Mercurial > hg > CbC > CbC_llvm
view clang/test/SemaTemplate/constexpr-instantiate.cpp @ 236:c4bab56944e8 llvm-original
LLVM 16
author | kono |
---|---|
date | Wed, 09 Nov 2022 17:45:10 +0900 |
parents | 1d019706d866 |
children |
line wrap: on
line source
// RUN: %clang_cc1 -std=c++11 -verify %s namespace UseBeforeDefinition { struct A { template<typename T> static constexpr T get() { return T(); } // ok, not a constant expression. int n = get<int>(); }; // ok, constant expression. constexpr int j = A::get<int>(); template<typename T> constexpr int consume(T); // ok, not a constant expression. const int k = consume(0); // expected-note {{here}} template<typename T> constexpr int consume(T) { return 0; } // ok, constant expression. constexpr int l = consume(0); constexpr int m = k; // expected-error {{constant expression}} expected-note {{initializer of 'k'}} } namespace IntegralConst { template<typename T> constexpr T f(T n) { return n; } enum E { v = f(0), w = f(1) // ok }; static_assert(w == 1, ""); char arr[f('x')]; // ok static_assert(sizeof(arr) == 'x', ""); } namespace ConvertedConst { template<typename T> constexpr T f(T n) { return n; } int f() { switch (f()) { case f(4): return 0; } return 1; } } namespace OverloadResolution { template<typename T> constexpr T f(T t) { return t; } template<int n> struct S { }; template<typename T> auto g(T t) -> S<f(sizeof(T))> &; char &f(...); template<typename T> auto h(T t[f(sizeof(T))]) -> decltype(&*t) { return t; } S<4> &k = g(0); int *p, *q = h(p); } namespace DataMember { template<typename T> struct S { static const int k; }; const int n = S<int>::k; // expected-note {{here}} template<typename T> const int S<T>::k = 0; constexpr int m = S<int>::k; // ok constexpr int o = n; // expected-error {{constant expression}} expected-note {{initializer of 'n'}} } namespace Reference { const int k = 5; template<typename T> struct S { static volatile int &r; }; template<typename T> volatile int &S<T>::r = const_cast<volatile int&>(k); constexpr int n = const_cast<int&>(S<int>::r); static_assert(n == 5, ""); } namespace Unevaluated { // We follow the current proposed resolution of core issue 1581: a constexpr // function template specialization requires a definition if: // * it is odr-used, or would be odr-used except that it appears within the // definition of a template, or // * it is used within a braced-init-list, where it may be necessary for // detecting narrowing conversions. // // We apply this both for instantiating constexpr function template // specializations and for implicitly defining defaulted constexpr special // member functions. // // FIXME: None of this is required by the C++ standard yet. The rules in this // area are subject to change. namespace NotConstexpr { template<typename T> struct S { S() : n(0) {} S(const S&) : n(T::error) {} int n; }; struct U : S<int> {}; decltype(U(U())) u; } namespace Constexpr { template<typename T> struct S { constexpr S() : n(0) {} constexpr S(const S&) : n(T::error) {} int n; }; struct U : S<int> {}; decltype(U(U())) u; } namespace ConstexprList { template<int N> struct S { constexpr S() : n(0) { static_assert(N >= 0, ""); } constexpr operator int() const { return 0; } int n; }; struct U : S<0> {}; // ok, trigger instantiation within a list decltype(char{U()}) t0; decltype(new char{S<1>()}) t1; // expected-warning {{side effects}} decltype((char){S<2>()}) t2; decltype(+(char[1]){{S<3>()}}) t3; // do not trigger instantiation outside a list decltype(char(S<-1>())) u1; decltype(new char(S<-2>())) u2; // expected-warning {{side effects}} decltype((char)(S<-3>())) u3; } namespace PR11851_Comment0 { template<int x> constexpr int f() { return x; } template<int i> void ovf(int (&x)[f<i>()]); void f() { int x[10]; ovf<10>(x); } } namespace PR11851_Comment1 { template<typename T> constexpr bool Integral() { return true; } template<typename T, bool Int = Integral<T>()> struct safe_make_unsigned { typedef T type; }; template<typename T> using Make_unsigned = typename safe_make_unsigned<T>::type; template <typename T> struct get_distance_type { using type = int; }; template<typename R> auto size(R) -> Make_unsigned<typename get_distance_type<R>::type>; auto check() -> decltype(size(0)); } namespace PR11851_Comment6 { template<int> struct foo {}; template<class> constexpr int bar() { return 0; } template<class T> foo<bar<T>()> foobar(); auto foobar_ = foobar<int>(); } namespace PR11851_Comment9 { struct S1 { constexpr S1() {} constexpr operator int() const { return 0; } }; int k1 = sizeof(short{S1(S1())}); struct S2 { constexpr S2() {} constexpr operator int() const { return 123456; } }; int k2 = sizeof(short{S2(S2())}); // expected-error {{cannot be narrowed}} expected-note {{insert an explicit cast to silence this issue}} } namespace PR12288 { template <typename> constexpr bool foo() { return true; } template <bool> struct bar {}; template <typename T> bar<foo<T>()> baz() { return bar<foo<T>()>(); } int main() { baz<int>(); } } namespace PR13423 { template<bool, typename> struct enable_if {}; template<typename T> struct enable_if<true, T> { using type = T; }; template<typename T> struct F { template<typename U> static constexpr bool f() { return sizeof(T) < U::size; } template<typename U> static typename enable_if<f<U>(), void>::type g() {} // expected-note {{requirement 'f<Unevaluated::PR13423::U>()' was not satisfied}} }; struct U { static constexpr int size = 2; }; void h() { F<char>::g<U>(); } void i() { F<int>::g<U>(); } // expected-error {{no matching function}} } namespace PR14203 { struct duration { constexpr duration() {} }; template <typename> void sleep_for() { constexpr duration max = duration(); } } // For variables, we instantiate when they are used in a context in which // evaluation could be required (odr-used, used in a template whose // instantiations would odr-use, or used in list initialization), if they // can be used as a constant (const integral or constexpr). namespace Variables { template<int N> struct A { static const int k; static int n; }; template<const int *N> struct B {}; template <int N> constexpr int A<N>::k = *(int[N]){N}; // expected-error 1+{{negative}} expected-note 1+{{not valid in a constant expression}} expected-note 1+{{declared here}} // expected-error@-1 1+{{must be initialized by a constant expression}} template<int N> int A<N>::n = *(int[N]){0}; template <typename> void f() { (void)A<-1>::n; // ok (void)A<-1>::k; // expected-note {{instantiation of }} B<&A<-2>::n> b1; // ok B<&A<-2>::k> b2; // expected-note {{instantiation of }} }; decltype(A<-3>::k) d1 = 0; // ok decltype(char{A<-4>::k}) d2 = 0; // expected-note 1+{{instantiation of }} expected-error {{narrow}} expected-note {{cast}} decltype(char{A<1>::k}) d3 = 0; // expected-note 1+{{instantiation of }} expected-error {{narrow}} expected-note {{cast}} decltype(char{A<1 + (unsigned char)-1>::k}) d4 = 0; // expected-error {{narrow}} expected-note {{cast}} expected-note {{instantiation of}} } } namespace NoInstantiationWhenSelectingOverload { // Check that we don't instantiate conversion functions when we're checking // for the existence of an implicit conversion sequence, only when a function // is actually chosen by overload resolution. struct S { template<typename T> constexpr S(T) : n(T::error) {} // expected-error {{no members}} int n; }; constexpr int f(S) { return 0; } constexpr int f(int) { return 0; } void g() { f(0); } void h() { (void)sizeof(char{f(0)}); } void i() { (void)sizeof(char{f("oops")}); } // expected-note {{instantiation of}} } namespace PR20090 { template <typename T> constexpr T fact(T n) { return n == 0 ? 1 : [=] { return n * fact(n - 1); }(); } static_assert(fact(0) == 1, ""); }