Mercurial > hg > CbC > CbC_llvm
view clang/test/SemaTemplate/concepts.cpp @ 236:c4bab56944e8 llvm-original
LLVM 16
author | kono |
---|---|
date | Wed, 09 Nov 2022 17:45:10 +0900 |
parents | 79ff65ed7e25 |
children | 1f2b6ac9f198 |
line wrap: on
line source
// RUN: %clang_cc1 -std=c++20 -verify %s namespace PR47043 { template<typename T> concept True = true; template<typename ...T> concept AllTrue1 = True<T>; // expected-error {{expression contains unexpanded parameter pack 'T'}} template<typename ...T> concept AllTrue2 = (True<T> && ...); template<typename ...T> concept AllTrue3 = (bool)(True<T> & ...); static_assert(AllTrue2<int, float, char>); static_assert(AllTrue3<int, float, char>); } namespace PR47025 { template<typename ...T> concept AllAddable1 = requires(T ...t) { (void(t + 1), ...); }; template<typename ...T> concept AllAddable2 = (requires(T ...t) { (t + 1); } && ...); // expected-error {{requirement contains unexpanded parameter pack 't'}} template<typename ...T> concept AllAddable3 = (requires(T t) { (t + 1); } && ...); template<typename ...T> concept AllAddable4 = requires(T t) { (t + 1); }; // expected-error {{expression contains unexpanded parameter pack 'T'}} template<typename ...T> concept AllAddable5 = requires(T t) { (void(t + 1), ...); }; // expected-error {{does not contain any unexpanded}} template<typename ...T> concept AllAddable6 = (requires { (T() + 1); } && ...); template<typename ...T> concept AllAddable7 = requires { (T() + 1); }; // expected-error {{expression contains unexpanded parameter pack 'T'}} static_assert(AllAddable1<int, float>); static_assert(AllAddable3<int, float>); static_assert(AllAddable6<int, float>); static_assert(!AllAddable1<int, void>); static_assert(!AllAddable3<int, void>); static_assert(!AllAddable6<int, void>); } namespace PR45699 { template<class> concept C = true; // expected-note 2{{here}} template<class ...Ts> void f1a() requires C<Ts>; // expected-error {{requires clause contains unexpanded parameter pack 'Ts'}} template<class ...Ts> requires C<Ts> void f1b(); // expected-error {{requires clause contains unexpanded parameter pack 'Ts'}} template<class ...Ts> void f2a() requires (C<Ts> && ...); template<class ...Ts> requires (C<Ts> && ...) void f2b(); template<class ...Ts> void f3a() requires C<Ts...>; // expected-error {{pack expansion used as argument for non-pack parameter of concept}} template<class ...Ts> requires C<Ts...> void f3b(); // expected-error {{pack expansion used as argument for non-pack parameter of concept}} template<class ...Ts> void f4() { ([] () requires C<Ts> {} ()); // expected-error {{expression contains unexpanded parameter pack 'Ts'}} ([]<int = 0> requires C<Ts> () {} ()); // expected-error {{expression contains unexpanded parameter pack 'Ts'}} } template<class ...Ts> void f5() { ([] () requires C<Ts> {} (), ...); ([]<int = 0> requires C<Ts> () {} (), ...); } void g() { f1a(); f1b(); // FIXME: Bad error recovery. expected-error {{undeclared identifier}} f2a(); f2b(); f3a(); f3b(); // FIXME: Bad error recovery. expected-error {{undeclared identifier}} f4(); f5(); } } namespace P0857R0 { void f() { auto x = []<bool B> requires B {}; // expected-note {{constraints not satisfied}} expected-note {{false}} x.operator()<true>(); x.operator()<false>(); // expected-error {{no matching member function}} } template<typename T> concept C = true; template<template<typename T> requires C<T> typename U> struct X {}; template<typename T> requires C<T> struct Y {}; X<Y> xy; } namespace PR50306 { template<typename T> concept NotInt = sizeof(T) != sizeof(int); // expected-note {{because}} template<typename T> void f() { [](NotInt auto) {}(T()); // expected-error {{no matching function}} expected-note {{constraints not satisfied}} expected-note {{because}} } template void f<char>(); // OK template void f<int>(); // expected-note {{in instantiation of}} } namespace PackInTypeConstraint { template<typename T, typename U> concept C = sizeof(T) == sizeof(int); // expected-note 3{{}} template<typename ...T, C<T> U> void h1(); // expected-error {{type constraint contains unexpanded parameter pack 'T'}} template<typename ...T, C<T> ...U> void h2(); template<typename ...T> void h3(C<T> auto); // expected-error {{type constraint contains unexpanded parameter pack 'T'}} template<typename ...T> void h4(C<T> auto...); template<typename ...T> void f1() { []<C<T> U>(U u){}(T()); // expected-error {{unexpanded parameter pack 'T'}} } template<typename ...T> void f2() { ([]<C<T> U>(U u){}(T()), ...); // expected-error {{no match}} expected-note 2{{}} } template void f2<int, int, int>(); // OK template void f2<int, char, double>(); // expected-note {{in instantiation of}} void f3() { ([]<typename ...T, C<T> U>(U u){}(0), // expected-error {{type constraint contains unexpanded parameter pack 'T'}} ...); // expected-error {{does not contain any unexpanded}} } template<typename ...T> void g1() { [](C<T> auto){}(T()); // expected-error {{expression contains unexpanded parameter pack 'T'}} } template<typename ...T> void g2() { ([](C<T> auto){}(T()), ...); // expected-error {{no matching function}} expected-note {{constraints not satisfied}} expected-note {{because}} } template void g2<int, int, int>(); // OK template void g2<int, char, double>(); // expected-note {{in instantiation of}} void g3() { ([]<typename ...T>(C<T> auto){}(1), // expected-error {{type constraint contains unexpanded parameter pack 'T'}} ...); // expected-error {{does not contain any unexpanded}} } template<typename ...T> void g4() { []() -> C<T> auto{ return T(); }(); // expected-error {{expression contains unexpanded parameter pack 'T'}} } template<typename ...T> void g5() { ([]() -> C<T> auto{ // expected-error-re {{deduced type {{.*}} does not satisfy}} return T(); }(), ...); } template void g5<int, int, int>(); // OK template void g5<int, char, double>(); // expected-note {{in instantiation of}} void g6() { ([]<typename ...T>() -> C<T> auto{ // expected-error {{declaration type contains unexpanded parameter pack 'T'}} return T(); // expected-error {{expression contains unexpanded parameter pack 'T'}} }(), ...); // expected-error {{does not contain any unexpanded}} } } namespace BuiltinIsConstantEvaluated { // Check that we do all satisfaction and diagnostic checks in a constant context. template<typename T> concept C = __builtin_is_constant_evaluated(); // expected-warning {{always}} static_assert(C<int>); template<typename T> concept D = __builtin_is_constant_evaluated() == true; // expected-warning {{always}} static_assert(D<int>); template<typename T> concept E = __builtin_is_constant_evaluated() == true && // expected-warning {{always}} false; // expected-note {{'false' evaluated to false}} static_assert(E<int>); // expected-error {{failed}} expected-note {{because 'int' does not satisfy 'E'}} template<typename T> concept F = __builtin_is_constant_evaluated() == false; // expected-warning {{always}} // expected-note@-1 {{'__builtin_is_constant_evaluated() == false' (1 == 0)}} static_assert(F<int>); // expected-error {{failed}} expected-note {{because 'int' does not satisfy 'F'}} template<typename T> concept G = __builtin_is_constant_evaluated() && // expected-warning {{always}} false; // expected-note {{'false' evaluated to false}} static_assert(G<int>); // expected-error {{failed}} expected-note {{because 'int' does not satisfy 'G'}} } namespace NoConstantFolding { // Ensure we use strict constant evaluation rules when checking satisfaction. int n; template <class T> concept C = &n + 3 - 3 == &n; // expected-error {{non-constant expression}} expected-note {{cannot refer to element 3 of non-array object}} static_assert(C<void>); // expected-note {{while checking}} } namespace PR50337 { template <typename T> concept foo = true; template <typename T> concept foo2 = foo<T> && true; void f(foo auto, auto); void f(foo2 auto, auto); void g() { f(1, 2); } } namespace PR50561 { template<typename> concept C = false; template<typename T, typename U> void f(T, U); template<C T, typename U> void f(T, U) = delete; void g() { f(0, 0); } } namespace PR49188 { template<class T> concept C = false; // expected-note 7 {{because 'false' evaluated to false}} C auto f1() { // expected-error {{deduced type 'void' does not satisfy 'C'}} return void(); } C auto f2() { // expected-error {{deduced type 'void' does not satisfy 'C'}} return; } C auto f3() { // expected-error {{deduced type 'void' does not satisfy 'C'}} } C decltype(auto) f4() { // expected-error {{deduced type 'void' does not satisfy 'C'}} return void(); } C decltype(auto) f5() { // expected-error {{deduced type 'void' does not satisfy 'C'}} return; } C decltype(auto) f6() { // expected-error {{deduced type 'void' does not satisfy 'C'}} } C auto& f7() { // expected-error {{deduced type 'void' does not satisfy 'C'}} return void(); } C auto& f8() { return; // expected-error {{cannot deduce return type 'C auto &' from omitted return expression}} } C auto& f9() { // expected-error {{cannot deduce return type 'C auto &' for function with no return statements}} } } namespace PR53911 { template<class T> concept C = false; // expected-note 3 {{because 'false' evaluated to false}} C auto *f1() { // expected-error {{deduced type 'void' does not satisfy 'C'}} return (void*)nullptr; } C auto *f2() { // expected-error {{deduced type 'int' does not satisfy 'C'}} return (int*)nullptr; } C auto *****f3() { // expected-error {{deduced type 'int' does not satisfy 'C'}} return (int*****)nullptr; } } namespace PR54379 { template <int N> struct A { static void f() requires (N == 0) { return; } // expected-note {{candidate template ignored: constraints not satisfied}} expected-note {{evaluated to false}} static void f() requires (N == 1) { return; } // expected-note {{candidate template ignored: constraints not satisfied}} expected-note {{evaluated to false}} }; void (*f1)() = A<2>::f; // expected-error {{address of overloaded function 'f' does not match required type}} struct B { template <int N2 = 1> static void f() requires (N2 == 0) { return; } // expected-note {{candidate template ignored: constraints not satisfied [with N2 = 1]}} expected-note {{evaluated to false}} }; void (*f2)() = B::f; // expected-error {{address of overloaded function 'f' does not match required type}} } namespace PR54443 { template <class T, class U> struct is_same { static constexpr bool value = false; }; template <class T> struct is_same<T, T> { static constexpr bool value = true; }; template <class T, class U> concept same_as = is_same<T, U>::value; // expected-note-re 4 {{because {{.*}} evaluated to false}} int const &f(); same_as<int const> auto i1 = f(); // expected-error {{deduced type 'int' does not satisfy 'same_as<const int>'}} same_as<int const> auto &i2 = f(); same_as<int const> auto &&i3 = f(); // expected-error {{deduced type 'const int &' does not satisfy 'same_as<const int>'}} same_as<int const &> auto i4 = f(); // expected-error {{deduced type 'int' does not satisfy 'same_as<const int &>'}} same_as<int const &> auto &i5 = f(); // expected-error {{deduced type 'const int' does not satisfy 'same_as<const int &>'}} same_as<int const &> auto &&i6 = f(); template <class T> concept C = false; // expected-note 3 {{because 'false' evaluated to false}} int **const &g(); C auto **j1 = g(); // expected-error {{deduced type 'int' does not satisfy 'C'}} C auto **&j2 = g(); // expected-error {{deduced type 'int' does not satisfy 'C'}} C auto **&&j3 = g(); // expected-error {{deduced type 'int' does not satisfy 'C'}} } namespace GH55567 { template<class, template <class> class> concept C = true; template <class> struct S {}; void f(C<GH55567::S> auto); } // namespace GH55567 namespace SubConstraintChecks { template <typename T> concept TrueConstraint = true; template <typename T> concept FalseConstraint = false; template <typename T, typename... Us> class ContainsConstrainedFuncTrue { public: template <typename V, TrueConstraint Constrained> static void func(V &&, Constrained &&C); }; template <typename T, typename... Us> class ContainsConstrainedFuncFalse { public: template <typename V, FalseConstraint Constrained> static void func(V &&, Constrained &&C); }; template <typename... Us> concept TrueConstraint2 = requires(float &&t) { ContainsConstrainedFuncTrue<float, Us...>::func(5, 0.0); }; template <typename... Us> concept FalseConstraint2 = requires(float &&t) { ContainsConstrainedFuncFalse<float, Us...>::func(5, 0.0); // #FC2_CONSTR }; template <typename T> void useTrue(int F) requires TrueConstraint2<int> {} template <typename T> void useFalse(int F) // #USE_FALSE requires FalseConstraint2<int> // #USE_FALSE_CONSTR {} // Should only diagnose 'false' once instantiated. void UseUse() { useTrue<int>(5); useFalse<int>(5); // expected-error@-1{{no matching function for call to 'useFalse'}} // expected-note@#USE_FALSE{{constraints not satisfied}} // expected-note@#USE_FALSE_CONSTR{{because 'int' does not satisfy 'FalseConstraint2'}} // expected-note@#FC2_CONSTR {{would be invalid: no matching function for call to 'func'}} } } // namespace SubConstraintChecks namespace DeducedTemplateArgs { template <typename Itr> struct ItrTraits { template <typename PtrItr> struct Ptr { }; template <typename PtrItr> requires requires { typename PtrItr::pointer; } struct Ptr<PtrItr> { using type = typename Itr::pointer; }; using pointer = typename Ptr<Itr>::type; // #TRAITS_PTR }; struct complete_itr { using pointer = int; }; template <typename T> class Complete { using ItrType = ItrTraits<complete_itr>; ItrType begin() noexcept { return ItrType(); } }; // This version doesn't have 'pointer', so error confirms we are in the first // verison of 'Ptr'. struct not_complete_itr { }; template <typename T> class NotComplete { using ItrType = ItrTraits<not_complete_itr>; ItrType begin() noexcept { return ItrType(); } // expected-error@#TRAITS_PTR{{no type named 'type' in }} // expected-note@-2{{in instantiation of template class }} }; } // namespace DeducedTemplateArgs namespace DeferredInstantiationInstScope { template <typename T> struct remove_ref { using type = T; }; template <typename T> struct remove_ref<T &> { using type = T; }; template <typename T> struct remove_ref<T &&> { using type = T; }; template <typename T> constexpr bool IsInt = PR54443::is_same<typename remove_ref<T>::type, int>::value; template <typename U> void SingleDepthReferencesTop(U &&u) { struct lc { void operator()() // #SDRT_OP requires IsInt<decltype(u)> // #SDRT_REQ {} }; lc lv; lv(); // #SDRT_CALL } template <typename U> void SingleDepthReferencesTopNotCalled(U &&u) { struct lc { void operator()() requires IsInt<typename decltype(u)::FOO> {} }; lc lv; } template <typename U> void SingleDepthReferencesTopCalled(U &&u) { struct lc { void operator()() // #CALLOP requires IsInt<typename decltype(u)::FOO> // #CONSTR {} }; lc lv; lv(); // expected-error@-1{{no matching function for call to object of type 'lc'}} // expected-note@#SDRTC{{in instantiation of function template}} // expected-note@#CALLOP{{constraints not satisfied}} // expected-note@#CONSTR{{substituted constraint expression is ill-formed}} } template <typename U> void SingleDepthReferencesTopLambda(U &&u) { []() requires IsInt<decltype(u)> {}(); } template <typename U> void DoubleDepthReferencesTop(U &&u) { struct lc { // #DDRT_STRCT void operator()() { struct lc2 { void operator()() // #DDRT_OP requires IsInt<decltype(u)> // #DDRT_REQ {} }; lc2 lv2; lv2(); // #DDRT_CALL } }; lc lv; lv(); } template <typename U> void DoubleDepthReferencesTopLambda(U &&u) { []() { []() requires IsInt<decltype(u)> {}(); }(); } template <typename U> void DoubleDepthReferencesAll(U &&u) { struct lc { // #DDRA_STRCT void operator()(U &&u2) { struct lc2 { void operator()(U &&u3) // #DDRA_OP requires IsInt<decltype(u)> && // #DDRA_REQ IsInt<decltype(u2)> && IsInt<decltype(u3)> {} }; lc2 lv2; lv2(u2); // #DDRA_CALL } }; lc lv; lv(u); } template <typename U> void DoubleDepthReferencesAllLambda(U &&u) { [](U &&u2) { [](U && u3) requires IsInt<decltype(u)> && IsInt<decltype(u2)> && IsInt<decltype(u3)> {}(u2); }(u); } template <typename U> struct CausesFriendConstraint { template <typename V> friend void FriendFunc(CausesFriendConstraint, V) // #FF_DECL requires IsInt<U> && IsInt<V> // #FF_REQ {} }; // FIXME: Re-enable this test when constraints are allowed to refer to captures. // template<typename T> // void ChecksCapture(T x) { // [y = x]() requires(IsInt<decltype(y)>){}(); // } template <typename T> void ChecksLocalVar(T x) { T Local; []() requires(IsInt<decltype(Local)>) {}(); } template <typename T> void LocalStructMemberVar(T x) { struct S { T local; void foo() requires(IsInt<decltype(local)>) // #LSMV_REQ {} } s; s.foo(); // #LSMV_CALL }; template <typename T> struct ChecksMemberVar { T t; void foo() requires(IsInt<decltype(t)>) // #CMV_FOO {} template <typename U> void foo2() // #CMV_FOO2 requires(IsInt<decltype(t)>) // #CMV_FOO2_REQ {} }; void test_dependent() { int v = 0; float will_fail; SingleDepthReferencesTop(v); SingleDepthReferencesTop(will_fail); // expected-error@#SDRT_CALL{{no matching function for call to object of type 'lc'}} // expected-note@-2{{in instantiation of function template specialization}} // expected-note@#SDRT_OP{{candidate function not viable}} // expected-note@#SDRT_REQ{{'IsInt<decltype(u)>' evaluated to false}} SingleDepthReferencesTopNotCalled(v); // Won't error unless we try to call it. SingleDepthReferencesTopNotCalled(will_fail); SingleDepthReferencesTopCalled(v); // #SDRTC SingleDepthReferencesTopLambda(v); // FIXME: This should error on constraint failure! (Lambda!) SingleDepthReferencesTopLambda(will_fail); DoubleDepthReferencesTop(v); DoubleDepthReferencesTop(will_fail); // expected-error@#DDRT_CALL{{no matching function for call to object of type 'lc2'}} // expected-note@-2{{in instantiation of function template specialization}} // expected-note@#DDRT_STRCT{{in instantiation of member function}} // expected-note@#DDRT_OP{{candidate function not viable}} // expected-note@#DDRT_REQ{{'IsInt<decltype(u)>' evaluated to false}} DoubleDepthReferencesTopLambda(v); // FIXME: This should error on constraint failure! (Lambda!) DoubleDepthReferencesTopLambda(will_fail); DoubleDepthReferencesAll(v); DoubleDepthReferencesAll(will_fail); // expected-error@#DDRA_CALL{{no matching function for call to object of type 'lc2'}} // expected-note@-2{{in instantiation of function template specialization}} // expected-note@#DDRA_STRCT{{in instantiation of member function}} // expected-note@#DDRA_OP{{candidate function not viable}} // expected-note@#DDRA_REQ{{'IsInt<decltype(u)>' evaluated to false}} DoubleDepthReferencesAllLambda(v); // FIXME: This should error on constraint failure! (Lambda!) DoubleDepthReferencesAllLambda(will_fail); CausesFriendConstraint<int> CFC; FriendFunc(CFC, 1); FriendFunc(CFC, 1.0); // expected-error@-1{{no matching function for call to 'FriendFunc'}} // expected-note@#FF_DECL{{constraints not satisfied}} // expected-note@#FF_REQ{{because 'IsInt<double>' evaluated to false}} // FIXME: Re-enable this test when constraints are allowed to refer to captures. // ChecksCapture(v); ChecksLocalVar(v); // FIXME: This should error on constraint failure! (Lambda!) ChecksLocalVar(will_fail); LocalStructMemberVar(v); LocalStructMemberVar(will_fail); // expected-error@#LSMV_CALL{{invalid reference to function 'foo'}} // expected-note@-2{{in instantiation of function template specialization}} // expected-note@#LSMV_REQ{{because 'IsInt<decltype(this->local)>' evaluated to false}} ChecksMemberVar<int> CMV; CMV.foo(); CMV.foo2<int>(); ChecksMemberVar<float> CMV2; CMV2.foo(); // expected-error@-1{{invalid reference to function 'foo'}} // expected-note@#CMV_FOO{{because 'IsInt<decltype(this->t)>' evaluated to false}} CMV2.foo2<float>(); // expected-error@-1{{no matching member function for call to 'foo2'}} // expected-note@#CMV_FOO2{{constraints not satisfied}} // expected-note@#CMV_FOO2_REQ{{because 'IsInt<decltype(this->t)>' evaluated to false}} } } // namespace DeferredInstantiationInstScope // Ane example of evaluating a concept at two different depths in the same // evaluation. No diagnostic is expected. namespace SameConceptDifferentDepth { template <class _Ip> concept sentinel_for = requires(_Ip __i) { __i++; }; template <class _Ip> concept bidirectional_iterator = sentinel_for<_Ip>; template <class _Iter> class move_iterator { public: auto operator++(int) requires sentinel_for<_Iter>{} }; static_assert(bidirectional_iterator<move_iterator<int>>); } // namespace SameConceptDifferentDepth namespace VarInit { template <class _Tp> concept __can_reference = true; template <class _Iter> class common_iterator { public: common_iterator() { constexpr auto x = requires(_Iter & __i) { { __i } -> __can_reference; }; } }; void test() { auto commonIter1 = common_iterator<int>(); } } // namespace VarInit namespace InlineFriendOperator { template <typename T> concept C = true; template <class _Iter> class counted_iterator { _Iter I; public: constexpr counted_iterator() = default; friend constexpr auto operator+( // expected-note {{candidate function not viable}} int __n, const counted_iterator &__x) requires C<decltype(I)> { return __x + __n; // expected-error{{invalid operands to binary expression}} } }; constexpr bool test() { counted_iterator<int> iter; auto x = 2 + iter; // expected-note{{in instantiation of member function 'InlineFriendOperator::operator+'}} return true; } } // namespace InlineFriendOperator namespace ClassTemplateInstantiation { struct Type; template < typename A, typename B, typename C> concept ConstraintF = false; // #ConstraintF template < typename A, typename B, typename C> concept ConstraintT = true; template < typename T > struct Parent { template < typename U, ConstraintT<T, U> > struct ChildT{}; ChildT<Type, Type> CauseInstT; template < typename U, ConstraintF<T, U> > struct ChildF{};// #ChildF ChildF<Type, Type> CauseInstF; //#CauseInstF }; // expected-error@#CauseInstF{{constraints not satisfied for class template}} // expected-note@+3{{in instantiation of template class}} // expected-note@#ChildF{{evaluated to false}} // expected-note@#ConstraintF{{because 'false' evaluated to false}} Parent<int> Inst; } // namespace ClassTemplateInstantiation namespace SelfFriend { template<class T> concept Constraint = requires (T i) { (*i); }; template<class T> concept Constraint2 = requires (T i) { (*i); }; template<Constraint T> struct Iterator { template <Constraint> friend class Iterator; void operator*(); }; template<Constraint T> // #ITER_BAD struct IteratorBad { template <Constraint2>//#ITER_BAD_FRIEND friend class IteratorBad; void operator*(); }; Iterator<int*> I; Iterator<char*> I2; IteratorBad<int*> I3; // expected-error@#ITER_BAD_FRIEND{{constraint differs}} // expected-note@-1{{in instantiation of template class}} // expected-note@#ITER_BAD{{previous template declaration}} } // namespace SelfFriend namespace ConstrainedMemberVarTemplate { template <long Size> struct Container { static constexpr long arity = Size; template <typename U> requires(sizeof(U) == arity) // #CMVT_REQ using var_templ = int; }; Container<4>::var_templ<int> inst; Container<5>::var_templ<int> inst_fail; // expected-error@-1{{constraints not satisfied for alias template 'var_templ'}} // expected-note@#CMVT_REQ{{because 'sizeof(int) == arity' (4 == 5) evaluated to false}} } // namespace ConstrainedMemberVarTemplate // These should not diagnose, where we were unintentionally doing so before by // checking trailing requires clause twice, yet not having the ability to the // 2nd time, since it was no longer a dependent variant. namespace InheritedFromPartialSpec { template<class C> constexpr bool Check = true; template<typename T> struct Foo { template<typename U> Foo(U&&) requires (Check<U>){} template<typename U> void MemFunc(U&&) requires (Check<U>){} template<typename U> static void StaticMemFunc(U&&) requires (Check<U>){} ~Foo() requires (Check<T>){} }; template<> struct Foo<void> : Foo<int> { using Foo<int>::Foo; using Foo<int>::MemFunc; using Foo<int>::StaticMemFunc; }; void use() { Foo<void> F {1.1}; F.MemFunc(1.1); Foo<void>::StaticMemFunc(1.1); } template<typename T> struct counted_iterator { constexpr auto operator->() const noexcept requires false { return T::Invalid; }; }; template<class _Ip> concept __has_member_pointer = requires { typename _Ip::pointer; }; template<class> struct __iterator_traits_member_pointer_or_arrow_or_void { using type = void; }; template<__has_member_pointer _Ip> struct __iterator_traits_member_pointer_or_arrow_or_void<_Ip> { using type = typename _Ip::pointer; }; template<class _Ip> requires requires(_Ip& __i) { __i.operator->(); } && (!__has_member_pointer<_Ip>) struct __iterator_traits_member_pointer_or_arrow_or_void<_Ip> { using type = decltype(declval<_Ip&>().operator->()); }; void use2() { __iterator_traits_member_pointer_or_arrow_or_void<counted_iterator<int>> f; } }// namespace InheritedFromPartialSpec