Mercurial > hg > CbC > CbC_llvm
view test/Transforms/InstCombine/icmp-add.ll @ 147:c2174574ed3a
LLVM 10
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 14 Aug 2019 16:55:33 +0900 |
parents | 803732b1fca8 |
children |
line wrap: on
line source
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py ; RUN: opt < %s -instcombine -S | FileCheck %s ; PR1949 define i1 @test1(i32 %a) { ; CHECK-LABEL: @test1( ; CHECK-NEXT: [[C:%.*]] = icmp ugt i32 [[A:%.*]], -5 ; CHECK-NEXT: ret i1 [[C]] ; %b = add i32 %a, 4 %c = icmp ult i32 %b, 4 ret i1 %c } define <2 x i1> @test1vec(<2 x i32> %a) { ; CHECK-LABEL: @test1vec( ; CHECK-NEXT: [[C:%.*]] = icmp ugt <2 x i32> [[A:%.*]], <i32 -5, i32 -5> ; CHECK-NEXT: ret <2 x i1> [[C]] ; %b = add <2 x i32> %a, <i32 4, i32 4> %c = icmp ult <2 x i32> %b, <i32 4, i32 4> ret <2 x i1> %c } define i1 @test2(i32 %a) { ; CHECK-LABEL: @test2( ; CHECK-NEXT: [[C:%.*]] = icmp ult i32 [[A:%.*]], 4 ; CHECK-NEXT: ret i1 [[C]] ; %b = sub i32 %a, 4 %c = icmp ugt i32 %b, -5 ret i1 %c } define <2 x i1> @test2vec(<2 x i32> %a) { ; CHECK-LABEL: @test2vec( ; CHECK-NEXT: [[C:%.*]] = icmp ult <2 x i32> [[A:%.*]], <i32 4, i32 4> ; CHECK-NEXT: ret <2 x i1> [[C]] ; %b = sub <2 x i32> %a, <i32 4, i32 4> %c = icmp ugt <2 x i32> %b, <i32 -5, i32 -5> ret <2 x i1> %c } define i1 @test3(i32 %a) { ; CHECK-LABEL: @test3( ; CHECK-NEXT: [[C:%.*]] = icmp sgt i32 [[A:%.*]], 2147483643 ; CHECK-NEXT: ret i1 [[C]] ; %b = add i32 %a, 4 %c = icmp slt i32 %b, 2147483652 ret i1 %c } define <2 x i1> @test3vec(<2 x i32> %a) { ; CHECK-LABEL: @test3vec( ; CHECK-NEXT: [[C:%.*]] = icmp sgt <2 x i32> [[A:%.*]], <i32 2147483643, i32 2147483643> ; CHECK-NEXT: ret <2 x i1> [[C]] ; %b = add <2 x i32> %a, <i32 4, i32 4> %c = icmp slt <2 x i32> %b, <i32 2147483652, i32 2147483652> ret <2 x i1> %c } define i1 @test4(i32 %a) { ; CHECK-LABEL: @test4( ; CHECK-NEXT: [[C:%.*]] = icmp slt i32 [[A:%.*]], -4 ; CHECK-NEXT: ret i1 [[C]] ; %b = add i32 %a, 2147483652 %c = icmp sge i32 %b, 4 ret i1 %c } define { i32, i1 } @test4multiuse(i32 %a) { ; CHECK-LABEL: @test4multiuse( ; CHECK-NEXT: [[B:%.*]] = add i32 [[A:%.*]], -2147483644 ; CHECK-NEXT: [[C:%.*]] = icmp slt i32 [[B]], -4 ; CHECK-NEXT: [[TMP:%.*]] = insertvalue { i32, i1 } undef, i32 [[B]], 0 ; CHECK-NEXT: [[RES:%.*]] = insertvalue { i32, i1 } [[TMP]], i1 [[C]], 1 ; CHECK-NEXT: ret { i32, i1 } [[RES]] ; %b = add i32 %a, -2147483644 %c = icmp slt i32 %b, -4 %tmp = insertvalue { i32, i1 } undef, i32 %b, 0 %res = insertvalue { i32, i1 } %tmp, i1 %c, 1 ret { i32, i1 } %res } define <2 x i1> @test4vec(<2 x i32> %a) { ; CHECK-LABEL: @test4vec( ; CHECK-NEXT: [[C:%.*]] = icmp slt <2 x i32> [[A:%.*]], <i32 -4, i32 -4> ; CHECK-NEXT: ret <2 x i1> [[C]] ; %b = add <2 x i32> %a, <i32 2147483652, i32 2147483652> %c = icmp sge <2 x i32> %b, <i32 4, i32 4> ret <2 x i1> %c } ; icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2), when C - C2 does not overflow. ; This becomes equality because it's at the limit. define i1 @nsw_slt1(i8 %a) { ; CHECK-LABEL: @nsw_slt1( ; CHECK-NEXT: [[C:%.*]] = icmp eq i8 [[A:%.*]], -128 ; CHECK-NEXT: ret i1 [[C]] ; %b = add nsw i8 %a, 100 %c = icmp slt i8 %b, -27 ret i1 %c } define <2 x i1> @nsw_slt1_splat_vec(<2 x i8> %a) { ; CHECK-LABEL: @nsw_slt1_splat_vec( ; CHECK-NEXT: [[C:%.*]] = icmp eq <2 x i8> [[A:%.*]], <i8 -128, i8 -128> ; CHECK-NEXT: ret <2 x i1> [[C]] ; %b = add nsw <2 x i8> %a, <i8 100, i8 100> %c = icmp slt <2 x i8> %b, <i8 -27, i8 -27> ret <2 x i1> %c } ; icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2), when C - C2 does not overflow. ; This becomes equality because it's at the limit. define i1 @nsw_slt2(i8 %a) { ; CHECK-LABEL: @nsw_slt2( ; CHECK-NEXT: [[C:%.*]] = icmp ne i8 [[A:%.*]], 127 ; CHECK-NEXT: ret i1 [[C]] ; %b = add nsw i8 %a, -100 %c = icmp slt i8 %b, 27 ret i1 %c } define <2 x i1> @nsw_slt2_splat_vec(<2 x i8> %a) { ; CHECK-LABEL: @nsw_slt2_splat_vec( ; CHECK-NEXT: [[C:%.*]] = icmp ne <2 x i8> [[A:%.*]], <i8 127, i8 127> ; CHECK-NEXT: ret <2 x i1> [[C]] ; %b = add nsw <2 x i8> %a, <i8 -100, i8 -100> %c = icmp slt <2 x i8> %b, <i8 27, i8 27> ret <2 x i1> %c } ; icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2), when C - C2 does not overflow. ; Less than the limit, so the predicate doesn't change. define i1 @nsw_slt3(i8 %a) { ; CHECK-LABEL: @nsw_slt3( ; CHECK-NEXT: [[C:%.*]] = icmp slt i8 [[A:%.*]], -126 ; CHECK-NEXT: ret i1 [[C]] ; %b = add nsw i8 %a, 100 %c = icmp slt i8 %b, -26 ret i1 %c } ; icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2), when C - C2 does not overflow. ; Less than the limit, so the predicate doesn't change. define i1 @nsw_slt4(i8 %a) { ; CHECK-LABEL: @nsw_slt4( ; CHECK-NEXT: [[C:%.*]] = icmp slt i8 [[A:%.*]], 126 ; CHECK-NEXT: ret i1 [[C]] ; %b = add nsw i8 %a, -100 %c = icmp slt i8 %b, 26 ret i1 %c } ; icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2), when C - C2 does not overflow. ; Try sgt to make sure that works too. define i1 @nsw_sgt1(i8 %a) { ; CHECK-LABEL: @nsw_sgt1( ; CHECK-NEXT: [[C:%.*]] = icmp eq i8 [[A:%.*]], 127 ; CHECK-NEXT: ret i1 [[C]] ; %b = add nsw i8 %a, -100 %c = icmp sgt i8 %b, 26 ret i1 %c } define <2 x i1> @nsw_sgt1_splat_vec(<2 x i8> %a) { ; CHECK-LABEL: @nsw_sgt1_splat_vec( ; CHECK-NEXT: [[C:%.*]] = icmp eq <2 x i8> [[A:%.*]], <i8 127, i8 127> ; CHECK-NEXT: ret <2 x i1> [[C]] ; %b = add nsw <2 x i8> %a, <i8 -100, i8 -100> %c = icmp sgt <2 x i8> %b, <i8 26, i8 26> ret <2 x i1> %c } define i1 @nsw_sgt2(i8 %a) { ; CHECK-LABEL: @nsw_sgt2( ; CHECK-NEXT: [[C:%.*]] = icmp sgt i8 [[A:%.*]], -126 ; CHECK-NEXT: ret i1 [[C]] ; %b = add nsw i8 %a, 100 %c = icmp sgt i8 %b, -26 ret i1 %c } define <2 x i1> @nsw_sgt2_splat_vec(<2 x i8> %a) { ; CHECK-LABEL: @nsw_sgt2_splat_vec( ; CHECK-NEXT: [[C:%.*]] = icmp sgt <2 x i8> [[A:%.*]], <i8 -126, i8 -126> ; CHECK-NEXT: ret <2 x i1> [[C]] ; %b = add nsw <2 x i8> %a, <i8 100, i8 100> %c = icmp sgt <2 x i8> %b, <i8 -26, i8 -26> ret <2 x i1> %c } ; icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2), when C - C2 does not overflow. ; Comparison with 0 doesn't need special-casing. define i1 @slt_zero_add_nsw(i32 %a) { ; CHECK-LABEL: @slt_zero_add_nsw( ; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[A:%.*]], -1 ; CHECK-NEXT: ret i1 [[CMP]] ; %add = add nsw i32 %a, 1 %cmp = icmp slt i32 %add, 0 ret i1 %cmp } ; The same fold should work with vectors. define <2 x i1> @slt_zero_add_nsw_splat_vec(<2 x i8> %a) { ; CHECK-LABEL: @slt_zero_add_nsw_splat_vec( ; CHECK-NEXT: [[CMP:%.*]] = icmp slt <2 x i8> [[A:%.*]], <i8 -1, i8 -1> ; CHECK-NEXT: ret <2 x i1> [[CMP]] ; %add = add nsw <2 x i8> %a, <i8 1, i8 1> %cmp = icmp slt <2 x i8> %add, zeroinitializer ret <2 x i1> %cmp } ; Test the edges - instcombine should not interfere with simplification to constants. ; Constant subtraction does not overflow, but this is false. define i1 @nsw_slt3_ov_no(i8 %a) { ; CHECK-LABEL: @nsw_slt3_ov_no( ; CHECK-NEXT: ret i1 false ; %b = add nsw i8 %a, 100 %c = icmp slt i8 %b, -28 ret i1 %c } ; Test the edges - instcombine should not interfere with simplification to constants. ; Constant subtraction overflows. This is false. define i1 @nsw_slt4_ov(i8 %a) { ; CHECK-LABEL: @nsw_slt4_ov( ; CHECK-NEXT: ret i1 false ; %b = add nsw i8 %a, 100 %c = icmp slt i8 %b, -29 ret i1 %c } ; Test the edges - instcombine should not interfere with simplification to constants. ; Constant subtraction overflows. This is true. define i1 @nsw_slt5_ov(i8 %a) { ; CHECK-LABEL: @nsw_slt5_ov( ; CHECK-NEXT: ret i1 true ; %b = add nsw i8 %a, -100 %c = icmp slt i8 %b, 28 ret i1 %c } ; InstCombine should not thwart this opportunity to simplify completely. define i1 @slt_zero_add_nsw_signbit(i8 %x) { ; CHECK-LABEL: @slt_zero_add_nsw_signbit( ; CHECK-NEXT: ret i1 true ; %y = add nsw i8 %x, -128 %z = icmp slt i8 %y, 0 ret i1 %z } ; InstCombine should not thwart this opportunity to simplify completely. define i1 @slt_zero_add_nuw_signbit(i8 %x) { ; CHECK-LABEL: @slt_zero_add_nuw_signbit( ; CHECK-NEXT: ret i1 true ; %y = add nuw i8 %x, 128 %z = icmp slt i8 %y, 0 ret i1 %z } define i1 @reduce_add_ult(i32 %in) { ; CHECK-LABEL: @reduce_add_ult( ; CHECK-NEXT: [[A18:%.*]] = icmp ult i32 [[IN:%.*]], 9 ; CHECK-NEXT: ret i1 [[A18]] ; %a6 = add nuw i32 %in, 3 %a18 = icmp ult i32 %a6, 12 ret i1 %a18 } define i1 @reduce_add_ugt(i32 %in) { ; CHECK-LABEL: @reduce_add_ugt( ; CHECK-NEXT: [[A18:%.*]] = icmp ugt i32 [[IN:%.*]], 9 ; CHECK-NEXT: ret i1 [[A18]] ; %a6 = add nuw i32 %in, 3 %a18 = icmp ugt i32 %a6, 12 ret i1 %a18 } define i1 @reduce_add_ule(i32 %in) { ; CHECK-LABEL: @reduce_add_ule( ; CHECK-NEXT: [[A18:%.*]] = icmp ult i32 [[IN:%.*]], 10 ; CHECK-NEXT: ret i1 [[A18]] ; %a6 = add nuw i32 %in, 3 %a18 = icmp ule i32 %a6, 12 ret i1 %a18 } define i1 @reduce_add_uge(i32 %in) { ; CHECK-LABEL: @reduce_add_uge( ; CHECK-NEXT: [[A18:%.*]] = icmp ugt i32 [[IN:%.*]], 8 ; CHECK-NEXT: ret i1 [[A18]] ; %a6 = add nuw i32 %in, 3 %a18 = icmp uge i32 %a6, 12 ret i1 %a18 } define i1 @ult_add_ssubov(i32 %in) { ; CHECK-LABEL: @ult_add_ssubov( ; CHECK-NEXT: ret i1 false ; %a6 = add nuw i32 %in, 71 %a18 = icmp ult i32 %a6, 3 ret i1 %a18 } define i1 @ult_add_nonuw(i8 %in) { ; CHECK-LABEL: @ult_add_nonuw( ; CHECK-NEXT: [[A6:%.*]] = add i8 [[IN:%.*]], 71 ; CHECK-NEXT: [[A18:%.*]] = icmp ult i8 [[A6]], 12 ; CHECK-NEXT: ret i1 [[A18]] ; %a6 = add i8 %in, 71 %a18 = icmp ult i8 %a6, 12 ret i1 %a18 } define i1 @uge_add_nonuw(i32 %in) { ; CHECK-LABEL: @uge_add_nonuw( ; CHECK-NEXT: [[A6:%.*]] = add i32 [[IN:%.*]], 3 ; CHECK-NEXT: [[A18:%.*]] = icmp ugt i32 [[A6]], 11 ; CHECK-NEXT: ret i1 [[A18]] ; %a6 = add i32 %in, 3 %a18 = icmp uge i32 %a6, 12 ret i1 %a18 } ; Test unsigned add overflow patterns. The div ops are only here to ; thwart complexity based canonicalization of the operand order. define i1 @op_ugt_sum_commute1(i8 %p1, i8 %p2) { ; CHECK-LABEL: @op_ugt_sum_commute1( ; CHECK-NEXT: [[X:%.*]] = sdiv i8 42, [[P1:%.*]] ; CHECK-NEXT: [[Y:%.*]] = sdiv i8 42, [[P2:%.*]] ; CHECK-NEXT: [[TMP1:%.*]] = xor i8 [[X]], -1 ; CHECK-NEXT: [[C:%.*]] = icmp ugt i8 [[Y]], [[TMP1]] ; CHECK-NEXT: ret i1 [[C]] ; %x = sdiv i8 42, %p1 %y = sdiv i8 42, %p2 %a = add i8 %x, %y %c = icmp ugt i8 %x, %a ret i1 %c } define <2 x i1> @op_ugt_sum_vec_commute2(<2 x i8> %p1, <2 x i8> %p2) { ; CHECK-LABEL: @op_ugt_sum_vec_commute2( ; CHECK-NEXT: [[X:%.*]] = sdiv <2 x i8> <i8 42, i8 -42>, [[P1:%.*]] ; CHECK-NEXT: [[Y:%.*]] = sdiv <2 x i8> <i8 42, i8 -42>, [[P2:%.*]] ; CHECK-NEXT: [[TMP1:%.*]] = xor <2 x i8> [[X]], <i8 -1, i8 -1> ; CHECK-NEXT: [[C:%.*]] = icmp ugt <2 x i8> [[Y]], [[TMP1]] ; CHECK-NEXT: ret <2 x i1> [[C]] ; %x = sdiv <2 x i8> <i8 42, i8 -42>, %p1 %y = sdiv <2 x i8> <i8 42, i8 -42>, %p2 %a = add <2 x i8> %y, %x %c = icmp ugt <2 x i8> %x, %a ret <2 x i1> %c } define i1 @sum_ugt_op_uses(i8 %p1, i8 %p2, i8* %p3) { ; CHECK-LABEL: @sum_ugt_op_uses( ; CHECK-NEXT: [[X:%.*]] = sdiv i8 42, [[P1:%.*]] ; CHECK-NEXT: [[Y:%.*]] = sdiv i8 42, [[P2:%.*]] ; CHECK-NEXT: [[A:%.*]] = add nsw i8 [[X]], [[Y]] ; CHECK-NEXT: store i8 [[A]], i8* [[P3:%.*]], align 1 ; CHECK-NEXT: [[C:%.*]] = icmp ugt i8 [[X]], [[A]] ; CHECK-NEXT: ret i1 [[C]] ; %x = sdiv i8 42, %p1 %y = sdiv i8 42, %p2 %a = add i8 %x, %y store i8 %a, i8* %p3 %c = icmp ugt i8 %x, %a ret i1 %c } define <2 x i1> @sum_ult_op_vec_commute1(<2 x i8> %p1, <2 x i8> %p2) { ; CHECK-LABEL: @sum_ult_op_vec_commute1( ; CHECK-NEXT: [[X:%.*]] = sdiv <2 x i8> <i8 42, i8 -42>, [[P1:%.*]] ; CHECK-NEXT: [[Y:%.*]] = sdiv <2 x i8> <i8 -42, i8 42>, [[P2:%.*]] ; CHECK-NEXT: [[TMP1:%.*]] = xor <2 x i8> [[X]], <i8 -1, i8 -1> ; CHECK-NEXT: [[C:%.*]] = icmp ugt <2 x i8> [[Y]], [[TMP1]] ; CHECK-NEXT: ret <2 x i1> [[C]] ; %x = sdiv <2 x i8> <i8 42, i8 -42>, %p1 %y = sdiv <2 x i8> <i8 -42, i8 42>, %p2 %a = add <2 x i8> %x, %y %c = icmp ult <2 x i8> %a, %x ret <2 x i1> %c } define i1 @sum_ult_op_commute2(i8 %p1, i8 %p2) { ; CHECK-LABEL: @sum_ult_op_commute2( ; CHECK-NEXT: [[X:%.*]] = sdiv i8 42, [[P1:%.*]] ; CHECK-NEXT: [[Y:%.*]] = sdiv i8 42, [[P2:%.*]] ; CHECK-NEXT: [[TMP1:%.*]] = xor i8 [[X]], -1 ; CHECK-NEXT: [[C:%.*]] = icmp ugt i8 [[Y]], [[TMP1]] ; CHECK-NEXT: ret i1 [[C]] ; %x = sdiv i8 42, %p1 %y = sdiv i8 42, %p2 %a = add i8 %y, %x %c = icmp ult i8 %a, %x ret i1 %c } define i1 @sum_ult_op_uses(i8 %x, i8 %y, i8* %p) { ; CHECK-LABEL: @sum_ult_op_uses( ; CHECK-NEXT: [[A:%.*]] = add i8 [[Y:%.*]], [[X:%.*]] ; CHECK-NEXT: store i8 [[A]], i8* [[P:%.*]], align 1 ; CHECK-NEXT: [[C:%.*]] = icmp ult i8 [[A]], [[X]] ; CHECK-NEXT: ret i1 [[C]] ; %a = add i8 %y, %x store i8 %a, i8* %p %c = icmp ult i8 %a, %x ret i1 %c }