opt<bool> ClCoverage("asan-coverage", cl::desc("ASan coverage"), cl::Hidden, cl::init(false)); static cl::opt<bool> ClInitializers("asan-initialization-order", cl::desc("Handle C++ initializer order"), cl::Hidden, cl::init(false)); static cl::opt<bool> ClMemIntrin("asan-memintrin", cl::desc("Handle memset/memcpy/memmove"), cl::Hidden, cl::init(true)); static cl::opt<unsigned> ClRealignStack("asan-realign-stack", cl::desc("Realign stack to the value of this flag (power of two)"), cl::Hidden, cl::init(32)); static cl::opt<std::string> ClBlacklistFile("asan-blacklist", cl::desc("File containing the list of objects to ignore " "during instrumentation"), cl::Hidden); // This is an experimental feature that will allow to choose between // instrumented and non-instrumented code at link-time. // If this option is on, just before instrumenting a function we create its // clone; if the function is not changed by asan the clone is deleted. // If we end up with a clone, we put the instrumented function into a section // called "ASAN" and the uninstrumented function into a section called "NOASAN". // // This is still a prototype, we need to figure out a way to keep two copies of // a function so that the linker can easily choose one of them. static cl::opt<bool> ClKeepUninstrumented("asan-keep-uninstrumented-functions", cl::desc("Keep uninstrumented copies of functions"), cl::Hidden, cl::init(false)); // These flags allow to change the shadow mapping. // The shadow mapping looks like // Shadow = (Mem >> scale) + (1 << offset_log) static cl::opt<int> ClMappingScale("asan-mapping-scale", cl::desc("scale of asan shadow mapping"), cl::Hidden, cl::init(0)); static cl::opt<int> ClMappingOffsetLog("asan-mapping-offset-log", cl::desc("offset of asan shadow mapping"), cl::Hidden, cl::init(-1)); static cl::opt<bool> ClShort64BitOffset("asan-short-64bit-mapping-offset", cl::desc("Use short immediate constant as the mapping offset for 64bit"), cl::Hidden, cl::init(true)); // Optimization flags. Not user visible, used mostly for testing // and benchmarking the tool. static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"), cl::Hidden, cl::init(true)); static cl::opt<bool> ClOptSameTemp("asan-opt-same-temp", cl::desc("Instrument the same temp just once"), cl::Hidden, cl::init(true)); static cl::opt<bool> ClOptGlobals("asan-opt-globals", cl::desc("Don't instrument scalar globals"), cl::Hidden, cl::init(true)); static cl::opt<bool> ClCheckLifetime("asan-check-lifetime", cl::desc("Use llvm.lifetime intrinsics to insert extra checks"), cl::Hidden, cl::init(false)); // Debug flags. static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden, cl::init(0)); static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"), cl::Hidden, cl::init(0)); static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden, cl::desc("Debug func")); static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"), cl::Hidden, cl::init(-1)); static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug man inst"), cl::Hidden, cl::init(-1)); STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); STATISTIC(NumOptimizedAccessesToGlobalArray, "Number of optimized accesses to global arrays"); STATISTIC(NumOptimizedAccessesToGlobalVar, "Number of optimized accesses to global vars"); namespace { /// A set of dynamically initialized globals extracted from metadata. class SetOfDynamicallyInitializedGlobals { public: void Init(Module& M) { // Clang generates metadata identifying all dynamically initialized globals. NamedMDNode *DynamicGlobals = M.getNamedMetadata("llvm.asan.dynamically_initialized_globals"); if (!DynamicGlobals) return; for (int i = 0, n = DynamicGlobals->getNumOperands(); i < n; ++i) { MDNode *MDN = DynamicGlobals->getOperand(i); assert(MDN->getNumOperands() == 1); Value *VG = MDN->getOperand(0); // The optimizer may optimize away a global entirely, in which case we // cannot instrument access to it. if (!VG) continue; DynInitGlobals.insert(cast<GlobalVariable>(VG)); } } bool Contains(GlobalVariable *G) { return DynInitGlobals.count(G) != 0; } private: SmallSet<GlobalValue*, 32> DynInitGlobals; }; /// This struct defines the shadow mapping using the rule: /// shadow = (mem >> Scale) ADD-or-OR Offset. struct ShadowMapping { int Scale; uint64_t Offset; bool OrShadowOffset; }; static ShadowMapping getShadowMapping(const Module &M, int LongSize, bool ZeroBaseShadow) { llvm::Triple TargetTriple(M.getTargetTriple()); bool IsAndroid = TargetTriple.getEnvironment() == llvm::Triple::Android; bool IsMacOSX = TargetTriple.getOS() == llvm::Triple::MacOSX; bool IsPPC64 = TargetTriple.getArch() == llvm::Triple::ppc64 || TargetTriple.getArch() == llvm::Triple::ppc64le; bool IsX86_64 = TargetTriple.getArch() == llvm::Triple::x86_64; bool IsMIPS32 = TargetTriple.getArch() == llvm::Triple::mips || TargetTriple.getArch() == llvm::Triple::mipsel; ShadowMapping Mapping; // OR-ing shadow offset if more efficient (at least on x86), // but on ppc64 we have to use add since the shadow offset is not neccesary // 1/8-th of the address space. Mapping.OrShadowOffset = !IsPPC64 && !ClShort64BitOffset; Mapping.Offset = (IsAndroid || ZeroBaseShadow) ? 0 : (LongSize == 32 ? (IsMIPS32 ? kMIPS32_ShadowOffset32 : kDefaultShadowOffset32) : IsPPC64 ? kPPC64_ShadowOffset64 : kDefaultShadowOffset64); if (!ZeroBaseShadow && ClShort64BitOffset && IsX86_64 && !IsMacOSX) { assert(LongSize == 64); Mapping.Offset = kDefaultShort64bitShadowOffset; } if (!ZeroBaseShadow && ClMappingOffsetLog >= 0) { // Zero offset log is the special case. Mapping.Offset = (ClMappingOffsetLog == 0) ? 0 : 1ULL << ClMappingOffsetLog; } Mapping.Scale = kDefaultShadowScale; if (ClMappingScale) { Mapping.Scale = ClMappingScale; } return Mapping; } static size_t RedzoneSizeForScale(int MappingScale) { // Redzone used for stack and globals is at least 32 bytes. // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively. return std::max(32U, 1U << MappingScale); } /// AddressSanitizer: instrument the code in module to find memory bugs. struct AddressSanitizer : public FunctionPass { AddressSanitizer(bool CheckInitOrder = true, bool CheckUseAfterReturn = false, bool CheckLifetime = false, StringRef BlacklistFile = StringRef(), bool ZeroBaseShadow = false) : FunctionPass(ID), CheckInitOrder(CheckInitOrder || ClInitializers), CheckUseAfterReturn(CheckUseAfterReturn || ClUseAfterReturn), CheckLifetime(CheckLifetime || ClCheckLifetime), BlacklistFile(BlacklistFile.empty() ? ClBlacklistFile : BlacklistFile), ZeroBaseShadow(ZeroBaseShadow) {} virtual const char *getPassName() const { return "AddressSanitizerFunctionPass"; } void instrumentMop(Instruction *I); void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize, bool IsWrite, Value *SizeArgument); Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, Value *ShadowValue, uint32_t TypeSize); Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr, bool IsWrite, size_t AccessSizeIndex, Value *SizeArgument); bool instrumentMemIntrinsic(MemIntrinsic *MI); void instrumentMemIntrinsicParam(Instruction *OrigIns, Value *Addr, Value *Size, Instruction *InsertBefore, bool IsWrite); Value *memToShadow(Value *Shadow, IRBuilder<> &IRB); bool runOnFunction(Function &F); bool maybeInsertAsanInitAtFunctionEntry(Function &F); void emitShadowMapping(Module &M, IRBuilder<> &IRB) const; virtual bool doInitialization(Module &M); static char ID; // Pass identification, replacement for typeid private: void initializeCallbacks(Module &M); bool ShouldInstrumentGlobal(GlobalVariable *G); bool LooksLikeCodeInBug11395(Instruction *I); void FindDynamicInitializers(Module &M); bool GlobalIsLinkerInitialized(GlobalVariable *G); bool InjectCoverage(Function &F); bool CheckInitOrder; bool CheckUseAfterReturn; bool CheckLifetime; SmallString<64> BlacklistFile; bool ZeroBaseShadow; LLVMContext *C; DataLayout *TD; int LongSize; Type *IntptrTy; ShadowMapping Mapping; Function *AsanCtorFunction; Function *AsanInitFunction; Function *AsanHandleNoReturnFunc; Function *AsanCovFunction; OwningPtr<SpecialCaseList> BL; // This array is indexed by AccessIsWrite and log2(AccessSize). Function *AsanErrorCallback[2][kNumberOfAccessSizes]; // This array is indexed by AccessIsWrite. Function *AsanErrorCallbackSized[2]; InlineAsm *EmptyAsm; SetOfDynamicallyInitializedGlobals DynamicallyInitializedGlobals; friend struct FunctionStackPoisoner; }; class AddressSanitizerModule : public ModulePass { public: AddressSanitizerModule(bool CheckInitOrder = true, StringRef BlacklistFile = StringRef(), bool ZeroBaseShadow = false) : ModulePass(ID), CheckInitOrder(CheckInitOrder || ClInitializers), BlacklistFile(BlacklistFile.empty() ? ClBlacklistFile : BlacklistFile), ZeroBaseShadow(ZeroBaseShadow) {} bool runOnModule(Module &M); static char ID; // Pass identification, replacement for typeid virtual const char *getPassName() const { return "AddressSanitizerModule"; } private: void initializeCallbacks(Module &M); bool ShouldInstrumentGlobal(GlobalVariable *G); void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName); size_t MinRedzoneSizeForGlobal() const { return RedzoneSizeForScale(Mapping.Scale); } bool CheckInitOrder; SmallString<64> BlacklistFile; bool ZeroBaseShadow; OwningPtr<SpecialCaseList> BL; SetOfDynamicallyInitializedGlobals DynamicallyInitializedGlobals; Type *IntptrTy; LLVMContext *C; DataLayout *TD; ShadowMapping Mapping; Function *AsanPoisonGlobals; Function *AsanUnpoisonGlobals; Function *AsanRegisterGlobals; Function *AsanUnregisterGlobals; }; // Stack poisoning does not play well with exception handling. // When an exception is thrown, we essentially bypass the code // that unpoisones the stack. This is why the run-time library has // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire // stack in the interceptor. This however does not work inside the // actual function which catches the exception. Most likely because the // compiler hoists the load of the shadow value somewhere too high. // This causes asan to report a non-existing bug on 453.povray. // It sounds like an LLVM bug. struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> { Function &F; AddressSanitizer &ASan; DIBuilder DIB; LLVMContext *C; Type *IntptrTy; Type *IntptrPtrTy; ShadowMapping Mapping; SmallVector<AllocaInst*, 16> AllocaVec; SmallVector<Instruction*, 8> RetVec; unsigned StackAlignment; Function *AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1], *AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1]; Function *AsanPoisonStackMemoryFunc, *AsanUnpoisonStackMemoryFunc; // Stores a place and arguments of poisoning/unpoisoning call for alloca. struct AllocaPoisonCall { IntrinsicInst *InsBefore; AllocaInst *AI; uint64_t Size; bool DoPoison; }; SmallVector<AllocaPoisonCall, 8> AllocaPoisonCallVec; // Maps Value to an AllocaInst from which the Value is originated. typedef DenseMap<Value*, AllocaInst*> AllocaForValueMapTy; AllocaForValueMapTy AllocaForValue; FunctionStackPoisoner(Function &F, AddressSanitizer &ASan) : F(F), ASan(ASan), DIB(*F.getParent()), C(ASan.C), IntptrTy(ASan.IntptrTy), IntptrPtrTy(PointerType::get(IntptrTy, 0)), Mapping(ASan.Mapping), StackAlignment(1 << Mapping.Scale) {} bool runOnFunction() { if (!ClStack) return false; // Collect alloca, ret, lifetime instructions etc. for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()), DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) { BasicBlock *BB = *DI; visit(*BB); } if (AllocaVec.empty()) return false; initializeCallbacks(*F.getParent()); poisonStack(); if (ClDebugStack) { DEBUG(dbgs() << F); } return true; } // Finds all static Alloca instructions and puts // poisoned red zones around all of them. // Then unpoison everything back before the function returns. void poisonStack(); // ----------------------- Visitors. /// \brief Collect all Ret instructions. void visitReturnInst(ReturnInst &RI) { RetVec.push_back(&RI); } /// \brief Collect Alloca instructions we want (and can) handle. void visitAllocaInst(AllocaInst &AI) { if (!isInterestingAlloca(AI)) return; StackAlignment = std::max(StackAlignment, AI.getAlignment()); AllocaVec.push_back(&AI); } /// \brief Collect lifetime intrinsic calls to check for use-after-scope /// errors. void visitIntrinsicInst(IntrinsicInst &II) { if (!ASan.CheckLifetime) return; Intrinsic::ID ID = II.getIntrinsicID(); if (ID != Intrinsic::lifetime_start && ID != Intrinsic::lifetime_end) return; // Found lifetime intrinsic, add ASan instrumentation if necessary. ConstantInt *Size = dyn_cast<ConstantInt>(II.getArgOperand(0)); // If size argument is undefined, don't do anything. if (Size->isMinusOne()) return; // Check that size doesn't saturate uint64_t and can // be stored in IntptrTy. const uint64_t SizeValue = Size->getValue().getLimitedValue(); if (SizeValue == ~0ULL || !ConstantInt::isValueValidForType(IntptrTy, SizeValue)) return; // Find alloca instruction that corresponds to llvm.lifetime argument. AllocaInst *AI = findAllocaForValue(II.getArgOperand(1)); if (!AI) return; bool DoPoison = (ID == Intrinsic::lifetime_end); AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison}; AllocaPoisonCallVec.push_back(APC); } // ---------------------- Helpers. void initializeCallbacks(Module &M); // Check if we want (and can) handle this alloca. bool isInterestingAlloca(AllocaInst &AI) const { return (!AI.isArrayAllocation() && AI.isStaticAlloca() && AI.getAllocatedType()->isSized() && // alloca() may be called with 0 size, ignore it. getAllocaSizeInBytes(&AI) > 0); } uint64_t getAllocaSizeInBytes(AllocaInst *AI) const { Type *Ty = AI->getAllocatedType(); uint64_t SizeInBytes = ASan.TD->getTypeAllocSize(Ty); return SizeInBytes; } /// Finds alloca where the value comes from. AllocaInst *findAllocaForValue(Value *V); void poisonRedZones(const ArrayRef<uint8_t> ShadowBytes, IRBuilder<> &IRB, Value *ShadowBase, bool DoPoison); void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison); void SetShadowToStackAfterReturnInlined(IRBuilder<> &IRB, Value *ShadowBase, int Size); }; } // namespace char AddressSanitizer::ID = 0; INITIALIZE_PASS(AddressSanitizer, "asan", "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, false) FunctionPass *llvm::createAddressSanitizerFunctionPass( bool CheckInitOrder, bool CheckUseAfterReturn, bool CheckLifetime, StringRef BlacklistFile, bool ZeroBaseShadow) { return new AddressSanitizer(CheckInitOrder, CheckUseAfterReturn, CheckLifetime, BlacklistFile, ZeroBaseShadow); } char AddressSanitizerModule::ID = 0; INITIALIZE_PASS(AddressSanitizerModule, "asan-module", "AddressSanitizer: detects use-after-free and out-of-bounds bugs." "ModulePass", false, false) ModulePass *llvm::createAddressSanitizerModulePass( bool CheckInitOrder, StringRef BlacklistFile, bool ZeroBaseShadow) { return new AddressSanitizerModule(CheckInitOrder, BlacklistFile, ZeroBaseShadow); } static size_t TypeSizeToSizeIndex(uint32_t TypeSize) { size_t Res = countTrailingZeros(TypeSize / 8); assert(Res < kNumberOfAccessSizes); return Res; } // \brief Create a constant for Str so that we can pass it to the run-time lib. static GlobalVariable *createPrivateGlobalForString(Module &M, StringRef Str) { Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str); GlobalVariable *GV = new GlobalVariable(M, StrConst->getType(), true, GlobalValue::InternalLinkage, StrConst, kAsanGenPrefix); GV->setUnnamedAddr(true); // Ok to merge these. GV->setAlignment(1); // Strings may not be merged w/o setting align 1. return GV; } static bool GlobalWasGeneratedByAsan(GlobalVariable *G) { return G->getName().find(kAsanGenPrefix) == 0; } Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) { // Shadow >> scale Shadow = IRB.CreateLShr(Shadow, Mapping.Scale); if (Mapping.Offset == 0) return Shadow; // (Shadow >> scale) | offset if (Mapping.OrShadowOffset) return IRB.CreateOr(Shadow, ConstantInt::get(IntptrTy, Mapping.Offset)); else return IRB.CreateAdd(Shadow, ConstantInt::get(IntptrTy, Mapping.Offset)); } void AddressSanitizer::instrumentMemIntrinsicParam( Instruction *OrigIns, Value *Addr, Value *Size, Instruction *InsertBefore, bool IsWrite) { IRBuilder<> IRB(InsertBefore); if (Size->getType() != IntptrTy) Size = IRB.CreateIntCast(Size, IntptrTy, false); // Check the first byte. instrumentAddress(OrigIns, InsertBefore, Addr, 8, IsWrite, Size); // Check the last byte. IRB.SetInsertPoint(InsertBefore); Value *SizeMinusOne = IRB.CreateSub(Size, ConstantInt::get(IntptrTy, 1)); Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); Value *AddrLast = IRB.CreateAdd(AddrLong, SizeMinusOne); instrumentAddress(OrigIns, InsertBefore, AddrLast, 8, IsWrite, Size); } // Instrument memset/memmove/memcpy bool AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) { Value *Dst = MI->getDest(); MemTransferInst *MemTran = dyn_cast<MemTransferInst>(MI); Value *Src = MemTran ? MemTran->getSource() : 0; Value *Length = MI->getLength(); Constant *ConstLength = dyn_cast<Constant>(Length); Instruction *InsertBefore = MI; if (ConstLength) { if (ConstLength->isNullValue()) return false; } else { // The size is not a constant so it could be zero -- check at run-time. IRBuilder<> IRB(InsertBefore); Value *Cmp = IRB.CreateICmpNE(Length, Constant::getNullValue(Length->getType())); InsertBefore = SplitBlockAndInsertIfThen(cast<Instruction>(Cmp), false); } instrumentMemIntrinsicParam(MI, Dst, Length, InsertBefore, true); if (Src) instrumentMemIntrinsicParam(MI, Src, Length, InsertBefore, false); return true; } // If I is an interesting memory access, return the PointerOperand // and set IsWrite. Otherwise return NULL. static Value *isInterestingMemoryAccess(Instruction *I, bool *IsWrite) { if (LoadInst *LI = dyn_cast<LoadInst>(I)) { if (!ClInstrumentReads) return NULL; *IsWrite = false; return LI->getPointerOperand(); } if (StoreInst *SI = dyn_cast<StoreInst>(I)) { if (!ClInstrumentWrites) return NULL; *IsWrite = true; return SI->getPointerOperand(); } if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { if (!ClInstrumentAtomics) return NULL; *IsWrite = true; return RMW->getPointerOperand(); } if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) { if (!ClInstrumentAtomics) return NULL; *IsWrite = true; return XCHG->getPointerOperand(); } return NULL; } bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) { // If a global variable does not have dynamic initialization we don't // have to instrument it. However, if a global does not have initializer // at all, we assume it has dynamic initializer (in other TU). return G->hasInitializer() && !DynamicallyInitializedGlobals.Contains(G); } void AddressSanitizer::instrumentMop(Instruction *I) { bool IsWrite = false; Value *Addr = isInterestingMemoryAccess(I, &IsWrite); assert(Addr); if (ClOpt && ClOptGlobals) { if (GlobalVariable *G = dyn_cast<GlobalVariable>(Addr)) { // If initialization order checking is disabled, a simple access to a // dynamically initialized global is always valid. if (!CheckInitOrder || GlobalIsLinkerInitialized(G)) { NumOptimizedAccessesToGlobalVar++; return; } } ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr); if (CE && CE->isGEPWithNoNotionalOverIndexing()) { if (GlobalVariable *G = dyn_cast<GlobalVariable>(CE->getOperand(0))) { if (CE->getOperand(1)->isNullValue() && GlobalIsLinkerInitialized(G)) { NumOptimizedAccessesToGlobalArray++; return; } } } } Type *OrigPtrTy = Addr->getType(); Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType(); assert(OrigTy->isSized()); uint32_t TypeSize = TD->getTypeStoreSizeInBits(OrigTy); assert((TypeSize % 8) == 0); if (IsWrite) NumInstrumentedWrites++; else NumInstrumentedReads++; // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check. if (TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 || TypeSize == 128) return instrumentAddress(I, I, Addr, TypeSize, IsWrite, 0); // Instrument unusual size (but still multiple of 8). // We can not do it with a single check, so we do 1-byte check for the first // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able // to report the actual access size. IRBuilder<> IRB(I); Value *LastByte = IRB.CreateIntToPtr( IRB.CreateAdd(IRB.CreatePointerCast(Addr, IntptrTy), ConstantInt::get(IntptrTy, TypeSize / 8 - 1)), OrigPtrTy); Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8); instrumentAddress(I, I, Addr, 8, IsWrite, Size); instrumentAddress(I, I, LastByte, 8, IsWrite, Size); } // Validate the result of Module::getOrInsertFunction called for an interface // function of AddressSanitizer. If the instrumented module defines a function // with the same name, their prototypes must match, otherwise // getOrInsertFunction returns a bitcast. static Function *checkInterfaceFunction(Constant *FuncOrBitcast) { if (isa<Function>(FuncOrBitcast)) return cast<Function>(FuncOrBitcast); FuncOrBitcast->dump(); report_fatal_error("trying to redefine an AddressSanitizer " "interface function"); } Instruction *AddressSanitizer::generateCrashCode( Instruction *InsertBefore, Value *Addr, bool IsWrite, size_t AccessSizeIndex, Value *SizeArgument) { IRBuilder<> IRB(InsertBefore); CallInst *Call = SizeArgument ? IRB.CreateCall2(AsanErrorCallbackSized[IsWrite], Addr, SizeArgument) : IRB.CreateCall(AsanErrorCallback[IsWrite][AccessSizeIndex], Addr); // We don't do Call->setDoesNotReturn() because the BB already has // UnreachableInst at the end. // This EmptyAsm is required to avoid callback merge. IRB.CreateCall(EmptyAsm); return Call; } Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, Value *ShadowValue, uint32_t TypeSize) { size_t Granularity = 1 << Mapping.Scale; // Addr & (Granularity - 1) Value *LastAccessedByte = IRB.CreateAnd( AddrLong, ConstantInt::get(IntptrTy, Granularity - 1)); // (Addr & (Granularity - 1)) + size - 1 if (TypeSize / 8 > 1) LastAccessedByte = IRB.CreateAdd( LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)); // (uint8_t) ((Addr & (Granularity-1)) + size - 1) LastAccessedByte = IRB.CreateIntCast( LastAccessedByte, ShadowValue->getType(), false); // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue); } void AddressSanitizer::instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize, bool IsWrite, Value *SizeArgument) { IRBuilder<> IRB(InsertBefore); Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); Type *ShadowTy = IntegerType::get( *C, std::max(8U, TypeSize >> Mapping.Scale)); Type *ShadowPtrTy = PointerType::get(ShadowTy, 0); Value *ShadowPtr = memToShadow(AddrLong, IRB); Value *CmpVal = Constant::getNullValue(ShadowTy); Value *ShadowValue = IRB.CreateLoad( IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy)); Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal); size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize); size_t Granularity = 1 << Mapping.Scale; TerminatorInst *CrashTerm = 0; if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) { TerminatorInst *CheckTerm = SplitBlockAndInsertIfThen(cast<Instruction>(Cmp), false); assert(dyn_cast<BranchInst>(CheckTerm)->isUnconditional()); BasicBlock *NextBB = CheckTerm->getSuccessor(0); IRB.SetInsertPoint(CheckTerm); Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize); BasicBlock *CrashBlock = BasicBlock::Create(*C, "", NextBB->getParent(), NextBB); CrashTerm = new UnreachableInst(*C, CrashBlock); BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2); ReplaceInstWithInst(CheckTerm, NewTerm); } else { CrashTerm = SplitBlockAndInsertIfThen(cast<Instruction>(Cmp), true); } Instruction *Crash = generateCrashCode( CrashTerm, AddrLong, IsWrite, AccessSizeIndex, SizeArgument); Crash->setDebugLoc(OrigIns->getDebugLoc()); } void AddressSanitizerModule::createInitializerPoisonCalls( Module &M, GlobalValue *ModuleName) { // We do all of our poisoning and unpoisoning within _GLOBAL__I_a. Function *GlobalInit = M.getFunction("_GLOBAL__I_a"); // If that function is not present, this TU contains no globals, or they have // all been optimized away if (!GlobalInit) return; // Set up the arguments to our poison/unpoison functions. IRBuilder<> IRB(GlobalInit->begin()->getFirstInsertionPt()); // Add a call to poison all external globals before the given function starts. Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy); IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr); // Add calls to unpoison all globals before each return instruction. for (Function::iterator I = GlobalInit->begin(), E = GlobalInit->end(); I != E; ++I) { if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator())) { CallInst::Create(AsanUnpoisonGlobals, "", RI); } } } bool AddressSanitizerModule::ShouldInstrumentGlobal(GlobalVariable *G) { Type *Ty = cast<PointerType>(G->getType())->getElementType(); DEBUG(dbgs() << "GLOBAL: " << *G << "\n"); if (BL->isIn(*G)) return false; if (!Ty->isSized()) return false; if (!G->hasInitializer()) return false; if (GlobalWasGeneratedByAsan(G)) return false; // Our own global. // Touch only those globals that will not be defined in other modules. // Don't handle ODR type linkages since other modules may be built w/o asan. if (G->getLinkage() != GlobalVariable::ExternalLinkage && G->getLinkage() != GlobalVariable::PrivateLinkage && G->getLinkage() != GlobalVariable::InternalLinkage) return false; // Two problems with thread-locals: // - The address of the main thread's copy can't be computed at link-time. // - Need to poison all copies, not just the main thread's one. if (G->isThreadLocal()) return false; // For now, just ignore this Global if the alignment is large. if (G->getAlignment() > MinRedzoneSizeForGlobal()) return false; // Ignore all the globals with the names starting with "\01L_OBJC_". // Many of those are put into the .cstring section. The linker compresses // that section by removing the spare \0s after the string terminator, so // our redzones get broken. if ((G->getName().find("\01L_OBJC_") == 0) || (G->getName().find("\01l_OBJC_") == 0)) { DEBUG(dbgs() << "Ignoring \\01L_OBJC_* global: " << *G); return false; } if (G->hasSection()) { StringRef Section(G->getSection()); // Ignore the globals from the __OBJC section. The ObjC runtime assumes // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to // them. if ((Section.find("__OBJC,") == 0) || (Section.find("__DATA, __objc_") == 0)) { DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G); return false; } // See http://code.google.com/p/address-sanitizer/issues/detail?id=32 // Constant CFString instances are compiled in the following way: // -- the string buffer is emitted into // __TEXT,__cstring,cstring_literals // -- the constant NSConstantString structure referencing that buffer // is placed into __DATA,__cfstring // Therefore there's no point in placing redzones into __DATA,__cfstring. // Moreover, it causes the linker to crash on OS X 10.7 if (Section.find("__DATA,__cfstring") == 0) { DEBUG(dbgs() << "Ignoring CFString: " << *G); return false; } } return true; } void AddressSanitizerModule::initializeCallbacks(Module &M) { IRBuilder<> IRB(*C); // Declare our poisoning and unpoisoning functions. AsanPoisonGlobals = checkInterfaceFunction(M.getOrInsertFunction( kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy, NULL)); AsanPoisonGlobals->setLinkage(Function::ExternalLinkage); AsanUnpoisonGlobals = checkInterfaceFunction(M.getOrInsertFunction( kAsanUnpoisonGlobalsName, IRB.getVoidTy(), NULL)); AsanUnpoisonGlobals->setLinkage(Function::ExternalLinkage); // Declare functions that register/unregister globals. AsanRegisterGlobals = checkInterfaceFunction(M.getOrInsertFunction( kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL)); AsanRegisterGlobals->setLinkage(Function::ExternalLinkage); AsanUnregisterGlobals = checkInterfaceFunction(M.getOrInsertFunction( kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL)); AsanUnregisterGlobals->setLinkage(Function::ExternalLinkage); } // This function replaces all global variables with new variables that have // trailing redzones. It also creates a function that poisons // redzones and inserts this function into llvm.global_ctors. bool AddressSanitizerModule::runOnModule(Module &M) { if (!ClGlobals) return false; TD = getAnalysisIfAvailable<DataLayout>(); if (!TD) return false; BL.reset(SpecialCaseList::createOrDie(BlacklistFile)); if (BL->isIn(M)) return false; C = &(M.getContext()); int LongSize = TD->getPointerSizeInBits(); IntptrTy = Type::getIntNTy(*C, LongSize); Mapping = getShadowMapping(M, LongSize, ZeroBaseShadow); initializeCallbacks(M); DynamicallyInitializedGlobals.Init(M); SmallVector<GlobalVariable *, 16> GlobalsToChange; for (Module::GlobalListType::iterator G = M.global_begin(), E = M.global_end(); G != E; ++G) { if (ShouldInstrumentGlobal(G)) GlobalsToChange.push_back(G); } size_t n = GlobalsToChange.size(); if (n == 0) return false; // A global is described by a structure // size_t beg; // size_t size; // size_t size_with_redzone; // const char *name; // const char *module_name; // size_t has_dynamic_init; // We initialize an array of such structures and pass it to a run-time call. StructType *GlobalStructTy = StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy, NULL); SmallVector<Constant *, 16> Initializers(n); Function *CtorFunc = M.getFunction(kAsanModuleCtorName); assert(CtorFunc); IRBuilder<> IRB(CtorFunc->getEntryBlock().getTerminator()); bool HasDynamicallyInitializedGlobals = false; GlobalVariable *ModuleName = createPrivateGlobalForString( M, M.getModuleIdentifier()); // We shouldn't merge same module names, as this string serves as unique // module ID in runtime. ModuleName->setUnnamedAddr(false); for (size_t i = 0; i < n; i++) { static const uint64_t kMaxGlobalRedzone = 1 << 18; GlobalVariable *G = GlobalsToChange[i]; PointerType *PtrTy = cast<PointerType>(G->getType()); Type *Ty = PtrTy->getElementType(); uint64_t SizeInBytes = TD->getTypeAllocSize(Ty); uint64_t MinRZ = MinRedzoneSizeForGlobal(); // MinRZ <= RZ <= kMaxGlobalRedzone // and trying to make RZ to be ~ 1/4 of SizeInBytes. uint64_t RZ = std::max(MinRZ, std::min(kMaxGlobalRedzone, (SizeInBytes / MinRZ / 4) * MinRZ)); uint64_t RightRedzoneSize = RZ; // Round up to MinRZ if (SizeInBytes % MinRZ) RightRedzoneSize += MinRZ - (SizeInBytes % MinRZ); assert(((RightRedzoneSize + SizeInBytes) % MinRZ) == 0); Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize); // Determine whether this global should be poisoned in initialization. bool GlobalHasDynamicInitializer = DynamicallyInitializedGlobals.Contains(G); // Don't check initialization order if this global is blacklisted. GlobalHasDynamicInitializer &= !BL->isIn(*G, "init"); StructType *NewTy = StructType::get(Ty, RightRedZoneTy, NULL); Constant *NewInitializer = ConstantStruct::get( NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy), NULL); GlobalVariable *Name = createPrivateGlobalForString(M, G->getName()); // Create a new global variable with enough space for a redzone. GlobalValue::LinkageTypes Linkage = G->getLinkage(); if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage) Linkage = GlobalValue::InternalLinkage; GlobalVariable *NewGlobal = new GlobalVariable( M, NewTy, G->isConstant(), Linkage, NewInitializer, "", G, G->getThreadLocalMode()); NewGlobal->copyAttributesFrom(G); NewGlobal->setAlignment(MinRZ); Value *Indices2[2]; Indices2[0] = IRB.getInt32(0); Indices2[1] = IRB.getInt32(0); G->replaceAllUsesWith( ConstantExpr::getGetElementPtr(NewGlobal, Indices2, true)); NewGlobal->takeName(G); G->eraseFromParent(); Initializers[i] = ConstantStruct::get( GlobalStructTy, ConstantExpr::getPointerCast(NewGlobal, IntptrTy), ConstantInt::get(IntptrTy, SizeInBytes), ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize), ConstantExpr::getPointerCast(Name, IntptrTy), ConstantExpr::getPointerCast(ModuleName, IntptrTy), ConstantInt::get(IntptrTy, GlobalHasDynamicInitializer), NULL); // Populate the first and last globals declared in this TU. if (CheckInitOrder && GlobalHasDynamicInitializer) HasDynamicallyInitializedGlobals = true; DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n"); } ArrayType *ArrayOfGlobalStructTy = ArrayType::get(GlobalStructTy, n); GlobalVariable *AllGlobals = new GlobalVariable( M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage, ConstantArray::get(ArrayOfGlobalStructTy, Initializers), ""); // Create calls for poisoning before initializers run and unpoisoning after. if (CheckInitOrder && HasDynamicallyInitializedGlobals) createInitializerPoisonCalls(M, ModuleName); IRB.CreateCall2(AsanRegisterGlobals, IRB.CreatePointerCast(AllGlobals, IntptrTy), ConstantInt::get(IntptrTy, n)); // We also need to unregister globals at the end, e.g. when a shared library // gets closed. Function *AsanDtorFunction = Function::Create( FunctionType::get(Type::getVoidTy(*C), false), GlobalValue::InternalLinkage, kAsanModuleDtorName, &M); BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction); IRBuilder<> IRB_Dtor(ReturnInst::Create(*C, AsanDtorBB)); IRB_Dtor.CreateCall2(AsanUnregisterGlobals, IRB.CreatePointerCast(AllGlobals, IntptrTy), ConstantInt::get(IntptrTy, n)); appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndCtorPriority); DEBUG(dbgs() << M); return true; } void AddressSanitizer::initializeCallbacks(Module &M) { IRBuilder<> IRB(*C); // Create __asan_report* callbacks. for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) { for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; AccessSizeIndex++) { // IsWrite and TypeSize are encoded in the function name. std::string FunctionName = std::string(kAsanReportErrorTemplate) + (AccessIsWrite ? "store" : "load") + itostr(1 << AccessSizeIndex); // If we are merging crash callbacks, they have two parameters. AsanErrorCallback[AccessIsWrite][AccessSizeIndex] = checkInterfaceFunction(M.getOrInsertFunction( FunctionName, IRB.getVoidTy(), IntptrTy, NULL)); } } AsanErrorCallbackSized[0] = checkInterfaceFunction(M.getOrInsertFunction( kAsanReportLoadN, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL)); AsanErrorCallbackSized[1] = checkInterfaceFunction(M.getOrInsertFunction( kAsanReportStoreN, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL)); AsanHandleNoReturnFunc = checkInterfaceFunction(M.getOrInsertFunction( kAsanHandleNoReturnName, IRB.getVoidTy(), NULL)); AsanCovFunction = checkInterfaceFunction(M.getOrInsertFunction( kAsanCovName, IRB.getVoidTy(), IntptrTy, NULL)); // We insert an empty inline asm after __asan_report* to avoid callback merge. EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false), StringRef(""), StringRef(""), /*hasSideEffects=*/true); } void AddressSanitizer::emitShadowMapping(Module &M, IRBuilder<> &IRB) const { // Tell the values of mapping offset and scale to the run-time. GlobalValue *asan_mapping_offset = new GlobalVariable(M, IntptrTy, true, GlobalValue::LinkOnceODRLinkage, ConstantInt::get(IntptrTy, Mapping.Offset), kAsanMappingOffsetName); // Read the global, otherwise it may be optimized away. IRB.CreateLoad(asan_mapping_offset, true); GlobalValue *asan_mapping_scale = new GlobalVariable(M, IntptrTy, true, GlobalValue::LinkOnceODRLinkage, ConstantInt::get(IntptrTy, Mapping.Scale), kAsanMappingScaleName); // Read the global, otherwise it may be optimized away. IRB.CreateLoad(asan_mapping_scale, true); } // virtual bool AddressSanitizer::doInitialization(Module &M) { // Initialize the private fields. No one has accessed them before. TD = getAnalysisIfAvailable<DataLayout>(); if (!TD) return false; BL.reset(SpecialCaseList::createOrDie(BlacklistFile)); DynamicallyInitializedGlobals.Init(M); C = &(M.getContext()); LongSize = TD->getPointerSizeInBits(); IntptrTy = Type::getIntNTy(*C, LongSize); AsanCtorFunction = Function::Create( FunctionType::get(Type::getVoidTy(*C), false), GlobalValue::InternalLinkage, kAsanModuleCtorName, &M); BasicBlock *AsanCtorBB = BasicBlock::Create(*C, "", AsanCtorFunction); // call __asan_init in the module ctor. IRBuilder<> IRB(ReturnInst::Create(*C, AsanCtorBB)); AsanInitFunction = checkInterfaceFunction( M.getOrInsertFunction(kAsanInitName, IRB.getVoidTy(), NULL)); AsanInitFunction->setLinkage(Function::ExternalLinkage); IRB.CreateCall(AsanInitFunction); Mapping = getShadowMapping(M, LongSize, ZeroBaseShadow); emitShadowMapping(M, IRB); appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndCtorPriority); return true; } bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) { // For each NSObject descendant having a +load method, this method is invoked // by the ObjC runtime before any of the static constructors is called. // Therefore we need to instrument such methods with a call to __asan_init // at the beginning in order to initialize our runtime before any access to // the shadow memory. // We cannot just ignore these methods, because they may call other // instrumented functions. if (F.getName().find(" load]") != std::string::npos) { IRBuilder<> IRB(F.begin()->begin()); IRB.CreateCall(AsanInitFunction); return true; } return false; } // Poor man's coverage that works with ASan. // We create a Guard boolean variable with the same linkage // as the function and inject this code into the entry block: // if (*Guard) { // __sanitizer_cov(&F); // *Guard = 1; // } // The accesses to Guard are atomic. The rest of the logic is // in __sanitizer_cov (it's fine to call it more than once). // // This coverage implementation provides very limited data: // it only tells if a given function was ever executed. // No counters, no per-basic-block or per-edge data. // But for many use cases this is what we need and the added slowdown // is negligible. This simple implementation will probably be obsoleted // by the upcoming Clang-based coverage implementation. // By having it here and now we hope to // a) get the functionality to users earlier and // b) collect usage statistics to help improve Clang coverage design. bool AddressSanitizer::InjectCoverage(Function &F) { if (!ClCoverage) return false; // Skip static allocas at the top of the entry block so they don't become // dynamic when we split the block. If we used our optimized stack layout, // then there will only be one alloca and it will come first. BasicBlock &Entry = F.getEntryBlock(); BasicBlock::iterator IP = Entry.getFirstInsertionPt(), BE = Entry.end(); for (; IP != BE; ++IP) { AllocaInst *AI = dyn_cast<AllocaInst>(IP); if (!AI || !AI->isStaticAlloca()) break; } IRBuilder<> IRB(IP); Type *Int8Ty = IRB.getInt8Ty(); GlobalVariable *Guard = new GlobalVariable( *F.getParent(), Int8Ty, false, GlobalValue::PrivateLinkage, Constant::getNullValue(Int8Ty), "__asan_gen_cov_" + F.getName()); LoadInst *Load = IRB.CreateLoad(Guard); Load->setAtomic(Monotonic); Load->setAlignment(1); Value *Cmp = IRB.CreateICmpEQ(Constant::getNullValue(Int8Ty), Load); Instruction *Ins = SplitBlockAndInsertIfThen(cast<Instruction>(Cmp), false); IRB.SetInsertPoint(Ins); // We pass &F to __sanitizer_cov. We could avoid this and rely on // GET_CALLER_PC, but having the PC of the first instruction is just nice. IRB.CreateCall(AsanCovFunction, IRB.CreatePointerCast(&F, IntptrTy)); StoreInst *Store = IRB.CreateStore(ConstantInt::get(Int8Ty, 1), Guard); Store->setAtomic(Monotonic); Store->setAlignment(1); return true; } bool AddressSanitizer::runOnFunction(Function &F) { if (BL->isIn(F)) return false; if (&F == AsanCtorFunction) return false; if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false; DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n"); initializeCallbacks(*F.getParent()); // If needed, insert __asan_init before checking for SanitizeAddress attr. maybeInsertAsanInitAtFunctionEntry(F); if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return false; if (!ClDebugFunc.empty() && ClDebugFunc != F.getName()) return false; // We want to instrument every address only once per basic block (unless there // are calls between uses). SmallSet<Value*, 16> TempsToInstrument; SmallVector<Instruction*, 16> ToInstrument; SmallVector<Instruction*, 8> NoReturnCalls; int NumAllocas = 0; bool IsWrite; // Fill the set of memory operations to instrument. for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) { TempsToInstrument.clear(); int NumInsnsPerBB = 0; for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) { if (LooksLikeCodeInBug11395(BI)) return false; if (Value *Addr = isInterestingMemoryAccess(BI, &IsWrite)) { if (ClOpt && ClOptSameTemp) { if (!TempsToInstrument.insert(Addr)) continue; // We've seen this temp in the current BB. } } else if (isa<MemIntrinsic>(BI) && ClMemIntrin) { // ok, take it. } else { if (isa<AllocaInst>(BI)) NumAllocas++; CallSite CS(BI); if (CS) { // A call inside BB. TempsToInstrument.clear(); if (CS.doesNotReturn()) NoReturnCalls.push_back(CS.getInstruction()); } continue; } ToInstrument.push_back(BI); NumInsnsPerBB++; if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break; } } Function *UninstrumentedDuplicate = 0; bool LikelyToInstrument = !NoReturnCalls.empty() || !ToInstrument.empty() || (NumAllocas > 0); if (ClKeepUninstrumented && LikelyToInstrument) { ValueToValueMapTy VMap; UninstrumentedDuplicate = CloneFunction(&F, VMap, false); UninstrumentedDuplicate->removeFnAttr(Attribute::SanitizeAddress); UninstrumentedDuplicate->setName("NOASAN_" + F.getName()); F.getParent()->getFunctionList().push_back(UninstrumentedDuplicate); } // Instrument. int NumInstrumented = 0; for (size_t i = 0, n = ToInstrument.size(); i != n; i++) { Instruction *Inst = ToInstrument[i]; if (ClDebugMin < 0 || ClDebugMax < 0 || (NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) { if (isInterestingMemoryAccess(Inst, &IsWrite)) instrumentMop(Inst); else instrumentMemIntrinsic(cast<MemIntrinsic>(Inst)); } NumInstrumented++; } FunctionStackPoisoner FSP(F, *this); bool ChangedStack = FSP.runOnFunction(); // We must unpoison the stack before every NoReturn call (throw, _exit, etc). // See e.g. http://code.google.com/p/address-sanitizer/issues/detail?id=37 for (size_t i = 0, n = NoReturnCalls.size(); i != n; i++) { Instruction *CI = NoReturnCalls[i]; IRBuilder<> IRB(CI); IRB.CreateCall(AsanHandleNoReturnFunc); } bool res = NumInstrumented > 0 || ChangedStack || !NoReturnCalls.empty(); if (InjectCoverage(F)) res = true; DEBUG(dbgs() << "ASAN done instrumenting: " << res << " " << F << "\n"); if (ClKeepUninstrumented) { if (!res) { // No instrumentation is done, no need for the duplicate. if (UninstrumentedDuplicate) UninstrumentedDuplicate->eraseFromParent(); } else { // The function was instrumented. We must have the duplicate. assert(UninstrumentedDuplicate); UninstrumentedDuplicate->setSection("NOASAN"); assert(!F.hasSection()); F.setSection("ASAN"); } } return res; } // Workaround for bug 11395: we don't want to instrument stack in functions // with large assembly blobs (32-bit only), otherwise reg alloc may crash. // FIXME: remove once the bug 11395 is fixed. bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) { if (LongSize != 32) return false; CallInst *CI = dyn_cast<CallInst>(I); if (!CI || !CI->isInlineAsm()) return false; if (CI->getNumArgOperands() <= 5) return false; // We have inline assembly with quite a few arguments. return true; } void FunctionStackPoisoner::initializeCallbacks(Module &M) { IRBuilder<> IRB(*C); for (int i = 0; i <= kMaxAsanStackMallocSizeClass; i++) { std::string Suffix = itostr(i); AsanStackMallocFunc[i] = checkInterfaceFunction( M.getOrInsertFunction(kAsanStackMallocNameTemplate + Suffix, IntptrTy, IntptrTy, IntptrTy, NULL)); AsanStackFreeFunc[i] = checkInterfaceFunction(M.getOrInsertFunction( kAsanStackFreeNameTemplate + Suffix, IRB.getVoidTy(), IntptrTy, IntptrTy, IntptrTy, NULL)); } AsanPoisonStackMemoryFunc = checkInterfaceFunction(M.getOrInsertFunction( kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL)); AsanUnpoisonStackMemoryFunc = checkInterfaceFunction(M.getOrInsertFunction( kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL)); } void FunctionStackPoisoner::poisonRedZones(const ArrayRef<uint8_t> ShadowBytes, IRBuilder<> &IRB, Value *ShadowBase, bool DoPoison) { size_t n = ShadowBytes.size(); size_t LargeStoreSize = ASan.LongSize / 8; size_t i; for (i = 0; i + LargeStoreSize - 1 < n; i += LargeStoreSize) { uint64_t Val = 0; for (size_t j = 0; j < LargeStoreSize; j++) { if (ASan.TD->isLittleEndian()) Val |= (uint64_t)ShadowBytes[i + j] << (8 * j); else Val = (Val << 8) | ShadowBytes[i + j]; } if (!Val) continue; Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)); Value *Poison = ConstantInt::get(IntptrTy, DoPoison ? Val : 0); IRB.CreateStore(Poison, IRB.CreateIntToPtr(Ptr, IntptrPtrTy)); } for (; i < n; i++) { uint8_t Val = ShadowBytes[i]; if (!Val) continue; Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)); Value *Poison = ConstantInt::get(IRB.getInt8Ty(), DoPoison ? Val : 0); IRB.CreateStore(Poison, IRB.CreateIntToPtr(Ptr, IRB.getInt8PtrTy())); } } // Fake stack allocator (asan_fake_stack.h) has 11 size classes // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass static int StackMallocSizeClass(uint64_t LocalStackSize) { assert(LocalStackSize <= kMaxStackMallocSize); uint64_t MaxSize = kMinStackMallocSize; for (int i = 0; ; i++, MaxSize *= 2) if (LocalStackSize <= MaxSize) return i; llvm_unreachable("impossible LocalStackSize"); } // Set Size bytes starting from ShadowBase to kAsanStackAfterReturnMagic. // We can not use MemSet intrinsic because it may end up calling the actual // memset. Size is a multiple of 8. // Currently this generates 8-byte stores on x86_64; it may be better to // generate wider stores. void FunctionStackPoisoner::SetShadowToStackAfterReturnInlined( IRBuilder<> &IRB, Value *ShadowBase, int Size) { assert(!(Size % 8)); assert(kAsanStackAfterReturnMagic == 0xf5); for (int i = 0; i < Size; i += 8) { Value *p = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)); IRB.CreateStore(ConstantInt::get(IRB.getInt64Ty(), 0xf5f5f5f5f5f5f5f5ULL), IRB.CreateIntToPtr(p, IRB.getInt64Ty()->getPointerTo())); } } void FunctionStackPoisoner::poisonStack() { int StackMallocIdx = -1; assert(AllocaVec.size() > 0); Instruction *InsBefore = AllocaVec[0]; IRBuilder<> IRB(InsBefore); SmallVector<ASanStackVariableDescription, 16> SVD; SVD.reserve(AllocaVec.size()); for (size_t i = 0, n = AllocaVec.size(); i < n; i++) { AllocaInst *AI = AllocaVec[i]; ASanStackVariableDescription D = { AI->getName().data(), getAllocaSizeInBytes(AI), AI->getAlignment(), AI, 0}; SVD.push_back(D); } // Minimal header size (left redzone) is 4 pointers, // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms. size_t MinHeaderSize = ASan.LongSize / 2; ASanStackFrameLayout L; ComputeASanStackFrameLayout(SVD, 1UL << Mapping.Scale, MinHeaderSize, &L); DEBUG(dbgs() << L.DescriptionString << " --- " << L.FrameSize << "\n"); uint64_t LocalStackSize = L.FrameSize; bool DoStackMalloc = ASan.CheckUseAfterReturn && LocalStackSize <= kMaxStackMallocSize; Type *ByteArrayTy = ArrayType::get(IRB.getInt8Ty(), LocalStackSize); AllocaInst *MyAlloca = new AllocaInst(ByteArrayTy, "MyAlloca", InsBefore); assert((ClRealignStack & (ClRealignStack - 1)) == 0); size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack); MyAlloca->setAlignment(FrameAlignment); assert(MyAlloca->isStaticAlloca()); Value *OrigStackBase = IRB.CreatePointerCast(MyAlloca, IntptrTy); Value *LocalStackBase = OrigStackBase; if (DoStackMalloc) { // LocalStackBase = OrigStackBase // if (__asan_option_detect_stack_use_after_return) // LocalStackBase = __asan_stack_malloc_N(LocalStackBase, OrigStackBase); StackMallocIdx = StackMallocSizeClass(LocalStackSize); assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass); Constant *OptionDetectUAR = F.getParent()->getOrInsertGlobal( kAsanOptionDetectUAR, IRB.getInt32Ty()); Value *Cmp = IRB.CreateICmpNE(IRB.CreateLoad(OptionDetectUAR), Constant::getNullValue(IRB.getInt32Ty())); Instruction *Term = SplitBlockAndInsertIfThen(cast<Instruction>(Cmp), false); BasicBlock *CmpBlock = cast<Instruction>(Cmp)->getParent(); IRBuilder<> IRBIf(Term); LocalStackBase = IRBIf.CreateCall2( AsanStackMallocFunc[StackMallocIdx], ConstantInt::get(IntptrTy, LocalStackSize), OrigStackBase); BasicBlock *SetBlock = cast<Instruction>(LocalStackBase)->getParent(); IRB.SetInsertPoint(InsBefore); PHINode *Phi = IRB.CreatePHI(IntptrTy, 2); Phi->addIncoming(OrigStackBase, CmpBlock); Phi->addIncoming(LocalStackBase, SetBlock); LocalStackBase = Phi; } // Insert poison calls for lifetime intrinsics for alloca. bool HavePoisonedAllocas = false; for (size_t i = 0, n = AllocaPoisonCallVec.size(); i < n; i++) { const AllocaPoisonCall &APC = AllocaPoisonCallVec[i]; assert(APC.InsBefore); assert(APC.AI); IRBuilder<> IRB(APC.InsBefore); poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison); HavePoisonedAllocas |= APC.DoPoison; } // Replace Alloca instructions with base+offset. for (size_t i = 0, n = SVD.size(); i < n; i++) { AllocaInst *AI = SVD[i].AI; Value *NewAllocaPtr = IRB.CreateIntToPtr( IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, SVD[i].Offset)), AI->getType()); replaceDbgDeclareForAlloca(AI, NewAllocaPtr, DIB); AI->replaceAllUsesWith(NewAllocaPtr); } // The left-most redzone has enough space for at least 4 pointers. // Write the Magic value to redzone[0]. Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy); IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic), BasePlus0); // Write the frame description constant to redzone[1]. Value *BasePlus1 = IRB.CreateIntToPtr( IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, ASan.LongSize/8)), IntptrPtrTy); GlobalVariable *StackDescriptionGlobal = createPrivateGlobalForString(*F.getParent(), L.DescriptionString); Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy); IRB.CreateStore(Description, BasePlus1); // Write the PC to redzone[2]. Value *BasePlus2 = IRB.CreateIntToPtr( IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, 2 * ASan.LongSize/8)), IntptrPtrTy); IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2); // Poison the stack redzones at the entry. Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB); poisonRedZones(L.ShadowBytes, IRB, ShadowBase, true); // Unpoison the stack before all ret instructions. for (size_t i = 0, n = RetVec.size(); i < n; i++) { Instruction *Ret = RetVec[i]; IRBuilder<> IRBRet(Ret); // Mark the current frame as retired. IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic), BasePlus0); // Unpoison the stack. poisonRedZones(L.ShadowBytes, IRBRet, ShadowBase, false); if (DoStackMalloc) { assert(StackMallocIdx >= 0); // In use-after-return mode, mark the whole stack frame unaddressable. if (StackMallocIdx <= 4) { // For small sizes inline the whole thing: // if LocalStackBase != OrigStackBase: // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize); // **SavedFlagPtr(LocalStackBase) = 0 // FIXME: if LocalStackBase != OrigStackBase don't call poisonRedZones. Value *Cmp = IRBRet.CreateICmpNE(LocalStackBase, OrigStackBase); TerminatorInst *PoisonTerm = SplitBlockAndInsertIfThen(cast<Instruction>(Cmp), false); IRBuilder<> IRBPoison(PoisonTerm); int ClassSize = kMinStackMallocSize << StackMallocIdx; SetShadowToStackAfterReturnInlined(IRBPoison, ShadowBase, ClassSize >> Mapping.Scale); Value *SavedFlagPtrPtr = IRBPoison.CreateAdd( LocalStackBase, ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8)); Value *SavedFlagPtr = IRBPoison.CreateLoad( IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy)); IRBPoison.CreateStore( Constant::getNullValue(IRBPoison.getInt8Ty()), IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy())); } else { // For larger frames call __asan_stack_free_*. IRBRet.CreateCall3(AsanStackFreeFunc[StackMallocIdx], LocalStackBase, ConstantInt::get(IntptrTy, LocalStackSize), OrigStackBase); } } else if (HavePoisonedAllocas) { // If we poisoned some allocas in llvm.lifetime analysis, // unpoison whole stack frame now. assert(LocalStackBase == OrigStackBase); poisonAlloca(LocalStackBase, LocalStackSize, IRBRet, false); } } // We are done. Remove the old unused alloca instructions. for (size_t i = 0, n = AllocaVec.size(); i < n; i++) AllocaVec[i]->eraseFromParent(); } void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison) { // For now just insert the call to ASan runtime. Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy); Value *SizeArg = ConstantInt::get(IntptrTy, Size); IRB.CreateCall2(DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc, AddrArg, SizeArg); } // Handling llvm.lifetime intrinsics for a given %alloca: // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca. // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect // invalid accesses) and unpoison it for llvm.lifetime.start (the memory // could be poisoned by previous llvm.lifetime.end instruction, as the // variable may go in and out of scope several times, e.g. in loops). // (3) if we poisoned at least one %alloca in a function, // unpoison the whole stack frame at function exit. AllocaInst *FunctionStackPoisoner::findAllocaForValue(Value *V) { if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) // We're intested only in allocas we can handle. return isInterestingAlloca(*AI) ? AI : 0; // See if we've already calculated (or started to calculate) alloca for a // given value. AllocaForValueMapTy::iterator I = AllocaForValue.find(V); if (I != AllocaForValue.end()) return I->second; // Store 0 while we're calculating alloca for value V to avoid // infinite recursion if the value references itself. AllocaForValue[V] = 0; AllocaInst *Res = 0; if (CastInst *CI = dyn_cast<CastInst>(V)) Res = findAllocaForValue(CI->getOperand(0)); else if (PHINode *PN = dyn_cast<PHINode>(V)) { for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { Value *IncValue = PN->getIncomingValue(i); // Allow self-referencing phi-nodes. if (IncValue == PN) continue; AllocaInst *IncValueAI = findAllocaForValue(IncValue); // AI for incoming values should exist and should all be equal. if (IncValueAI == 0 || (Res != 0 && IncValueAI != Res)) return 0; Res = IncValueAI; } } if (Res != 0) AllocaForValue[V] = Res; return Res; }