Mercurial > hg > CbC > CbC_llvm
view unittests/Support/Path.cpp @ 56:bdef5c940791
copy the previous function's return type to return value
author | Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 23 Jan 2014 23:14:57 +0900 |
parents | 95c75e76d11b |
children | 54457678186b |
line wrap: on
line source
//===- llvm/unittest/Support/Path.cpp - Path tests ------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/Support/Path.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/raw_ostream.h" #include "gtest/gtest.h" using namespace llvm; using namespace llvm::sys; #define ASSERT_NO_ERROR(x) \ if (error_code ASSERT_NO_ERROR_ec = x) { \ SmallString<128> MessageStorage; \ raw_svector_ostream Message(MessageStorage); \ Message << #x ": did not return errc::success.\n" \ << "error number: " << ASSERT_NO_ERROR_ec.value() << "\n" \ << "error message: " << ASSERT_NO_ERROR_ec.message() << "\n"; \ GTEST_FATAL_FAILURE_(MessageStorage.c_str()); \ } else {} namespace { TEST(is_separator, Works) { EXPECT_TRUE(path::is_separator('/')); EXPECT_FALSE(path::is_separator('\0')); EXPECT_FALSE(path::is_separator('-')); EXPECT_FALSE(path::is_separator(' ')); #ifdef LLVM_ON_WIN32 EXPECT_TRUE(path::is_separator('\\')); #else EXPECT_FALSE(path::is_separator('\\')); #endif } TEST(Support, Path) { SmallVector<StringRef, 40> paths; paths.push_back(""); paths.push_back("."); paths.push_back(".."); paths.push_back("foo"); paths.push_back("/"); paths.push_back("/foo"); paths.push_back("foo/"); paths.push_back("/foo/"); paths.push_back("foo/bar"); paths.push_back("/foo/bar"); paths.push_back("//net"); paths.push_back("//net/foo"); paths.push_back("///foo///"); paths.push_back("///foo///bar"); paths.push_back("/."); paths.push_back("./"); paths.push_back("/.."); paths.push_back("../"); paths.push_back("foo/."); paths.push_back("foo/.."); paths.push_back("foo/./"); paths.push_back("foo/./bar"); paths.push_back("foo/.."); paths.push_back("foo/../"); paths.push_back("foo/../bar"); paths.push_back("c:"); paths.push_back("c:/"); paths.push_back("c:foo"); paths.push_back("c:/foo"); paths.push_back("c:foo/"); paths.push_back("c:/foo/"); paths.push_back("c:/foo/bar"); paths.push_back("prn:"); paths.push_back("c:\\"); paths.push_back("c:foo"); paths.push_back("c:\\foo"); paths.push_back("c:foo\\"); paths.push_back("c:\\foo\\"); paths.push_back("c:\\foo/"); paths.push_back("c:/foo\\bar"); for (SmallVector<StringRef, 40>::const_iterator i = paths.begin(), e = paths.end(); i != e; ++i) { for (sys::path::const_iterator ci = sys::path::begin(*i), ce = sys::path::end(*i); ci != ce; ++ci) { ASSERT_FALSE(ci->empty()); } #if 0 // Valgrind is whining about this. outs() << " Reverse Iteration: ["; for (sys::path::reverse_iterator ci = sys::path::rbegin(*i), ce = sys::path::rend(*i); ci != ce; ++ci) { outs() << *ci << ','; } outs() << "]\n"; #endif path::has_root_path(*i); path::root_path(*i); path::has_root_name(*i); path::root_name(*i); path::has_root_directory(*i); path::root_directory(*i); path::has_parent_path(*i); path::parent_path(*i); path::has_filename(*i); path::filename(*i); path::has_stem(*i); path::stem(*i); path::has_extension(*i); path::extension(*i); path::is_absolute(*i); path::is_relative(*i); SmallString<128> temp_store; temp_store = *i; ASSERT_NO_ERROR(fs::make_absolute(temp_store)); temp_store = *i; path::remove_filename(temp_store); temp_store = *i; path::replace_extension(temp_store, "ext"); StringRef filename(temp_store.begin(), temp_store.size()), stem, ext; stem = path::stem(filename); ext = path::extension(filename); EXPECT_EQ(*(--sys::path::end(filename)), (stem + ext).str()); path::native(*i, temp_store); } } TEST(Support, RelativePathIterator) { SmallString<64> Path(StringRef("c/d/e/foo.txt")); typedef SmallVector<StringRef, 4> PathComponents; PathComponents ExpectedPathComponents; PathComponents ActualPathComponents; StringRef(Path).split(ExpectedPathComponents, "/"); for (path::const_iterator I = path::begin(Path), E = path::end(Path); I != E; ++I) { ActualPathComponents.push_back(*I); } ASSERT_EQ(ExpectedPathComponents.size(), ActualPathComponents.size()); for (size_t i = 0; i <ExpectedPathComponents.size(); ++i) { EXPECT_EQ(ExpectedPathComponents[i].str(), ActualPathComponents[i].str()); } } TEST(Support, AbsolutePathIterator) { SmallString<64> Path(StringRef("/c/d/e/foo.txt")); typedef SmallVector<StringRef, 4> PathComponents; PathComponents ExpectedPathComponents; PathComponents ActualPathComponents; StringRef(Path).split(ExpectedPathComponents, "/"); // The root path will also be a component when iterating ExpectedPathComponents[0] = "/"; for (path::const_iterator I = path::begin(Path), E = path::end(Path); I != E; ++I) { ActualPathComponents.push_back(*I); } ASSERT_EQ(ExpectedPathComponents.size(), ActualPathComponents.size()); for (size_t i = 0; i <ExpectedPathComponents.size(); ++i) { EXPECT_EQ(ExpectedPathComponents[i].str(), ActualPathComponents[i].str()); } } #ifdef LLVM_ON_WIN32 TEST(Support, AbsolutePathIteratorWin32) { SmallString<64> Path(StringRef("c:\\c\\e\\foo.txt")); typedef SmallVector<StringRef, 4> PathComponents; PathComponents ExpectedPathComponents; PathComponents ActualPathComponents; StringRef(Path).split(ExpectedPathComponents, "\\"); // The root path (which comes after the drive name) will also be a component // when iterating. ExpectedPathComponents.insert(ExpectedPathComponents.begin()+1, "\\"); for (path::const_iterator I = path::begin(Path), E = path::end(Path); I != E; ++I) { ActualPathComponents.push_back(*I); } ASSERT_EQ(ExpectedPathComponents.size(), ActualPathComponents.size()); for (size_t i = 0; i <ExpectedPathComponents.size(); ++i) { EXPECT_EQ(ExpectedPathComponents[i].str(), ActualPathComponents[i].str()); } } #endif // LLVM_ON_WIN32 class FileSystemTest : public testing::Test { protected: /// Unique temporary directory in which all created filesystem entities must /// be placed. It is recursively removed at the end of each test. SmallString<128> TestDirectory; virtual void SetUp() { ASSERT_NO_ERROR( fs::createUniqueDirectory("file-system-test", TestDirectory)); // We don't care about this specific file. errs() << "Test Directory: " << TestDirectory << '\n'; errs().flush(); } virtual void TearDown() { uint32_t removed; ASSERT_NO_ERROR(fs::remove_all(TestDirectory.str(), removed)); } }; TEST_F(FileSystemTest, Unique) { // Create a temp file. int FileDescriptor; SmallString<64> TempPath; ASSERT_NO_ERROR( fs::createTemporaryFile("prefix", "temp", FileDescriptor, TempPath)); // The same file should return an identical unique id. fs::UniqueID F1, F2; ASSERT_NO_ERROR(fs::getUniqueID(Twine(TempPath), F1)); ASSERT_NO_ERROR(fs::getUniqueID(Twine(TempPath), F2)); ASSERT_EQ(F1, F2); // Different files should return different unique ids. int FileDescriptor2; SmallString<64> TempPath2; ASSERT_NO_ERROR( fs::createTemporaryFile("prefix", "temp", FileDescriptor2, TempPath2)); fs::UniqueID D; ASSERT_NO_ERROR(fs::getUniqueID(Twine(TempPath2), D)); ASSERT_NE(D, F1); ::close(FileDescriptor2); ASSERT_NO_ERROR(fs::remove(Twine(TempPath2))); // Two paths representing the same file on disk should still provide the // same unique id. We can test this by making a hard link. ASSERT_NO_ERROR(fs::create_hard_link(Twine(TempPath), Twine(TempPath2))); fs::UniqueID D2; ASSERT_NO_ERROR(fs::getUniqueID(Twine(TempPath2), D2)); ASSERT_EQ(D2, F1); ::close(FileDescriptor); SmallString<128> Dir1; ASSERT_NO_ERROR( fs::createUniqueDirectory("dir1", Dir1)); ASSERT_NO_ERROR(fs::getUniqueID(Dir1.c_str(), F1)); ASSERT_NO_ERROR(fs::getUniqueID(Dir1.c_str(), F2)); ASSERT_EQ(F1, F2); SmallString<128> Dir2; ASSERT_NO_ERROR( fs::createUniqueDirectory("dir2", Dir2)); ASSERT_NO_ERROR(fs::getUniqueID(Dir2.c_str(), F2)); ASSERT_NE(F1, F2); } TEST_F(FileSystemTest, TempFiles) { // Create a temp file. int FileDescriptor; SmallString<64> TempPath; ASSERT_NO_ERROR( fs::createTemporaryFile("prefix", "temp", FileDescriptor, TempPath)); // Make sure it exists. bool TempFileExists; ASSERT_NO_ERROR(sys::fs::exists(Twine(TempPath), TempFileExists)); EXPECT_TRUE(TempFileExists); // Create another temp tile. int FD2; SmallString<64> TempPath2; ASSERT_NO_ERROR(fs::createTemporaryFile("prefix", "temp", FD2, TempPath2)); ASSERT_TRUE(TempPath2.endswith(".temp")); ASSERT_NE(TempPath.str(), TempPath2.str()); fs::file_status A, B; ASSERT_NO_ERROR(fs::status(Twine(TempPath), A)); ASSERT_NO_ERROR(fs::status(Twine(TempPath2), B)); EXPECT_FALSE(fs::equivalent(A, B)); ::close(FD2); // Remove Temp2. ASSERT_NO_ERROR(fs::remove(Twine(TempPath2), TempFileExists)); EXPECT_TRUE(TempFileExists); error_code EC = fs::status(TempPath2.c_str(), B); EXPECT_EQ(EC, errc::no_such_file_or_directory); EXPECT_EQ(B.type(), fs::file_type::file_not_found); // Make sure Temp2 doesn't exist. ASSERT_NO_ERROR(fs::exists(Twine(TempPath2), TempFileExists)); EXPECT_FALSE(TempFileExists); SmallString<64> TempPath3; ASSERT_NO_ERROR(fs::createTemporaryFile("prefix", "", TempPath3)); ASSERT_FALSE(TempPath3.endswith(".")); // Create a hard link to Temp1. ASSERT_NO_ERROR(fs::create_hard_link(Twine(TempPath), Twine(TempPath2))); bool equal; ASSERT_NO_ERROR(fs::equivalent(Twine(TempPath), Twine(TempPath2), equal)); EXPECT_TRUE(equal); ASSERT_NO_ERROR(fs::status(Twine(TempPath), A)); ASSERT_NO_ERROR(fs::status(Twine(TempPath2), B)); EXPECT_TRUE(fs::equivalent(A, B)); // Remove Temp1. ::close(FileDescriptor); ASSERT_NO_ERROR(fs::remove(Twine(TempPath), TempFileExists)); EXPECT_TRUE(TempFileExists); // Remove the hard link. ASSERT_NO_ERROR(fs::remove(Twine(TempPath2), TempFileExists)); EXPECT_TRUE(TempFileExists); // Make sure Temp1 doesn't exist. ASSERT_NO_ERROR(fs::exists(Twine(TempPath), TempFileExists)); EXPECT_FALSE(TempFileExists); #ifdef LLVM_ON_WIN32 // Path name > 260 chars should get an error. const char *Path270 = "abcdefghijklmnopqrstuvwxyz9abcdefghijklmnopqrstuvwxyz8" "abcdefghijklmnopqrstuvwxyz7abcdefghijklmnopqrstuvwxyz6" "abcdefghijklmnopqrstuvwxyz5abcdefghijklmnopqrstuvwxyz4" "abcdefghijklmnopqrstuvwxyz3abcdefghijklmnopqrstuvwxyz2" "abcdefghijklmnopqrstuvwxyz1abcdefghijklmnopqrstuvwxyz0"; EXPECT_EQ(fs::createUniqueFile(Twine(Path270), FileDescriptor, TempPath), windows_error::path_not_found); #endif } TEST_F(FileSystemTest, DirectoryIteration) { error_code ec; for (fs::directory_iterator i(".", ec), e; i != e; i.increment(ec)) ASSERT_NO_ERROR(ec); // Create a known hierarchy to recurse over. bool existed; ASSERT_NO_ERROR(fs::create_directories(Twine(TestDirectory) + "/recursive/a0/aa1", existed)); ASSERT_NO_ERROR(fs::create_directories(Twine(TestDirectory) + "/recursive/a0/ab1", existed)); ASSERT_NO_ERROR(fs::create_directories(Twine(TestDirectory) + "/recursive/dontlookhere/da1", existed)); ASSERT_NO_ERROR(fs::create_directories(Twine(TestDirectory) + "/recursive/z0/za1", existed)); ASSERT_NO_ERROR(fs::create_directories(Twine(TestDirectory) + "/recursive/pop/p1", existed)); typedef std::vector<std::string> v_t; v_t visited; for (fs::recursive_directory_iterator i(Twine(TestDirectory) + "/recursive", ec), e; i != e; i.increment(ec)){ ASSERT_NO_ERROR(ec); if (path::filename(i->path()) == "p1") { i.pop(); // FIXME: recursive_directory_iterator should be more robust. if (i == e) break; } if (path::filename(i->path()) == "dontlookhere") i.no_push(); visited.push_back(path::filename(i->path())); } v_t::const_iterator a0 = std::find(visited.begin(), visited.end(), "a0"); v_t::const_iterator aa1 = std::find(visited.begin(), visited.end(), "aa1"); v_t::const_iterator ab1 = std::find(visited.begin(), visited.end(), "ab1"); v_t::const_iterator dontlookhere = std::find(visited.begin(), visited.end(), "dontlookhere"); v_t::const_iterator da1 = std::find(visited.begin(), visited.end(), "da1"); v_t::const_iterator z0 = std::find(visited.begin(), visited.end(), "z0"); v_t::const_iterator za1 = std::find(visited.begin(), visited.end(), "za1"); v_t::const_iterator pop = std::find(visited.begin(), visited.end(), "pop"); v_t::const_iterator p1 = std::find(visited.begin(), visited.end(), "p1"); // Make sure that each path was visited correctly. ASSERT_NE(a0, visited.end()); ASSERT_NE(aa1, visited.end()); ASSERT_NE(ab1, visited.end()); ASSERT_NE(dontlookhere, visited.end()); ASSERT_EQ(da1, visited.end()); // Not visited. ASSERT_NE(z0, visited.end()); ASSERT_NE(za1, visited.end()); ASSERT_NE(pop, visited.end()); ASSERT_EQ(p1, visited.end()); // Not visited. // Make sure that parents were visited before children. No other ordering // guarantees can be made across siblings. ASSERT_LT(a0, aa1); ASSERT_LT(a0, ab1); ASSERT_LT(z0, za1); } const char archive[] = "!<arch>\x0A"; const char bitcode[] = "\xde\xc0\x17\x0b"; const char coff_object[] = "\x00\x00......"; const char coff_import_library[] = "\x00\x00\xff\xff...."; const char elf_relocatable[] = { 0x7f, 'E', 'L', 'F', 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }; const char macho_universal_binary[] = "\xca\xfe\xba\xbe...\0x00"; const char macho_object[] = "\xfe\xed\xfa\xce..........\x00\x01"; const char macho_executable[] = "\xfe\xed\xfa\xce..........\x00\x02"; const char macho_fixed_virtual_memory_shared_lib[] = "\xfe\xed\xfa\xce..........\x00\x03"; const char macho_core[] = "\xfe\xed\xfa\xce..........\x00\x04"; const char macho_preload_executable[] = "\xfe\xed\xfa\xce..........\x00\x05"; const char macho_dynamically_linked_shared_lib[] = "\xfe\xed\xfa\xce..........\x00\x06"; const char macho_dynamic_linker[] = "\xfe\xed\xfa\xce..........\x00\x07"; const char macho_bundle[] = "\xfe\xed\xfa\xce..........\x00\x08"; const char macho_dsym_companion[] = "\xfe\xed\xfa\xce..........\x00\x0a"; const char windows_resource[] = "\x00\x00\x00\x00\x020\x00\x00\x00\xff"; TEST_F(FileSystemTest, Magic) { struct type { const char *filename; const char *magic_str; size_t magic_str_len; fs::file_magic magic; } types[] = { #define DEFINE(magic) \ { #magic, magic, sizeof(magic), fs::file_magic::magic } DEFINE(archive), DEFINE(bitcode), DEFINE(coff_object), DEFINE(coff_import_library), DEFINE(elf_relocatable), DEFINE(macho_universal_binary), DEFINE(macho_object), DEFINE(macho_executable), DEFINE(macho_fixed_virtual_memory_shared_lib), DEFINE(macho_core), DEFINE(macho_preload_executable), DEFINE(macho_dynamically_linked_shared_lib), DEFINE(macho_dynamic_linker), DEFINE(macho_bundle), DEFINE(macho_dsym_companion), DEFINE(windows_resource) #undef DEFINE }; // Create some files filled with magic. for (type *i = types, *e = types + (sizeof(types) / sizeof(type)); i != e; ++i) { SmallString<128> file_pathname(TestDirectory); path::append(file_pathname, i->filename); std::string ErrMsg; raw_fd_ostream file(file_pathname.c_str(), ErrMsg, sys::fs::F_Binary); ASSERT_FALSE(file.has_error()); StringRef magic(i->magic_str, i->magic_str_len); file << magic; file.close(); bool res = false; ASSERT_NO_ERROR(fs::has_magic(file_pathname.c_str(), magic, res)); EXPECT_TRUE(res); EXPECT_EQ(i->magic, fs::identify_magic(magic)); } } #ifdef LLVM_ON_WIN32 TEST_F(FileSystemTest, CarriageReturn) { SmallString<128> FilePathname(TestDirectory); std::string ErrMsg; path::append(FilePathname, "test"); { raw_fd_ostream File(FilePathname.c_str(), ErrMsg); EXPECT_EQ(ErrMsg, ""); File << '\n'; } { OwningPtr<MemoryBuffer> Buf; MemoryBuffer::getFile(FilePathname.c_str(), Buf); EXPECT_EQ(Buf->getBuffer(), "\r\n"); } { raw_fd_ostream File(FilePathname.c_str(), ErrMsg, sys::fs::F_Binary); EXPECT_EQ(ErrMsg, ""); File << '\n'; } { OwningPtr<MemoryBuffer> Buf; MemoryBuffer::getFile(FilePathname.c_str(), Buf); EXPECT_EQ(Buf->getBuffer(), "\n"); } } #endif TEST_F(FileSystemTest, FileMapping) { // Create a temp file. int FileDescriptor; SmallString<64> TempPath; ASSERT_NO_ERROR( fs::createTemporaryFile("prefix", "temp", FileDescriptor, TempPath)); // Map in temp file and add some content error_code EC; StringRef Val("hello there"); { fs::mapped_file_region mfr(FileDescriptor, true, fs::mapped_file_region::readwrite, 4096, 0, EC); ASSERT_NO_ERROR(EC); std::copy(Val.begin(), Val.end(), mfr.data()); // Explicitly add a 0. mfr.data()[Val.size()] = 0; // Unmap temp file } // Map it back in read-only fs::mapped_file_region mfr(Twine(TempPath), fs::mapped_file_region::readonly, 0, 0, EC); ASSERT_NO_ERROR(EC); // Verify content EXPECT_EQ(StringRef(mfr.const_data()), Val); // Unmap temp file #if LLVM_HAS_RVALUE_REFERENCES fs::mapped_file_region m(Twine(TempPath), fs::mapped_file_region::readonly, 0, 0, EC); ASSERT_NO_ERROR(EC); const char *Data = m.const_data(); fs::mapped_file_region mfrrv(llvm_move(m)); EXPECT_EQ(mfrrv.const_data(), Data); #endif } } // anonymous namespace