Mercurial > hg > CbC > CbC_llvm
view lib/Transforms/Utils/Local.cpp @ 56:bdef5c940791
copy the previous function's return type to return value
author | Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 23 Jan 2014 23:14:57 +0900 |
parents | e4204d083e25 |
children | 54457678186b |
line wrap: on
line source
//===-- Local.cpp - Functions to perform local transformations ------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This family of functions perform various local transformations to the // program. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/Local.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/MemoryBuiltins.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/DIBuilder.h" #include "llvm/DebugInfo.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/GlobalAlias.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/MDBuilder.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Operator.h" #include "llvm/Support/CFG.h" #include "llvm/Support/Debug.h" #include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/ValueHandle.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); //===----------------------------------------------------------------------===// // Local constant propagation. // /// ConstantFoldTerminator - If a terminator instruction is predicated on a /// constant value, convert it into an unconditional branch to the constant /// destination. This is a nontrivial operation because the successors of this /// basic block must have their PHI nodes updated. /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch /// conditions and indirectbr addresses this might make dead if /// DeleteDeadConditions is true. bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, const TargetLibraryInfo *TLI) { TerminatorInst *T = BB->getTerminator(); IRBuilder<> Builder(T); // Branch - See if we are conditional jumping on constant if (BranchInst *BI = dyn_cast<BranchInst>(T)) { if (BI->isUnconditional()) return false; // Can't optimize uncond branch BasicBlock *Dest1 = BI->getSuccessor(0); BasicBlock *Dest2 = BI->getSuccessor(1); if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { // Are we branching on constant? // YES. Change to unconditional branch... BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; //cerr << "Function: " << T->getParent()->getParent() // << "\nRemoving branch from " << T->getParent() // << "\n\nTo: " << OldDest << endl; // Let the basic block know that we are letting go of it. Based on this, // it will adjust it's PHI nodes. OldDest->removePredecessor(BB); // Replace the conditional branch with an unconditional one. Builder.CreateBr(Destination); BI->eraseFromParent(); return true; } if (Dest2 == Dest1) { // Conditional branch to same location? // This branch matches something like this: // br bool %cond, label %Dest, label %Dest // and changes it into: br label %Dest // Let the basic block know that we are letting go of one copy of it. assert(BI->getParent() && "Terminator not inserted in block!"); Dest1->removePredecessor(BI->getParent()); // Replace the conditional branch with an unconditional one. Builder.CreateBr(Dest1); Value *Cond = BI->getCondition(); BI->eraseFromParent(); if (DeleteDeadConditions) RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); return true; } return false; } if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) { // If we are switching on a constant, we can convert the switch into a // single branch instruction! ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition()); BasicBlock *TheOnlyDest = SI->getDefaultDest(); BasicBlock *DefaultDest = TheOnlyDest; // Figure out which case it goes to. for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i) { // Found case matching a constant operand? if (i.getCaseValue() == CI) { TheOnlyDest = i.getCaseSuccessor(); break; } // Check to see if this branch is going to the same place as the default // dest. If so, eliminate it as an explicit compare. if (i.getCaseSuccessor() == DefaultDest) { MDNode* MD = SI->getMetadata(LLVMContext::MD_prof); unsigned NCases = SI->getNumCases(); // Fold the case metadata into the default if there will be any branches // left, unless the metadata doesn't match the switch. if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { // Collect branch weights into a vector. SmallVector<uint32_t, 8> Weights; for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; ++MD_i) { ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(MD_i)); assert(CI); Weights.push_back(CI->getValue().getZExtValue()); } // Merge weight of this case to the default weight. unsigned idx = i.getCaseIndex(); Weights[0] += Weights[idx+1]; // Remove weight for this case. std::swap(Weights[idx+1], Weights.back()); Weights.pop_back(); SI->setMetadata(LLVMContext::MD_prof, MDBuilder(BB->getContext()). createBranchWeights(Weights)); } // Remove this entry. DefaultDest->removePredecessor(SI->getParent()); SI->removeCase(i); --i; --e; continue; } // Otherwise, check to see if the switch only branches to one destination. // We do this by reseting "TheOnlyDest" to null when we find two non-equal // destinations. if (i.getCaseSuccessor() != TheOnlyDest) TheOnlyDest = 0; } if (CI && !TheOnlyDest) { // Branching on a constant, but not any of the cases, go to the default // successor. TheOnlyDest = SI->getDefaultDest(); } // If we found a single destination that we can fold the switch into, do so // now. if (TheOnlyDest) { // Insert the new branch. Builder.CreateBr(TheOnlyDest); BasicBlock *BB = SI->getParent(); // Remove entries from PHI nodes which we no longer branch to... for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) { // Found case matching a constant operand? BasicBlock *Succ = SI->getSuccessor(i); if (Succ == TheOnlyDest) TheOnlyDest = 0; // Don't modify the first branch to TheOnlyDest else Succ->removePredecessor(BB); } // Delete the old switch. Value *Cond = SI->getCondition(); SI->eraseFromParent(); if (DeleteDeadConditions) RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); return true; } if (SI->getNumCases() == 1) { // Otherwise, we can fold this switch into a conditional branch // instruction if it has only one non-default destination. SwitchInst::CaseIt FirstCase = SI->case_begin(); Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), FirstCase.getCaseValue(), "cond"); // Insert the new branch. BranchInst *NewBr = Builder.CreateCondBr(Cond, FirstCase.getCaseSuccessor(), SI->getDefaultDest()); MDNode* MD = SI->getMetadata(LLVMContext::MD_prof); if (MD && MD->getNumOperands() == 3) { ConstantInt *SICase = dyn_cast<ConstantInt>(MD->getOperand(2)); ConstantInt *SIDef = dyn_cast<ConstantInt>(MD->getOperand(1)); assert(SICase && SIDef); // The TrueWeight should be the weight for the single case of SI. NewBr->setMetadata(LLVMContext::MD_prof, MDBuilder(BB->getContext()). createBranchWeights(SICase->getValue().getZExtValue(), SIDef->getValue().getZExtValue())); } // Delete the old switch. SI->eraseFromParent(); return true; } return false; } if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) { // indirectbr blockaddress(@F, @BB) -> br label @BB if (BlockAddress *BA = dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { BasicBlock *TheOnlyDest = BA->getBasicBlock(); // Insert the new branch. Builder.CreateBr(TheOnlyDest); for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { if (IBI->getDestination(i) == TheOnlyDest) TheOnlyDest = 0; else IBI->getDestination(i)->removePredecessor(IBI->getParent()); } Value *Address = IBI->getAddress(); IBI->eraseFromParent(); if (DeleteDeadConditions) RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); // If we didn't find our destination in the IBI successor list, then we // have undefined behavior. Replace the unconditional branch with an // 'unreachable' instruction. if (TheOnlyDest) { BB->getTerminator()->eraseFromParent(); new UnreachableInst(BB->getContext(), BB); } return true; } } return false; } //===----------------------------------------------------------------------===// // Local dead code elimination. // /// isInstructionTriviallyDead - Return true if the result produced by the /// instruction is not used, and the instruction has no side effects. /// bool llvm::isInstructionTriviallyDead(Instruction *I, const TargetLibraryInfo *TLI) { if (!I->use_empty() || isa<TerminatorInst>(I)) return false; // We don't want the landingpad instruction removed by anything this general. if (isa<LandingPadInst>(I)) return false; // We don't want debug info removed by anything this general, unless // debug info is empty. if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { if (DDI->getAddress()) return false; return true; } if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { if (DVI->getValue()) return false; return true; } if (!I->mayHaveSideEffects()) return true; // Special case intrinsics that "may have side effects" but can be deleted // when dead. if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { // Safe to delete llvm.stacksave if dead. if (II->getIntrinsicID() == Intrinsic::stacksave) return true; // Lifetime intrinsics are dead when their right-hand is undef. if (II->getIntrinsicID() == Intrinsic::lifetime_start || II->getIntrinsicID() == Intrinsic::lifetime_end) return isa<UndefValue>(II->getArgOperand(1)); } if (isAllocLikeFn(I, TLI)) return true; if (CallInst *CI = isFreeCall(I, TLI)) if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) return C->isNullValue() || isa<UndefValue>(C); return false; } /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a /// trivially dead instruction, delete it. If that makes any of its operands /// trivially dead, delete them too, recursively. Return true if any /// instructions were deleted. bool llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V, const TargetLibraryInfo *TLI) { Instruction *I = dyn_cast<Instruction>(V); if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI)) return false; SmallVector<Instruction*, 16> DeadInsts; DeadInsts.push_back(I); do { I = DeadInsts.pop_back_val(); // Null out all of the instruction's operands to see if any operand becomes // dead as we go. for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { Value *OpV = I->getOperand(i); I->setOperand(i, 0); if (!OpV->use_empty()) continue; // If the operand is an instruction that became dead as we nulled out the // operand, and if it is 'trivially' dead, delete it in a future loop // iteration. if (Instruction *OpI = dyn_cast<Instruction>(OpV)) if (isInstructionTriviallyDead(OpI, TLI)) DeadInsts.push_back(OpI); } I->eraseFromParent(); } while (!DeadInsts.empty()); return true; } /// areAllUsesEqual - Check whether the uses of a value are all the same. /// This is similar to Instruction::hasOneUse() except this will also return /// true when there are no uses or multiple uses that all refer to the same /// value. static bool areAllUsesEqual(Instruction *I) { Value::use_iterator UI = I->use_begin(); Value::use_iterator UE = I->use_end(); if (UI == UE) return true; User *TheUse = *UI; for (++UI; UI != UE; ++UI) { if (*UI != TheUse) return false; } return true; } /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively /// dead PHI node, due to being a def-use chain of single-use nodes that /// either forms a cycle or is terminated by a trivially dead instruction, /// delete it. If that makes any of its operands trivially dead, delete them /// too, recursively. Return true if a change was made. bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, const TargetLibraryInfo *TLI) { SmallPtrSet<Instruction*, 4> Visited; for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); I = cast<Instruction>(*I->use_begin())) { if (I->use_empty()) return RecursivelyDeleteTriviallyDeadInstructions(I, TLI); // If we find an instruction more than once, we're on a cycle that // won't prove fruitful. if (!Visited.insert(I)) { // Break the cycle and delete the instruction and its operands. I->replaceAllUsesWith(UndefValue::get(I->getType())); (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI); return true; } } return false; } /// SimplifyInstructionsInBlock - Scan the specified basic block and try to /// simplify any instructions in it and recursively delete dead instructions. /// /// This returns true if it changed the code, note that it can delete /// instructions in other blocks as well in this block. bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, const DataLayout *TD, const TargetLibraryInfo *TLI) { bool MadeChange = false; #ifndef NDEBUG // In debug builds, ensure that the terminator of the block is never replaced // or deleted by these simplifications. The idea of simplification is that it // cannot introduce new instructions, and there is no way to replace the // terminator of a block without introducing a new instruction. AssertingVH<Instruction> TerminatorVH(--BB->end()); #endif for (BasicBlock::iterator BI = BB->begin(), E = --BB->end(); BI != E; ) { assert(!BI->isTerminator()); Instruction *Inst = BI++; WeakVH BIHandle(BI); if (recursivelySimplifyInstruction(Inst, TD, TLI)) { MadeChange = true; if (BIHandle != BI) BI = BB->begin(); continue; } MadeChange |= RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI); if (BIHandle != BI) BI = BB->begin(); } return MadeChange; } //===----------------------------------------------------------------------===// // Control Flow Graph Restructuring. // /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this /// method is called when we're about to delete Pred as a predecessor of BB. If /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred. /// /// Unlike the removePredecessor method, this attempts to simplify uses of PHI /// nodes that collapse into identity values. For example, if we have: /// x = phi(1, 0, 0, 0) /// y = and x, z /// /// .. and delete the predecessor corresponding to the '1', this will attempt to /// recursively fold the and to 0. void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred, DataLayout *TD) { // This only adjusts blocks with PHI nodes. if (!isa<PHINode>(BB->begin())) return; // Remove the entries for Pred from the PHI nodes in BB, but do not simplify // them down. This will leave us with single entry phi nodes and other phis // that can be removed. BB->removePredecessor(Pred, true); WeakVH PhiIt = &BB->front(); while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) { PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt)); Value *OldPhiIt = PhiIt; if (!recursivelySimplifyInstruction(PN, TD)) continue; // If recursive simplification ended up deleting the next PHI node we would // iterate to, then our iterator is invalid, restart scanning from the top // of the block. if (PhiIt != OldPhiIt) PhiIt = &BB->front(); } } /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its /// predecessor is known to have one successor (DestBB!). Eliminate the edge /// between them, moving the instructions in the predecessor into DestBB and /// deleting the predecessor block. /// void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) { // If BB has single-entry PHI nodes, fold them. while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { Value *NewVal = PN->getIncomingValue(0); // Replace self referencing PHI with undef, it must be dead. if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); PN->replaceAllUsesWith(NewVal); PN->eraseFromParent(); } BasicBlock *PredBB = DestBB->getSinglePredecessor(); assert(PredBB && "Block doesn't have a single predecessor!"); // Zap anything that took the address of DestBB. Not doing this will give the // address an invalid value. if (DestBB->hasAddressTaken()) { BlockAddress *BA = BlockAddress::get(DestBB); Constant *Replacement = ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1); BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, BA->getType())); BA->destroyConstant(); } // Anything that branched to PredBB now branches to DestBB. PredBB->replaceAllUsesWith(DestBB); // Splice all the instructions from PredBB to DestBB. PredBB->getTerminator()->eraseFromParent(); DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); if (P) { DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>(); if (DT) { BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock(); DT->changeImmediateDominator(DestBB, PredBBIDom); DT->eraseNode(PredBB); } } // Nuke BB. PredBB->eraseFromParent(); } /// CanMergeValues - Return true if we can choose one of these values to use /// in place of the other. Note that we will always choose the non-undef /// value to keep. static bool CanMergeValues(Value *First, Value *Second) { return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); } /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an /// almost-empty BB ending in an unconditional branch to Succ, into Succ. /// /// Assumption: Succ is the single successor for BB. /// static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " << Succ->getName() << "\n"); // Shortcut, if there is only a single predecessor it must be BB and merging // is always safe if (Succ->getSinglePredecessor()) return true; // Make a list of the predecessors of BB SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); // Look at all the phi nodes in Succ, to see if they present a conflict when // merging these blocks for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { PHINode *PN = cast<PHINode>(I); // If the incoming value from BB is again a PHINode in // BB which has the same incoming value for *PI as PN does, we can // merge the phi nodes and then the blocks can still be merged PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); if (BBPN && BBPN->getParent() == BB) { for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { BasicBlock *IBB = PN->getIncomingBlock(PI); if (BBPreds.count(IBB) && !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), PN->getIncomingValue(PI))) { DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " << Succ->getName() << " is conflicting with " << BBPN->getName() << " with regard to common predecessor " << IBB->getName() << "\n"); return false; } } } else { Value* Val = PN->getIncomingValueForBlock(BB); for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { // See if the incoming value for the common predecessor is equal to the // one for BB, in which case this phi node will not prevent the merging // of the block. BasicBlock *IBB = PN->getIncomingBlock(PI); if (BBPreds.count(IBB) && !CanMergeValues(Val, PN->getIncomingValue(PI))) { DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " << Succ->getName() << " is conflicting with regard to common " << "predecessor " << IBB->getName() << "\n"); return false; } } } } return true; } typedef SmallVector<BasicBlock *, 16> PredBlockVector; typedef DenseMap<BasicBlock *, Value *> IncomingValueMap; /// \brief Determines the value to use as the phi node input for a block. /// /// Select between \p OldVal any value that we know flows from \p BB /// to a particular phi on the basis of which one (if either) is not /// undef. Update IncomingValues based on the selected value. /// /// \param OldVal The value we are considering selecting. /// \param BB The block that the value flows in from. /// \param IncomingValues A map from block-to-value for other phi inputs /// that we have examined. /// /// \returns the selected value. static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, IncomingValueMap &IncomingValues) { if (!isa<UndefValue>(OldVal)) { assert((!IncomingValues.count(BB) || IncomingValues.find(BB)->second == OldVal) && "Expected OldVal to match incoming value from BB!"); IncomingValues.insert(std::make_pair(BB, OldVal)); return OldVal; } IncomingValueMap::const_iterator It = IncomingValues.find(BB); if (It != IncomingValues.end()) return It->second; return OldVal; } /// \brief Create a map from block to value for the operands of a /// given phi. /// /// Create a map from block to value for each non-undef value flowing /// into \p PN. /// /// \param PN The phi we are collecting the map for. /// \param IncomingValues [out] The map from block to value for this phi. static void gatherIncomingValuesToPhi(PHINode *PN, IncomingValueMap &IncomingValues) { for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { BasicBlock *BB = PN->getIncomingBlock(i); Value *V = PN->getIncomingValue(i); if (!isa<UndefValue>(V)) IncomingValues.insert(std::make_pair(BB, V)); } } /// \brief Replace the incoming undef values to a phi with the values /// from a block-to-value map. /// /// \param PN The phi we are replacing the undefs in. /// \param IncomingValues A map from block to value. static void replaceUndefValuesInPhi(PHINode *PN, const IncomingValueMap &IncomingValues) { for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { Value *V = PN->getIncomingValue(i); if (!isa<UndefValue>(V)) continue; BasicBlock *BB = PN->getIncomingBlock(i); IncomingValueMap::const_iterator It = IncomingValues.find(BB); if (It == IncomingValues.end()) continue; PN->setIncomingValue(i, It->second); } } /// \brief Replace a value flowing from a block to a phi with /// potentially multiple instances of that value flowing from the /// block's predecessors to the phi. /// /// \param BB The block with the value flowing into the phi. /// \param BBPreds The predecessors of BB. /// \param PN The phi that we are updating. static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, const PredBlockVector &BBPreds, PHINode *PN) { Value *OldVal = PN->removeIncomingValue(BB, false); assert(OldVal && "No entry in PHI for Pred BB!"); IncomingValueMap IncomingValues; // We are merging two blocks - BB, and the block containing PN - and // as a result we need to redirect edges from the predecessors of BB // to go to the block containing PN, and update PN // accordingly. Since we allow merging blocks in the case where the // predecessor and successor blocks both share some predecessors, // and where some of those common predecessors might have undef // values flowing into PN, we want to rewrite those values to be // consistent with the non-undef values. gatherIncomingValuesToPhi(PN, IncomingValues); // If this incoming value is one of the PHI nodes in BB, the new entries // in the PHI node are the entries from the old PHI. if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { PHINode *OldValPN = cast<PHINode>(OldVal); for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { // Note that, since we are merging phi nodes and BB and Succ might // have common predecessors, we could end up with a phi node with // identical incoming branches. This will be cleaned up later (and // will trigger asserts if we try to clean it up now, without also // simplifying the corresponding conditional branch). BasicBlock *PredBB = OldValPN->getIncomingBlock(i); Value *PredVal = OldValPN->getIncomingValue(i); Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, IncomingValues); // And add a new incoming value for this predecessor for the // newly retargeted branch. PN->addIncoming(Selected, PredBB); } } else { for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { // Update existing incoming values in PN for this // predecessor of BB. BasicBlock *PredBB = BBPreds[i]; Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, IncomingValues); // And add a new incoming value for this predecessor for the // newly retargeted branch. PN->addIncoming(Selected, PredBB); } } replaceUndefValuesInPhi(PN, IncomingValues); } /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an /// unconditional branch, and contains no instructions other than PHI nodes, /// potential side-effect free intrinsics and the branch. If possible, /// eliminate BB by rewriting all the predecessors to branch to the successor /// block and return true. If we can't transform, return false. bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) { assert(BB != &BB->getParent()->getEntryBlock() && "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); // We can't eliminate infinite loops. BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); if (BB == Succ) return false; // Check to see if merging these blocks would cause conflicts for any of the // phi nodes in BB or Succ. If not, we can safely merge. if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; // Check for cases where Succ has multiple predecessors and a PHI node in BB // has uses which will not disappear when the PHI nodes are merged. It is // possible to handle such cases, but difficult: it requires checking whether // BB dominates Succ, which is non-trivial to calculate in the case where // Succ has multiple predecessors. Also, it requires checking whether // constructing the necessary self-referential PHI node doesn't introduce any // conflicts; this isn't too difficult, but the previous code for doing this // was incorrect. // // Note that if this check finds a live use, BB dominates Succ, so BB is // something like a loop pre-header (or rarely, a part of an irreducible CFG); // folding the branch isn't profitable in that case anyway. if (!Succ->getSinglePredecessor()) { BasicBlock::iterator BBI = BB->begin(); while (isa<PHINode>(*BBI)) { for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end(); UI != E; ++UI) { if (PHINode* PN = dyn_cast<PHINode>(*UI)) { if (PN->getIncomingBlock(UI) != BB) return false; } else { return false; } } ++BBI; } } DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); if (isa<PHINode>(Succ->begin())) { // If there is more than one pred of succ, and there are PHI nodes in // the successor, then we need to add incoming edges for the PHI nodes // const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); // Loop over all of the PHI nodes in the successor of BB. for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { PHINode *PN = cast<PHINode>(I); redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); } } if (Succ->getSinglePredecessor()) { // BB is the only predecessor of Succ, so Succ will end up with exactly // the same predecessors BB had. // Copy over any phi, debug or lifetime instruction. BB->getTerminator()->eraseFromParent(); Succ->getInstList().splice(Succ->getFirstNonPHI(), BB->getInstList()); } else { while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. assert(PN->use_empty() && "There shouldn't be any uses here!"); PN->eraseFromParent(); } } // Everything that jumped to BB now goes to Succ. BB->replaceAllUsesWith(Succ); if (!Succ->hasName()) Succ->takeName(BB); BB->eraseFromParent(); // Delete the old basic block. return true; } /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI /// nodes in this block. This doesn't try to be clever about PHI nodes /// which differ only in the order of the incoming values, but instcombine /// orders them so it usually won't matter. /// bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { bool Changed = false; // This implementation doesn't currently consider undef operands // specially. Theoretically, two phis which are identical except for // one having an undef where the other doesn't could be collapsed. // Map from PHI hash values to PHI nodes. If multiple PHIs have // the same hash value, the element is the first PHI in the // linked list in CollisionMap. DenseMap<uintptr_t, PHINode *> HashMap; // Maintain linked lists of PHI nodes with common hash values. DenseMap<PHINode *, PHINode *> CollisionMap; // Examine each PHI. for (BasicBlock::iterator I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++); ) { // Compute a hash value on the operands. Instcombine will likely have sorted // them, which helps expose duplicates, but we have to check all the // operands to be safe in case instcombine hasn't run. uintptr_t Hash = 0; // This hash algorithm is quite weak as hash functions go, but it seems // to do a good enough job for this particular purpose, and is very quick. for (User::op_iterator I = PN->op_begin(), E = PN->op_end(); I != E; ++I) { Hash ^= reinterpret_cast<uintptr_t>(static_cast<Value *>(*I)); Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7)); } for (PHINode::block_iterator I = PN->block_begin(), E = PN->block_end(); I != E; ++I) { Hash ^= reinterpret_cast<uintptr_t>(static_cast<BasicBlock *>(*I)); Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7)); } // Avoid colliding with the DenseMap sentinels ~0 and ~0-1. Hash >>= 1; // If we've never seen this hash value before, it's a unique PHI. std::pair<DenseMap<uintptr_t, PHINode *>::iterator, bool> Pair = HashMap.insert(std::make_pair(Hash, PN)); if (Pair.second) continue; // Otherwise it's either a duplicate or a hash collision. for (PHINode *OtherPN = Pair.first->second; ; ) { if (OtherPN->isIdenticalTo(PN)) { // A duplicate. Replace this PHI with its duplicate. PN->replaceAllUsesWith(OtherPN); PN->eraseFromParent(); Changed = true; break; } // A non-duplicate hash collision. DenseMap<PHINode *, PHINode *>::iterator I = CollisionMap.find(OtherPN); if (I == CollisionMap.end()) { // Set this PHI to be the head of the linked list of colliding PHIs. PHINode *Old = Pair.first->second; Pair.first->second = PN; CollisionMap[PN] = Old; break; } // Proceed to the next PHI in the list. OtherPN = I->second; } } return Changed; } /// enforceKnownAlignment - If the specified pointer points to an object that /// we control, modify the object's alignment to PrefAlign. This isn't /// often possible though. If alignment is important, a more reliable approach /// is to simply align all global variables and allocation instructions to /// their preferred alignment from the beginning. /// static unsigned enforceKnownAlignment(Value *V, unsigned Align, unsigned PrefAlign, const DataLayout *TD) { V = V->stripPointerCasts(); if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { // If the preferred alignment is greater than the natural stack alignment // then don't round up. This avoids dynamic stack realignment. if (TD && TD->exceedsNaturalStackAlignment(PrefAlign)) return Align; // If there is a requested alignment and if this is an alloca, round up. if (AI->getAlignment() >= PrefAlign) return AI->getAlignment(); AI->setAlignment(PrefAlign); return PrefAlign; } if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { // If there is a large requested alignment and we can, bump up the alignment // of the global. if (GV->isDeclaration()) return Align; // If the memory we set aside for the global may not be the memory used by // the final program then it is impossible for us to reliably enforce the // preferred alignment. if (GV->isWeakForLinker()) return Align; if (GV->getAlignment() >= PrefAlign) return GV->getAlignment(); // We can only increase the alignment of the global if it has no alignment // specified or if it is not assigned a section. If it is assigned a // section, the global could be densely packed with other objects in the // section, increasing the alignment could cause padding issues. if (!GV->hasSection() || GV->getAlignment() == 0) GV->setAlignment(PrefAlign); return GV->getAlignment(); } return Align; } /// getOrEnforceKnownAlignment - If the specified pointer has an alignment that /// we can determine, return it, otherwise return 0. If PrefAlign is specified, /// and it is more than the alignment of the ultimate object, see if we can /// increase the alignment of the ultimate object, making this check succeed. unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign, const DataLayout *DL) { assert(V->getType()->isPointerTy() && "getOrEnforceKnownAlignment expects a pointer!"); unsigned BitWidth = DL ? DL->getPointerTypeSizeInBits(V->getType()) : 64; APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); ComputeMaskedBits(V, KnownZero, KnownOne, DL); unsigned TrailZ = KnownZero.countTrailingOnes(); // Avoid trouble with ridiculously large TrailZ values, such as // those computed from a null pointer. TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1)); unsigned Align = 1u << std::min(BitWidth - 1, TrailZ); // LLVM doesn't support alignments larger than this currently. Align = std::min(Align, +Value::MaximumAlignment); if (PrefAlign > Align) Align = enforceKnownAlignment(V, Align, PrefAlign, DL); // We don't need to make any adjustment. return Align; } ///===---------------------------------------------------------------------===// /// Dbg Intrinsic utilities /// /// See if there is a dbg.value intrinsic for DIVar before I. static bool LdStHasDebugValue(DIVariable &DIVar, Instruction *I) { // Since we can't guarantee that the original dbg.declare instrinsic // is removed by LowerDbgDeclare(), we need to make sure that we are // not inserting the same dbg.value intrinsic over and over. llvm::BasicBlock::InstListType::iterator PrevI(I); if (PrevI != I->getParent()->getInstList().begin()) { --PrevI; if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI)) if (DVI->getValue() == I->getOperand(0) && DVI->getOffset() == 0 && DVI->getVariable() == DIVar) return true; } return false; } /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value /// that has an associated llvm.dbg.decl intrinsic. bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, StoreInst *SI, DIBuilder &Builder) { DIVariable DIVar(DDI->getVariable()); assert((!DIVar || DIVar.isVariable()) && "Variable in DbgDeclareInst should be either null or a DIVariable."); if (!DIVar) return false; if (LdStHasDebugValue(DIVar, SI)) return true; Instruction *DbgVal = NULL; // If an argument is zero extended then use argument directly. The ZExt // may be zapped by an optimization pass in future. Argument *ExtendedArg = NULL; if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0))) ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0)); if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0))) ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0)); if (ExtendedArg) DbgVal = Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, SI); else DbgVal = Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, SI); // Propagate any debug metadata from the store onto the dbg.value. DebugLoc SIDL = SI->getDebugLoc(); if (!SIDL.isUnknown()) DbgVal->setDebugLoc(SIDL); // Otherwise propagate debug metadata from dbg.declare. else DbgVal->setDebugLoc(DDI->getDebugLoc()); return true; } /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value /// that has an associated llvm.dbg.decl intrinsic. bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, LoadInst *LI, DIBuilder &Builder) { DIVariable DIVar(DDI->getVariable()); assert((!DIVar || DIVar.isVariable()) && "Variable in DbgDeclareInst should be either null or a DIVariable."); if (!DIVar) return false; if (LdStHasDebugValue(DIVar, LI)) return true; Instruction *DbgVal = Builder.insertDbgValueIntrinsic(LI->getOperand(0), 0, DIVar, LI); // Propagate any debug metadata from the store onto the dbg.value. DebugLoc LIDL = LI->getDebugLoc(); if (!LIDL.isUnknown()) DbgVal->setDebugLoc(LIDL); // Otherwise propagate debug metadata from dbg.declare. else DbgVal->setDebugLoc(DDI->getDebugLoc()); return true; } /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set /// of llvm.dbg.value intrinsics. bool llvm::LowerDbgDeclare(Function &F) { DIBuilder DIB(*F.getParent()); SmallVector<DbgDeclareInst *, 4> Dbgs; for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) { if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(BI)) Dbgs.push_back(DDI); } if (Dbgs.empty()) return false; for (SmallVectorImpl<DbgDeclareInst *>::iterator I = Dbgs.begin(), E = Dbgs.end(); I != E; ++I) { DbgDeclareInst *DDI = *I; AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); // If this is an alloca for a scalar variable, insert a dbg.value // at each load and store to the alloca and erase the dbg.declare. if (AI && !AI->isArrayAllocation()) { // We only remove the dbg.declare intrinsic if all uses are // converted to dbg.value intrinsics. bool RemoveDDI = true; for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E; ++UI) if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) ConvertDebugDeclareToDebugValue(DDI, SI, DIB); else if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) ConvertDebugDeclareToDebugValue(DDI, LI, DIB); else RemoveDDI = false; if (RemoveDDI) DDI->eraseFromParent(); } } return true; } /// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the /// alloca 'V', if any. DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) { if (MDNode *DebugNode = MDNode::getIfExists(V->getContext(), V)) for (Value::use_iterator UI = DebugNode->use_begin(), E = DebugNode->use_end(); UI != E; ++UI) if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI)) return DDI; return 0; } bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress, DIBuilder &Builder) { DbgDeclareInst *DDI = FindAllocaDbgDeclare(AI); if (!DDI) return false; DIVariable DIVar(DDI->getVariable()); assert((!DIVar || DIVar.isVariable()) && "Variable in DbgDeclareInst should be either null or a DIVariable."); if (!DIVar) return false; // Create a copy of the original DIDescriptor for user variable, appending // "deref" operation to a list of address elements, as new llvm.dbg.declare // will take a value storing address of the memory for variable, not // alloca itself. Type *Int64Ty = Type::getInt64Ty(AI->getContext()); SmallVector<Value*, 4> NewDIVarAddress; if (DIVar.hasComplexAddress()) { for (unsigned i = 0, n = DIVar.getNumAddrElements(); i < n; ++i) { NewDIVarAddress.push_back( ConstantInt::get(Int64Ty, DIVar.getAddrElement(i))); } } NewDIVarAddress.push_back(ConstantInt::get(Int64Ty, DIBuilder::OpDeref)); DIVariable NewDIVar = Builder.createComplexVariable( DIVar.getTag(), DIVar.getContext(), DIVar.getName(), DIVar.getFile(), DIVar.getLineNumber(), DIVar.getType(), NewDIVarAddress, DIVar.getArgNumber()); // Insert llvm.dbg.declare in the same basic block as the original alloca, // and remove old llvm.dbg.declare. BasicBlock *BB = AI->getParent(); Builder.insertDeclare(NewAllocaAddress, NewDIVar, BB); DDI->eraseFromParent(); return true; } /// changeToUnreachable - Insert an unreachable instruction before the specified /// instruction, making it and the rest of the code in the block dead. static void changeToUnreachable(Instruction *I, bool UseLLVMTrap) { BasicBlock *BB = I->getParent(); // Loop over all of the successors, removing BB's entry from any PHI // nodes. for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) (*SI)->removePredecessor(BB); // Insert a call to llvm.trap right before this. This turns the undefined // behavior into a hard fail instead of falling through into random code. if (UseLLVMTrap) { Function *TrapFn = Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); CallInst *CallTrap = CallInst::Create(TrapFn, "", I); CallTrap->setDebugLoc(I->getDebugLoc()); } new UnreachableInst(I->getContext(), I); // All instructions after this are dead. BasicBlock::iterator BBI = I, BBE = BB->end(); while (BBI != BBE) { if (!BBI->use_empty()) BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); BB->getInstList().erase(BBI++); } } /// changeToCall - Convert the specified invoke into a normal call. static void changeToCall(InvokeInst *II) { SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3); CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, "", II); NewCall->takeName(II); NewCall->setCallingConv(II->getCallingConv()); NewCall->setAttributes(II->getAttributes()); NewCall->setDebugLoc(II->getDebugLoc()); II->replaceAllUsesWith(NewCall); // Follow the call by a branch to the normal destination. BranchInst::Create(II->getNormalDest(), II); // Update PHI nodes in the unwind destination II->getUnwindDest()->removePredecessor(II->getParent()); II->eraseFromParent(); } static bool markAliveBlocks(BasicBlock *BB, SmallPtrSet<BasicBlock*, 128> &Reachable) { SmallVector<BasicBlock*, 128> Worklist; Worklist.push_back(BB); Reachable.insert(BB); bool Changed = false; do { BB = Worklist.pop_back_val(); // Do a quick scan of the basic block, turning any obviously unreachable // instructions into LLVM unreachable insts. The instruction combining pass // canonicalizes unreachable insts into stores to null or undef. for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;++BBI){ if (CallInst *CI = dyn_cast<CallInst>(BBI)) { if (CI->doesNotReturn()) { // If we found a call to a no-return function, insert an unreachable // instruction after it. Make sure there isn't *already* one there // though. ++BBI; if (!isa<UnreachableInst>(BBI)) { // Don't insert a call to llvm.trap right before the unreachable. changeToUnreachable(BBI, false); Changed = true; } break; } } // Store to undef and store to null are undefined and used to signal that // they should be changed to unreachable by passes that can't modify the // CFG. if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { // Don't touch volatile stores. if (SI->isVolatile()) continue; Value *Ptr = SI->getOperand(1); if (isa<UndefValue>(Ptr) || (isa<ConstantPointerNull>(Ptr) && SI->getPointerAddressSpace() == 0)) { changeToUnreachable(SI, true); Changed = true; break; } } } // Turn invokes that call 'nounwind' functions into ordinary calls. if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) { Value *Callee = II->getCalledValue(); if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { changeToUnreachable(II, true); Changed = true; } else if (II->doesNotThrow()) { if (II->use_empty() && II->onlyReadsMemory()) { // jump to the normal destination branch. BranchInst::Create(II->getNormalDest(), II); II->getUnwindDest()->removePredecessor(II->getParent()); II->eraseFromParent(); } else changeToCall(II); Changed = true; } } Changed |= ConstantFoldTerminator(BB, true); for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) if (Reachable.insert(*SI)) Worklist.push_back(*SI); } while (!Worklist.empty()); return Changed; } /// removeUnreachableBlocksFromFn - Remove blocks that are not reachable, even /// if they are in a dead cycle. Return true if a change was made, false /// otherwise. bool llvm::removeUnreachableBlocks(Function &F) { SmallPtrSet<BasicBlock*, 128> Reachable; bool Changed = markAliveBlocks(F.begin(), Reachable); // If there are unreachable blocks in the CFG... if (Reachable.size() == F.size()) return Changed; assert(Reachable.size() < F.size()); NumRemoved += F.size()-Reachable.size(); // Loop over all of the basic blocks that are not reachable, dropping all of // their internal references... for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) { if (Reachable.count(BB)) continue; for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) if (Reachable.count(*SI)) (*SI)->removePredecessor(BB); BB->dropAllReferences(); } for (Function::iterator I = ++F.begin(); I != F.end();) if (!Reachable.count(I)) I = F.getBasicBlockList().erase(I); else ++I; return true; }