Mercurial > hg > CbC > CbC_llvm
view clang/test/Analysis/solver-sym-simplification-adjustment.c @ 236:c4bab56944e8 llvm-original
LLVM 16
author | kono |
---|---|
date | Wed, 09 Nov 2022 17:45:10 +0900 |
parents | |
children |
line wrap: on
line source
// RUN: %clang_analyze_cc1 %s \ // RUN: -analyzer-checker=core \ // RUN: -analyzer-checker=debug.ExprInspection \ // RUN: -analyzer-config eagerly-assume=false \ // RUN: -verify void clang_analyzer_warnIfReached(void); void clang_analyzer_eval(_Bool); void test_simplification_adjustment_concrete_int(int b, int c) { if (b < 0 || b > 1) // b: [0,1] return; if (c < -1 || c > 1) // c: [-1,1] return; if (c + b != 0) // c + b == 0 return; clang_analyzer_warnIfReached(); // expected-warning{{REACHABLE}} if (b != 1) // b == 1 --> c + 1 == 0 --> c == -1 return; clang_analyzer_warnIfReached(); // expected-warning{{REACHABLE}} clang_analyzer_eval(c == -1); // expected-warning{{TRUE}} // Keep the symbols and the constraints! alive. (void)(b * c); return; } void test_simplification_adjustment_range(int b, int c) { if (b < 0 || b > 1) // b: [0,1] return; if (c < -1 || c > 1) // c: [-1,1] return; if (c + b < -1 || c + b > 0) // c + b: [-1,0] return; clang_analyzer_warnIfReached(); // expected-warning{{REACHABLE}} if (b != 1) // b == 1 --> c + 1: [-1,0] --> c: [-2,-1] return; // c: [-2,-1] is intersected with the // already associated range which is [-1,1], // thus we get c: [-1,-1] clang_analyzer_warnIfReached(); // expected-warning{{REACHABLE}} clang_analyzer_eval(c == -1); // expected-warning{{TRUE}} // Keep the symbols and the constraints! alive. (void)(b * c); return; } void test_simplification_adjustment_to_infeasible_concrete_int(int b, int c) { if (b < 0 || b > 1) // b: [0,1] return; if (c < 0 || c > 1) // c: [0,1] return; if (c + b != 0) // c + b == 0 return; clang_analyzer_warnIfReached(); // expected-warning{{REACHABLE}} if (b != 1) { // b == 1 --> c + 1 == 0 --> c == -1 contradiction clang_analyzer_eval(b == 0); // expected-warning{{TRUE}} clang_analyzer_eval(c == 0); // expected-warning{{TRUE}} // Keep the symbols and the constraints! alive. (void)(b * c); return; } clang_analyzer_warnIfReached(); // no warning // Keep the symbols and the constraints! alive. (void)(b * c); return; } void test_simplification_adjustment_to_infeassible_range(int b, int c) { if (b < 0 || b > 1) // b: [0,1] return; if (c < 0 || c > 1) // c: [0,1] return; if (c + b < -1 || c + b > 0) // c + b: [-1,0] return; clang_analyzer_warnIfReached(); // expected-warning{{REACHABLE}} if (b != 1) // b == 1 --> c + 1: [-1,0] --> c: [-2,-1] contradiction return; clang_analyzer_warnIfReached(); // no warning // Keep the symbols and the constraints! alive. (void)(b * c); return; } void test_simplification_adjusment_no_infinite_loop(int a, int b, int c) { if (a == b) // a != b return; if (c != 0) // c == 0 return; if (b != 0) // b == 0 return; // The above simplification of `b == 0` could result in an infinite loop // unless we detect that the State is unchanged. // The loop: // 1) Simplification of the trivial equivalence class // "symbol": "(reg_$0<int a>) == (reg_$1<int b>)", "range": "{ [0, 0] }" // results in // "symbol": "(reg_$0<int a>) == 0", "range": "{ [0, 0] }" } // which in turn creates a non-trivial equivalence class // [ "(reg_$0<int a>) == (reg_$1<int b>)", "(reg_$0<int a>) == 0" ] // 2) We call assumeSymInclusiveRange("(reg_$0<int a>) == 0") // and that calls **simplify** on the associated non-trivial equivalence // class. During the simplification the State does not change, we reached // the fixpoint. (void)(a * b * c); }