Mercurial > hg > CbC > CbC_llvm
view lld/MachO/Writer.cpp @ 240:ca573705d418
merge
author | matac |
---|---|
date | Fri, 28 Jul 2023 20:50:09 +0900 |
parents | c4bab56944e8 |
children | 1f2b6ac9f198 |
line wrap: on
line source
//===- Writer.cpp ---------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "Writer.h" #include "ConcatOutputSection.h" #include "Config.h" #include "InputFiles.h" #include "InputSection.h" #include "MapFile.h" #include "OutputSection.h" #include "OutputSegment.h" #include "SectionPriorities.h" #include "SymbolTable.h" #include "Symbols.h" #include "SyntheticSections.h" #include "Target.h" #include "UnwindInfoSection.h" #include "lld/Common/Arrays.h" #include "lld/Common/CommonLinkerContext.h" #include "llvm/BinaryFormat/MachO.h" #include "llvm/Config/llvm-config.h" #include "llvm/Support/LEB128.h" #include "llvm/Support/Parallel.h" #include "llvm/Support/Path.h" #include "llvm/Support/ThreadPool.h" #include "llvm/Support/TimeProfiler.h" #include "llvm/Support/xxhash.h" #include <algorithm> using namespace llvm; using namespace llvm::MachO; using namespace llvm::sys; using namespace lld; using namespace lld::macho; namespace { class LCUuid; class Writer { public: Writer() : buffer(errorHandler().outputBuffer) {} void treatSpecialUndefineds(); void scanRelocations(); void scanSymbols(); template <class LP> void createOutputSections(); template <class LP> void createLoadCommands(); void finalizeAddresses(); void finalizeLinkEditSegment(); void assignAddresses(OutputSegment *); void openFile(); void writeSections(); void applyOptimizationHints(); void buildFixupChains(); void writeUuid(); void writeCodeSignature(); void writeOutputFile(); template <class LP> void run(); ThreadPool threadPool; std::unique_ptr<FileOutputBuffer> &buffer; uint64_t addr = 0; uint64_t fileOff = 0; MachHeaderSection *header = nullptr; StringTableSection *stringTableSection = nullptr; SymtabSection *symtabSection = nullptr; IndirectSymtabSection *indirectSymtabSection = nullptr; CodeSignatureSection *codeSignatureSection = nullptr; DataInCodeSection *dataInCodeSection = nullptr; FunctionStartsSection *functionStartsSection = nullptr; LCUuid *uuidCommand = nullptr; OutputSegment *linkEditSegment = nullptr; }; // LC_DYLD_INFO_ONLY stores the offsets of symbol import/export information. class LCDyldInfo final : public LoadCommand { public: LCDyldInfo(RebaseSection *rebaseSection, BindingSection *bindingSection, WeakBindingSection *weakBindingSection, LazyBindingSection *lazyBindingSection, ExportSection *exportSection) : rebaseSection(rebaseSection), bindingSection(bindingSection), weakBindingSection(weakBindingSection), lazyBindingSection(lazyBindingSection), exportSection(exportSection) {} uint32_t getSize() const override { return sizeof(dyld_info_command); } void writeTo(uint8_t *buf) const override { auto *c = reinterpret_cast<dyld_info_command *>(buf); c->cmd = LC_DYLD_INFO_ONLY; c->cmdsize = getSize(); if (rebaseSection->isNeeded()) { c->rebase_off = rebaseSection->fileOff; c->rebase_size = rebaseSection->getFileSize(); } if (bindingSection->isNeeded()) { c->bind_off = bindingSection->fileOff; c->bind_size = bindingSection->getFileSize(); } if (weakBindingSection->isNeeded()) { c->weak_bind_off = weakBindingSection->fileOff; c->weak_bind_size = weakBindingSection->getFileSize(); } if (lazyBindingSection->isNeeded()) { c->lazy_bind_off = lazyBindingSection->fileOff; c->lazy_bind_size = lazyBindingSection->getFileSize(); } if (exportSection->isNeeded()) { c->export_off = exportSection->fileOff; c->export_size = exportSection->getFileSize(); } } RebaseSection *rebaseSection; BindingSection *bindingSection; WeakBindingSection *weakBindingSection; LazyBindingSection *lazyBindingSection; ExportSection *exportSection; }; class LCSubFramework final : public LoadCommand { public: LCSubFramework(StringRef umbrella) : umbrella(umbrella) {} uint32_t getSize() const override { return alignTo(sizeof(sub_framework_command) + umbrella.size() + 1, target->wordSize); } void writeTo(uint8_t *buf) const override { auto *c = reinterpret_cast<sub_framework_command *>(buf); buf += sizeof(sub_framework_command); c->cmd = LC_SUB_FRAMEWORK; c->cmdsize = getSize(); c->umbrella = sizeof(sub_framework_command); memcpy(buf, umbrella.data(), umbrella.size()); buf[umbrella.size()] = '\0'; } private: const StringRef umbrella; }; class LCFunctionStarts final : public LoadCommand { public: explicit LCFunctionStarts(FunctionStartsSection *functionStartsSection) : functionStartsSection(functionStartsSection) {} uint32_t getSize() const override { return sizeof(linkedit_data_command); } void writeTo(uint8_t *buf) const override { auto *c = reinterpret_cast<linkedit_data_command *>(buf); c->cmd = LC_FUNCTION_STARTS; c->cmdsize = getSize(); c->dataoff = functionStartsSection->fileOff; c->datasize = functionStartsSection->getFileSize(); } private: FunctionStartsSection *functionStartsSection; }; class LCDataInCode final : public LoadCommand { public: explicit LCDataInCode(DataInCodeSection *dataInCodeSection) : dataInCodeSection(dataInCodeSection) {} uint32_t getSize() const override { return sizeof(linkedit_data_command); } void writeTo(uint8_t *buf) const override { auto *c = reinterpret_cast<linkedit_data_command *>(buf); c->cmd = LC_DATA_IN_CODE; c->cmdsize = getSize(); c->dataoff = dataInCodeSection->fileOff; c->datasize = dataInCodeSection->getFileSize(); } private: DataInCodeSection *dataInCodeSection; }; class LCDysymtab final : public LoadCommand { public: LCDysymtab(SymtabSection *symtabSection, IndirectSymtabSection *indirectSymtabSection) : symtabSection(symtabSection), indirectSymtabSection(indirectSymtabSection) {} uint32_t getSize() const override { return sizeof(dysymtab_command); } void writeTo(uint8_t *buf) const override { auto *c = reinterpret_cast<dysymtab_command *>(buf); c->cmd = LC_DYSYMTAB; c->cmdsize = getSize(); c->ilocalsym = 0; c->iextdefsym = c->nlocalsym = symtabSection->getNumLocalSymbols(); c->nextdefsym = symtabSection->getNumExternalSymbols(); c->iundefsym = c->iextdefsym + c->nextdefsym; c->nundefsym = symtabSection->getNumUndefinedSymbols(); c->indirectsymoff = indirectSymtabSection->fileOff; c->nindirectsyms = indirectSymtabSection->getNumSymbols(); } SymtabSection *symtabSection; IndirectSymtabSection *indirectSymtabSection; }; template <class LP> class LCSegment final : public LoadCommand { public: LCSegment(StringRef name, OutputSegment *seg) : name(name), seg(seg) {} uint32_t getSize() const override { return sizeof(typename LP::segment_command) + seg->numNonHiddenSections() * sizeof(typename LP::section); } void writeTo(uint8_t *buf) const override { using SegmentCommand = typename LP::segment_command; using SectionHeader = typename LP::section; auto *c = reinterpret_cast<SegmentCommand *>(buf); buf += sizeof(SegmentCommand); c->cmd = LP::segmentLCType; c->cmdsize = getSize(); memcpy(c->segname, name.data(), name.size()); c->fileoff = seg->fileOff; c->maxprot = seg->maxProt; c->initprot = seg->initProt; c->vmaddr = seg->addr; c->vmsize = seg->vmSize; c->filesize = seg->fileSize; c->nsects = seg->numNonHiddenSections(); c->flags = seg->flags; for (const OutputSection *osec : seg->getSections()) { if (osec->isHidden()) continue; auto *sectHdr = reinterpret_cast<SectionHeader *>(buf); buf += sizeof(SectionHeader); memcpy(sectHdr->sectname, osec->name.data(), osec->name.size()); memcpy(sectHdr->segname, name.data(), name.size()); sectHdr->addr = osec->addr; sectHdr->offset = osec->fileOff; sectHdr->align = Log2_32(osec->align); sectHdr->flags = osec->flags; sectHdr->size = osec->getSize(); sectHdr->reserved1 = osec->reserved1; sectHdr->reserved2 = osec->reserved2; } } private: StringRef name; OutputSegment *seg; }; class LCMain final : public LoadCommand { uint32_t getSize() const override { return sizeof(structs::entry_point_command); } void writeTo(uint8_t *buf) const override { auto *c = reinterpret_cast<structs::entry_point_command *>(buf); c->cmd = LC_MAIN; c->cmdsize = getSize(); if (config->entry->isInStubs()) c->entryoff = in.stubs->fileOff + config->entry->stubsIndex * target->stubSize; else c->entryoff = config->entry->getVA() - in.header->addr; c->stacksize = 0; } }; class LCSymtab final : public LoadCommand { public: LCSymtab(SymtabSection *symtabSection, StringTableSection *stringTableSection) : symtabSection(symtabSection), stringTableSection(stringTableSection) {} uint32_t getSize() const override { return sizeof(symtab_command); } void writeTo(uint8_t *buf) const override { auto *c = reinterpret_cast<symtab_command *>(buf); c->cmd = LC_SYMTAB; c->cmdsize = getSize(); c->symoff = symtabSection->fileOff; c->nsyms = symtabSection->getNumSymbols(); c->stroff = stringTableSection->fileOff; c->strsize = stringTableSection->getFileSize(); } SymtabSection *symtabSection = nullptr; StringTableSection *stringTableSection = nullptr; }; // There are several dylib load commands that share the same structure: // * LC_LOAD_DYLIB // * LC_ID_DYLIB // * LC_REEXPORT_DYLIB class LCDylib final : public LoadCommand { public: LCDylib(LoadCommandType type, StringRef path, uint32_t compatibilityVersion = 0, uint32_t currentVersion = 0) : type(type), path(path), compatibilityVersion(compatibilityVersion), currentVersion(currentVersion) { instanceCount++; } uint32_t getSize() const override { return alignTo(sizeof(dylib_command) + path.size() + 1, 8); } void writeTo(uint8_t *buf) const override { auto *c = reinterpret_cast<dylib_command *>(buf); buf += sizeof(dylib_command); c->cmd = type; c->cmdsize = getSize(); c->dylib.name = sizeof(dylib_command); c->dylib.timestamp = 0; c->dylib.compatibility_version = compatibilityVersion; c->dylib.current_version = currentVersion; memcpy(buf, path.data(), path.size()); buf[path.size()] = '\0'; } static uint32_t getInstanceCount() { return instanceCount; } static void resetInstanceCount() { instanceCount = 0; } private: LoadCommandType type; StringRef path; uint32_t compatibilityVersion; uint32_t currentVersion; static uint32_t instanceCount; }; uint32_t LCDylib::instanceCount = 0; class LCLoadDylinker final : public LoadCommand { public: uint32_t getSize() const override { return alignTo(sizeof(dylinker_command) + path.size() + 1, 8); } void writeTo(uint8_t *buf) const override { auto *c = reinterpret_cast<dylinker_command *>(buf); buf += sizeof(dylinker_command); c->cmd = LC_LOAD_DYLINKER; c->cmdsize = getSize(); c->name = sizeof(dylinker_command); memcpy(buf, path.data(), path.size()); buf[path.size()] = '\0'; } private: // Recent versions of Darwin won't run any binary that has dyld at a // different location. const StringRef path = "/usr/lib/dyld"; }; class LCRPath final : public LoadCommand { public: explicit LCRPath(StringRef path) : path(path) {} uint32_t getSize() const override { return alignTo(sizeof(rpath_command) + path.size() + 1, target->wordSize); } void writeTo(uint8_t *buf) const override { auto *c = reinterpret_cast<rpath_command *>(buf); buf += sizeof(rpath_command); c->cmd = LC_RPATH; c->cmdsize = getSize(); c->path = sizeof(rpath_command); memcpy(buf, path.data(), path.size()); buf[path.size()] = '\0'; } private: StringRef path; }; class LCDyldEnv final : public LoadCommand { public: explicit LCDyldEnv(StringRef name) : name(name) {} uint32_t getSize() const override { return alignTo(sizeof(dyld_env_command) + name.size() + 1, target->wordSize); } void writeTo(uint8_t *buf) const override { auto *c = reinterpret_cast<dyld_env_command *>(buf); buf += sizeof(dyld_env_command); c->cmd = LC_DYLD_ENVIRONMENT; c->cmdsize = getSize(); c->name = sizeof(dyld_env_command); memcpy(buf, name.data(), name.size()); buf[name.size()] = '\0'; } private: StringRef name; }; class LCMinVersion final : public LoadCommand { public: explicit LCMinVersion(const PlatformInfo &platformInfo) : platformInfo(platformInfo) {} uint32_t getSize() const override { return sizeof(version_min_command); } void writeTo(uint8_t *buf) const override { auto *c = reinterpret_cast<version_min_command *>(buf); switch (platformInfo.target.Platform) { case PLATFORM_MACOS: c->cmd = LC_VERSION_MIN_MACOSX; break; case PLATFORM_IOS: case PLATFORM_IOSSIMULATOR: c->cmd = LC_VERSION_MIN_IPHONEOS; break; case PLATFORM_TVOS: case PLATFORM_TVOSSIMULATOR: c->cmd = LC_VERSION_MIN_TVOS; break; case PLATFORM_WATCHOS: case PLATFORM_WATCHOSSIMULATOR: c->cmd = LC_VERSION_MIN_WATCHOS; break; default: llvm_unreachable("invalid platform"); break; } c->cmdsize = getSize(); c->version = encodeVersion(platformInfo.minimum); c->sdk = encodeVersion(platformInfo.sdk); } private: const PlatformInfo &platformInfo; }; class LCBuildVersion final : public LoadCommand { public: explicit LCBuildVersion(const PlatformInfo &platformInfo) : platformInfo(platformInfo) {} const int ntools = 1; uint32_t getSize() const override { return sizeof(build_version_command) + ntools * sizeof(build_tool_version); } void writeTo(uint8_t *buf) const override { auto *c = reinterpret_cast<build_version_command *>(buf); c->cmd = LC_BUILD_VERSION; c->cmdsize = getSize(); c->platform = static_cast<uint32_t>(platformInfo.target.Platform); c->minos = encodeVersion(platformInfo.minimum); c->sdk = encodeVersion(platformInfo.sdk); c->ntools = ntools; auto *t = reinterpret_cast<build_tool_version *>(&c[1]); t->tool = TOOL_LD; t->version = encodeVersion(VersionTuple( LLVM_VERSION_MAJOR, LLVM_VERSION_MINOR, LLVM_VERSION_PATCH)); } private: const PlatformInfo &platformInfo; }; // Stores a unique identifier for the output file based on an MD5 hash of its // contents. In order to hash the contents, we must first write them, but // LC_UUID itself must be part of the written contents in order for all the // offsets to be calculated correctly. We resolve this circular paradox by // first writing an LC_UUID with an all-zero UUID, then updating the UUID with // its real value later. class LCUuid final : public LoadCommand { public: uint32_t getSize() const override { return sizeof(uuid_command); } void writeTo(uint8_t *buf) const override { auto *c = reinterpret_cast<uuid_command *>(buf); c->cmd = LC_UUID; c->cmdsize = getSize(); uuidBuf = c->uuid; } void writeUuid(uint64_t digest) const { // xxhash only gives us 8 bytes, so put some fixed data in the other half. static_assert(sizeof(uuid_command::uuid) == 16, "unexpected uuid size"); memcpy(uuidBuf, "LLD\xa1UU1D", 8); memcpy(uuidBuf + 8, &digest, 8); // RFC 4122 conformance. We need to fix 4 bits in byte 6 and 2 bits in // byte 8. Byte 6 is already fine due to the fixed data we put in. We don't // want to lose bits of the digest in byte 8, so swap that with a byte of // fixed data that happens to have the right bits set. std::swap(uuidBuf[3], uuidBuf[8]); // Claim that this is an MD5-based hash. It isn't, but this signals that // this is not a time-based and not a random hash. MD5 seems like the least // bad lie we can put here. assert((uuidBuf[6] & 0xf0) == 0x30 && "See RFC 4122 Sections 4.2.2, 4.1.3"); assert((uuidBuf[8] & 0xc0) == 0x80 && "See RFC 4122 Section 4.2.2"); } mutable uint8_t *uuidBuf; }; template <class LP> class LCEncryptionInfo final : public LoadCommand { public: uint32_t getSize() const override { return sizeof(typename LP::encryption_info_command); } void writeTo(uint8_t *buf) const override { using EncryptionInfo = typename LP::encryption_info_command; auto *c = reinterpret_cast<EncryptionInfo *>(buf); buf += sizeof(EncryptionInfo); c->cmd = LP::encryptionInfoLCType; c->cmdsize = getSize(); c->cryptoff = in.header->getSize(); auto it = find_if(outputSegments, [](const OutputSegment *seg) { return seg->name == segment_names::text; }); assert(it != outputSegments.end()); c->cryptsize = (*it)->fileSize - c->cryptoff; } }; class LCCodeSignature final : public LoadCommand { public: LCCodeSignature(CodeSignatureSection *section) : section(section) {} uint32_t getSize() const override { return sizeof(linkedit_data_command); } void writeTo(uint8_t *buf) const override { auto *c = reinterpret_cast<linkedit_data_command *>(buf); c->cmd = LC_CODE_SIGNATURE; c->cmdsize = getSize(); c->dataoff = static_cast<uint32_t>(section->fileOff); c->datasize = section->getSize(); } CodeSignatureSection *section; }; class LCExportsTrie final : public LoadCommand { public: LCExportsTrie(ExportSection *section) : section(section) {} uint32_t getSize() const override { return sizeof(linkedit_data_command); } void writeTo(uint8_t *buf) const override { auto *c = reinterpret_cast<linkedit_data_command *>(buf); c->cmd = LC_DYLD_EXPORTS_TRIE; c->cmdsize = getSize(); c->dataoff = section->fileOff; c->datasize = section->getSize(); } ExportSection *section; }; class LCChainedFixups final : public LoadCommand { public: LCChainedFixups(ChainedFixupsSection *section) : section(section) {} uint32_t getSize() const override { return sizeof(linkedit_data_command); } void writeTo(uint8_t *buf) const override { auto *c = reinterpret_cast<linkedit_data_command *>(buf); c->cmd = LC_DYLD_CHAINED_FIXUPS; c->cmdsize = getSize(); c->dataoff = section->fileOff; c->datasize = section->getSize(); } ChainedFixupsSection *section; }; } // namespace void Writer::treatSpecialUndefineds() { if (config->entry) if (auto *undefined = dyn_cast<Undefined>(config->entry)) treatUndefinedSymbol(*undefined, "the entry point"); // FIXME: This prints symbols that are undefined both in input files and // via -u flag twice. for (const Symbol *sym : config->explicitUndefineds) { if (const auto *undefined = dyn_cast<Undefined>(sym)) treatUndefinedSymbol(*undefined, "-u"); } // Literal exported-symbol names must be defined, but glob // patterns need not match. for (const CachedHashStringRef &cachedName : config->exportedSymbols.literals) { if (const Symbol *sym = symtab->find(cachedName)) if (const auto *undefined = dyn_cast<Undefined>(sym)) treatUndefinedSymbol(*undefined, "-exported_symbol(s_list)"); } } static void prepareSymbolRelocation(Symbol *sym, const InputSection *isec, const lld::macho::Reloc &r) { assert(sym->isLive()); const RelocAttrs &relocAttrs = target->getRelocAttrs(r.type); if (relocAttrs.hasAttr(RelocAttrBits::BRANCH)) { if (needsBinding(sym)) in.stubs->addEntry(sym); } else if (relocAttrs.hasAttr(RelocAttrBits::GOT)) { if (relocAttrs.hasAttr(RelocAttrBits::POINTER) || needsBinding(sym)) in.got->addEntry(sym); } else if (relocAttrs.hasAttr(RelocAttrBits::TLV)) { if (needsBinding(sym)) in.tlvPointers->addEntry(sym); } else if (relocAttrs.hasAttr(RelocAttrBits::UNSIGNED)) { // References from thread-local variable sections are treated as offsets // relative to the start of the referent section, and therefore have no // need of rebase opcodes. if (!(isThreadLocalVariables(isec->getFlags()) && isa<Defined>(sym))) addNonLazyBindingEntries(sym, isec, r.offset, r.addend); } } void Writer::scanRelocations() { TimeTraceScope timeScope("Scan relocations"); // This can't use a for-each loop: It calls treatUndefinedSymbol(), which can // add to inputSections, which invalidates inputSections's iterators. for (size_t i = 0; i < inputSections.size(); ++i) { ConcatInputSection *isec = inputSections[i]; if (isec->shouldOmitFromOutput()) continue; for (auto it = isec->relocs.begin(); it != isec->relocs.end(); ++it) { lld::macho::Reloc &r = *it; if (target->hasAttr(r.type, RelocAttrBits::SUBTRAHEND)) { // Skip over the following UNSIGNED relocation -- it's just there as the // minuend, and doesn't have the usual UNSIGNED semantics. We don't want // to emit rebase opcodes for it. it++; continue; } if (auto *sym = r.referent.dyn_cast<Symbol *>()) { if (auto *undefined = dyn_cast<Undefined>(sym)) treatUndefinedSymbol(*undefined, isec, r.offset); // treatUndefinedSymbol() can replace sym with a DylibSymbol; re-check. if (!isa<Undefined>(sym) && validateSymbolRelocation(sym, isec, r)) prepareSymbolRelocation(sym, isec, r); } else { // Canonicalize the referent so that later accesses in Writer won't // have to worry about it. Perhaps we should do this for Defined::isec // too... auto *referentIsec = r.referent.get<InputSection *>(); r.referent = referentIsec->canonical(); if (!r.pcrel) { if (config->emitChainedFixups) in.chainedFixups->addRebase(isec, r.offset); else in.rebase->addEntry(isec, r.offset); } } } } in.unwindInfo->prepare(); } static void addNonWeakDefinition(const Defined *defined) { if (config->emitChainedFixups) in.chainedFixups->setHasNonWeakDefinition(); else in.weakBinding->addNonWeakDefinition(defined); } void Writer::scanSymbols() { TimeTraceScope timeScope("Scan symbols"); for (Symbol *sym : symtab->getSymbols()) { if (auto *defined = dyn_cast<Defined>(sym)) { if (!defined->isLive()) continue; defined->canonicalize(); if (defined->overridesWeakDef) addNonWeakDefinition(defined); if (!defined->isAbsolute() && isCodeSection(defined->isec)) in.unwindInfo->addSymbol(defined); } else if (const auto *dysym = dyn_cast<DylibSymbol>(sym)) { // This branch intentionally doesn't check isLive(). if (dysym->isDynamicLookup()) continue; dysym->getFile()->refState = std::max(dysym->getFile()->refState, dysym->getRefState()); } else if (isa<Undefined>(sym)) { if (sym->getName().startswith(ObjCStubsSection::symbolPrefix)) in.objcStubs->addEntry(sym); } } for (const InputFile *file : inputFiles) { if (auto *objFile = dyn_cast<ObjFile>(file)) for (Symbol *sym : objFile->symbols) { if (auto *defined = dyn_cast_or_null<Defined>(sym)) { if (!defined->isLive()) continue; defined->canonicalize(); if (!defined->isExternal() && !defined->isAbsolute() && isCodeSection(defined->isec)) in.unwindInfo->addSymbol(defined); } } } } // TODO: ld64 enforces the old load commands in a few other cases. static bool useLCBuildVersion(const PlatformInfo &platformInfo) { static const std::array<std::pair<PlatformType, VersionTuple>, 7> minVersion = {{{PLATFORM_MACOS, VersionTuple(10, 14)}, {PLATFORM_IOS, VersionTuple(12, 0)}, {PLATFORM_IOSSIMULATOR, VersionTuple(13, 0)}, {PLATFORM_TVOS, VersionTuple(12, 0)}, {PLATFORM_TVOSSIMULATOR, VersionTuple(13, 0)}, {PLATFORM_WATCHOS, VersionTuple(5, 0)}, {PLATFORM_WATCHOSSIMULATOR, VersionTuple(6, 0)}}}; auto it = llvm::find_if(minVersion, [&](const auto &p) { return p.first == platformInfo.target.Platform; }); return it == minVersion.end() ? true : platformInfo.minimum >= it->second; } template <class LP> void Writer::createLoadCommands() { uint8_t segIndex = 0; for (OutputSegment *seg : outputSegments) { in.header->addLoadCommand(make<LCSegment<LP>>(seg->name, seg)); seg->index = segIndex++; } if (config->emitChainedFixups) { in.header->addLoadCommand(make<LCChainedFixups>(in.chainedFixups)); in.header->addLoadCommand(make<LCExportsTrie>(in.exports)); } else { in.header->addLoadCommand(make<LCDyldInfo>( in.rebase, in.binding, in.weakBinding, in.lazyBinding, in.exports)); } in.header->addLoadCommand(make<LCSymtab>(symtabSection, stringTableSection)); in.header->addLoadCommand( make<LCDysymtab>(symtabSection, indirectSymtabSection)); if (!config->umbrella.empty()) in.header->addLoadCommand(make<LCSubFramework>(config->umbrella)); if (config->emitEncryptionInfo) in.header->addLoadCommand(make<LCEncryptionInfo<LP>>()); for (StringRef path : config->runtimePaths) in.header->addLoadCommand(make<LCRPath>(path)); switch (config->outputType) { case MH_EXECUTE: in.header->addLoadCommand(make<LCLoadDylinker>()); break; case MH_DYLIB: in.header->addLoadCommand(make<LCDylib>(LC_ID_DYLIB, config->installName, config->dylibCompatibilityVersion, config->dylibCurrentVersion)); break; case MH_BUNDLE: break; default: llvm_unreachable("unhandled output file type"); } uuidCommand = make<LCUuid>(); in.header->addLoadCommand(uuidCommand); if (useLCBuildVersion(config->platformInfo)) in.header->addLoadCommand(make<LCBuildVersion>(config->platformInfo)); else in.header->addLoadCommand(make<LCMinVersion>(config->platformInfo)); if (config->secondaryPlatformInfo) { in.header->addLoadCommand( make<LCBuildVersion>(*config->secondaryPlatformInfo)); } // This is down here to match ld64's load command order. if (config->outputType == MH_EXECUTE) in.header->addLoadCommand(make<LCMain>()); // See ld64's OutputFile::buildDylibOrdinalMapping for the corresponding // library ordinal computation code in ld64. int64_t dylibOrdinal = 1; DenseMap<StringRef, int64_t> ordinalForInstallName; std::vector<DylibFile *> dylibFiles; for (InputFile *file : inputFiles) { if (auto *dylibFile = dyn_cast<DylibFile>(file)) dylibFiles.push_back(dylibFile); } for (size_t i = 0; i < dylibFiles.size(); ++i) dylibFiles.insert(dylibFiles.end(), dylibFiles[i]->extraDylibs.begin(), dylibFiles[i]->extraDylibs.end()); for (DylibFile *dylibFile : dylibFiles) { if (dylibFile->isBundleLoader) { dylibFile->ordinal = BIND_SPECIAL_DYLIB_MAIN_EXECUTABLE; // Shortcut since bundle-loader does not re-export the symbols. dylibFile->reexport = false; continue; } // Don't emit load commands for a dylib that is not referenced if: // - it was added implicitly (via a reexport, an LC_LOAD_DYLINKER -- // if it's on the linker command line, it's explicit) // - or it's marked MH_DEAD_STRIPPABLE_DYLIB // - or the flag -dead_strip_dylibs is used // FIXME: `isReferenced()` is currently computed before dead code // stripping, so references from dead code keep a dylib alive. This // matches ld64, but it's something we should do better. if (!dylibFile->isReferenced() && !dylibFile->forceNeeded && (!dylibFile->isExplicitlyLinked() || dylibFile->deadStrippable || config->deadStripDylibs)) continue; // Several DylibFiles can have the same installName. Only emit a single // load command for that installName and give all these DylibFiles the // same ordinal. // This can happen in several cases: // - a new framework could change its installName to an older // framework name via an $ld$ symbol depending on platform_version // - symlinks (for example, libpthread.tbd is a symlink to libSystem.tbd; // Foo.framework/Foo.tbd is usually a symlink to // Foo.framework/Versions/Current/Foo.tbd, where // Foo.framework/Versions/Current is usually a symlink to // Foo.framework/Versions/A) // - a framework can be linked both explicitly on the linker // command line and implicitly as a reexport from a different // framework. The re-export will usually point to the tbd file // in Foo.framework/Versions/A/Foo.tbd, while the explicit link will // usually find Foo.framework/Foo.tbd. These are usually symlinks, // but in a --reproduce archive they will be identical but distinct // files. // In the first case, *semantically distinct* DylibFiles will have the // same installName. int64_t &ordinal = ordinalForInstallName[dylibFile->installName]; if (ordinal) { dylibFile->ordinal = ordinal; continue; } ordinal = dylibFile->ordinal = dylibOrdinal++; LoadCommandType lcType = dylibFile->forceWeakImport || dylibFile->refState == RefState::Weak ? LC_LOAD_WEAK_DYLIB : LC_LOAD_DYLIB; in.header->addLoadCommand(make<LCDylib>(lcType, dylibFile->installName, dylibFile->compatibilityVersion, dylibFile->currentVersion)); if (dylibFile->reexport) in.header->addLoadCommand( make<LCDylib>(LC_REEXPORT_DYLIB, dylibFile->installName)); } for (const auto &dyldEnv : config->dyldEnvs) in.header->addLoadCommand(make<LCDyldEnv>(dyldEnv)); if (functionStartsSection) in.header->addLoadCommand(make<LCFunctionStarts>(functionStartsSection)); if (dataInCodeSection) in.header->addLoadCommand(make<LCDataInCode>(dataInCodeSection)); if (codeSignatureSection) in.header->addLoadCommand(make<LCCodeSignature>(codeSignatureSection)); const uint32_t MACOS_MAXPATHLEN = 1024; config->headerPad = std::max( config->headerPad, (config->headerPadMaxInstallNames ? LCDylib::getInstanceCount() * MACOS_MAXPATHLEN : 0)); } // Sorting only can happen once all outputs have been collected. Here we sort // segments, output sections within each segment, and input sections within each // output segment. static void sortSegmentsAndSections() { TimeTraceScope timeScope("Sort segments and sections"); sortOutputSegments(); DenseMap<const InputSection *, size_t> isecPriorities = priorityBuilder.buildInputSectionPriorities(); uint32_t sectionIndex = 0; for (OutputSegment *seg : outputSegments) { seg->sortOutputSections(); // References from thread-local variable sections are treated as offsets // relative to the start of the thread-local data memory area, which // is initialized via copying all the TLV data sections (which are all // contiguous). If later data sections require a greater alignment than // earlier ones, the offsets of data within those sections won't be // guaranteed to aligned unless we normalize alignments. We therefore use // the largest alignment for all TLV data sections. uint32_t tlvAlign = 0; for (const OutputSection *osec : seg->getSections()) if (isThreadLocalData(osec->flags) && osec->align > tlvAlign) tlvAlign = osec->align; for (OutputSection *osec : seg->getSections()) { // Now that the output sections are sorted, assign the final // output section indices. if (!osec->isHidden()) osec->index = ++sectionIndex; if (isThreadLocalData(osec->flags)) { if (!firstTLVDataSection) firstTLVDataSection = osec; osec->align = tlvAlign; } if (!isecPriorities.empty()) { if (auto *merged = dyn_cast<ConcatOutputSection>(osec)) { llvm::stable_sort( merged->inputs, [&](InputSection *a, InputSection *b) { return isecPriorities.lookup(a) > isecPriorities.lookup(b); }); } } } } } template <class LP> void Writer::createOutputSections() { TimeTraceScope timeScope("Create output sections"); // First, create hidden sections stringTableSection = make<StringTableSection>(); symtabSection = makeSymtabSection<LP>(*stringTableSection); indirectSymtabSection = make<IndirectSymtabSection>(); if (config->adhocCodesign) codeSignatureSection = make<CodeSignatureSection>(); if (config->emitDataInCodeInfo) dataInCodeSection = make<DataInCodeSection>(); if (config->emitFunctionStarts) functionStartsSection = make<FunctionStartsSection>(); if (config->emitBitcodeBundle) make<BitcodeBundleSection>(); switch (config->outputType) { case MH_EXECUTE: make<PageZeroSection>(); break; case MH_DYLIB: case MH_BUNDLE: break; default: llvm_unreachable("unhandled output file type"); } // Then add input sections to output sections. for (ConcatInputSection *isec : inputSections) { if (isec->shouldOmitFromOutput()) continue; ConcatOutputSection *osec = cast<ConcatOutputSection>(isec->parent); osec->addInput(isec); osec->inputOrder = std::min(osec->inputOrder, static_cast<int>(isec->outSecOff)); } // Once all the inputs are added, we can finalize the output section // properties and create the corresponding output segments. for (const auto &it : concatOutputSections) { StringRef segname = it.first.first; ConcatOutputSection *osec = it.second; assert(segname != segment_names::ld); if (osec->isNeeded()) { // See comment in ObjFile::splitEhFrames() if (osec->name == section_names::ehFrame && segname == segment_names::text) osec->align = target->wordSize; // MC keeps the default 1-byte alignment for __thread_vars, even though it // contains pointers that are fixed up by dyld, which requires proper // alignment. if (isThreadLocalVariables(osec->flags)) osec->align = std::max<uint32_t>(osec->align, target->wordSize); getOrCreateOutputSegment(segname)->addOutputSection(osec); } } for (SyntheticSection *ssec : syntheticSections) { auto it = concatOutputSections.find({ssec->segname, ssec->name}); // We add all LinkEdit sections here because we don't know if they are // needed until their finalizeContents() methods get called later. While // this means that we add some redundant sections to __LINKEDIT, there is // is no redundancy in the output, as we do not emit section headers for // any LinkEdit sections. if (ssec->isNeeded() || ssec->segname == segment_names::linkEdit) { if (it == concatOutputSections.end()) { getOrCreateOutputSegment(ssec->segname)->addOutputSection(ssec); } else { fatal("section from " + toString(it->second->firstSection()->getFile()) + " conflicts with synthetic section " + ssec->segname + "," + ssec->name); } } } // dyld requires __LINKEDIT segment to always exist (even if empty). linkEditSegment = getOrCreateOutputSegment(segment_names::linkEdit); } void Writer::finalizeAddresses() { TimeTraceScope timeScope("Finalize addresses"); uint64_t pageSize = target->getPageSize(); // We could parallelize this loop, but local benchmarking indicates it is // faster to do it all in the main thread. for (OutputSegment *seg : outputSegments) { if (seg == linkEditSegment) continue; for (OutputSection *osec : seg->getSections()) { if (!osec->isNeeded()) continue; // Other kinds of OutputSections have already been finalized. if (auto concatOsec = dyn_cast<ConcatOutputSection>(osec)) concatOsec->finalizeContents(); } } // Ensure that segments (and the sections they contain) are allocated // addresses in ascending order, which dyld requires. // // Note that at this point, __LINKEDIT sections are empty, but we need to // determine addresses of other segments/sections before generating its // contents. for (OutputSegment *seg : outputSegments) { if (seg == linkEditSegment) continue; seg->addr = addr; assignAddresses(seg); // codesign / libstuff checks for segment ordering by verifying that // `fileOff + fileSize == next segment fileOff`. So we call alignTo() before // (instead of after) computing fileSize to ensure that the segments are // contiguous. We handle addr / vmSize similarly for the same reason. fileOff = alignTo(fileOff, pageSize); addr = alignTo(addr, pageSize); seg->vmSize = addr - seg->addr; seg->fileSize = fileOff - seg->fileOff; seg->assignAddressesToStartEndSymbols(); } } void Writer::finalizeLinkEditSegment() { TimeTraceScope timeScope("Finalize __LINKEDIT segment"); // Fill __LINKEDIT contents. std::array<LinkEditSection *, 10> linkEditSections{ in.rebase, in.binding, in.weakBinding, in.lazyBinding, in.exports, in.chainedFixups, symtabSection, indirectSymtabSection, dataInCodeSection, functionStartsSection, }; SmallVector<std::shared_future<void>> threadFutures; threadFutures.reserve(linkEditSections.size()); for (LinkEditSection *osec : linkEditSections) if (osec) threadFutures.emplace_back(threadPool.async( [](LinkEditSection *osec) { osec->finalizeContents(); }, osec)); for (std::shared_future<void> &future : threadFutures) future.wait(); // Now that __LINKEDIT is filled out, do a proper calculation of its // addresses and offsets. linkEditSegment->addr = addr; assignAddresses(linkEditSegment); // No need to page-align fileOff / addr here since this is the last segment. linkEditSegment->vmSize = addr - linkEditSegment->addr; linkEditSegment->fileSize = fileOff - linkEditSegment->fileOff; } void Writer::assignAddresses(OutputSegment *seg) { seg->fileOff = fileOff; for (OutputSection *osec : seg->getSections()) { if (!osec->isNeeded()) continue; addr = alignTo(addr, osec->align); fileOff = alignTo(fileOff, osec->align); osec->addr = addr; osec->fileOff = isZeroFill(osec->flags) ? 0 : fileOff; osec->finalize(); osec->assignAddressesToStartEndSymbols(); addr += osec->getSize(); fileOff += osec->getFileSize(); } } void Writer::openFile() { Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr = FileOutputBuffer::create(config->outputFile, fileOff, FileOutputBuffer::F_executable); if (!bufferOrErr) fatal("failed to open " + config->outputFile + ": " + llvm::toString(bufferOrErr.takeError())); buffer = std::move(*bufferOrErr); in.bufferStart = buffer->getBufferStart(); } void Writer::writeSections() { uint8_t *buf = buffer->getBufferStart(); std::vector<const OutputSection *> osecs; for (const OutputSegment *seg : outputSegments) append_range(osecs, seg->getSections()); parallelForEach(osecs.begin(), osecs.end(), [&](const OutputSection *osec) { osec->writeTo(buf + osec->fileOff); }); } void Writer::applyOptimizationHints() { if (config->arch() != AK_arm64 || config->ignoreOptimizationHints) return; uint8_t *buf = buffer->getBufferStart(); TimeTraceScope timeScope("Apply linker optimization hints"); parallelForEach(inputFiles, [buf](const InputFile *file) { if (const auto *objFile = dyn_cast<ObjFile>(file)) target->applyOptimizationHints(buf, *objFile); }); } // In order to utilize multiple cores, we first split the buffer into chunks, // compute a hash for each chunk, and then compute a hash value of the hash // values. void Writer::writeUuid() { TimeTraceScope timeScope("Computing UUID"); ArrayRef<uint8_t> data{buffer->getBufferStart(), buffer->getBufferEnd()}; unsigned chunkCount = parallel::strategy.compute_thread_count() * 10; // Round-up integer division size_t chunkSize = (data.size() + chunkCount - 1) / chunkCount; std::vector<ArrayRef<uint8_t>> chunks = split(data, chunkSize); // Leave one slot for filename std::vector<uint64_t> hashes(chunks.size() + 1); SmallVector<std::shared_future<void>> threadFutures; threadFutures.reserve(chunks.size()); for (size_t i = 0; i < chunks.size(); ++i) threadFutures.emplace_back(threadPool.async( [&](size_t j) { hashes[j] = xxHash64(chunks[j]); }, i)); for (std::shared_future<void> &future : threadFutures) future.wait(); // Append the output filename so that identical binaries with different names // don't get the same UUID. hashes[chunks.size()] = xxHash64(sys::path::filename(config->finalOutput)); uint64_t digest = xxHash64({reinterpret_cast<uint8_t *>(hashes.data()), hashes.size() * sizeof(uint64_t)}); uuidCommand->writeUuid(digest); } // This is step 5 of the algorithm described in the class comment of // ChainedFixupsSection. void Writer::buildFixupChains() { if (!config->emitChainedFixups) return; const std::vector<Location> &loc = in.chainedFixups->getLocations(); if (loc.empty()) return; TimeTraceScope timeScope("Build fixup chains"); const uint64_t pageSize = target->getPageSize(); constexpr uint32_t stride = 4; // for DYLD_CHAINED_PTR_64 for (size_t i = 0, count = loc.size(); i < count;) { const OutputSegment *oseg = loc[i].isec->parent->parent; uint8_t *buf = buffer->getBufferStart() + oseg->fileOff; uint64_t pageIdx = loc[i].offset / pageSize; ++i; while (i < count && loc[i].isec->parent->parent == oseg && (loc[i].offset / pageSize) == pageIdx) { uint64_t offset = loc[i].offset - loc[i - 1].offset; auto fail = [&](Twine message) { error(loc[i].isec->getSegName() + "," + loc[i].isec->getName() + ", offset " + Twine(loc[i].offset - loc[i].isec->parent->getSegmentOffset()) + ": " + message); }; if (offset < target->wordSize) return fail("fixups overlap"); if (offset % stride != 0) return fail( "fixups are unaligned (offset " + Twine(offset) + " is not a multiple of the stride). Re-link with -no_fixup_chains"); // The "next" field is in the same location for bind and rebase entries. reinterpret_cast<dyld_chained_ptr_64_bind *>(buf + loc[i - 1].offset) ->next = offset / stride; ++i; } } } void Writer::writeCodeSignature() { if (codeSignatureSection) { TimeTraceScope timeScope("Write code signature"); codeSignatureSection->writeHashes(buffer->getBufferStart()); } } void Writer::writeOutputFile() { TimeTraceScope timeScope("Write output file"); openFile(); reportPendingUndefinedSymbols(); if (errorCount()) return; writeSections(); applyOptimizationHints(); buildFixupChains(); writeUuid(); writeCodeSignature(); if (auto e = buffer->commit()) fatal("failed to write output '" + buffer->getPath() + "': " + toString(std::move(e))); } template <class LP> void Writer::run() { treatSpecialUndefineds(); if (config->entry && needsBinding(config->entry)) in.stubs->addEntry(config->entry); // Canonicalization of all pointers to InputSections should be handled by // these two scan* methods. I.e. from this point onward, for all live // InputSections, we should have `isec->canonical() == isec`. scanSymbols(); if (in.objcStubs->isNeeded()) in.objcStubs->setUp(); scanRelocations(); if (in.initOffsets->isNeeded()) in.initOffsets->setUp(); // Do not proceed if there were undefined or duplicate symbols. reportPendingUndefinedSymbols(); reportPendingDuplicateSymbols(); if (errorCount()) return; if (in.stubHelper && in.stubHelper->isNeeded()) in.stubHelper->setUp(); if (in.objCImageInfo->isNeeded()) in.objCImageInfo->finalizeContents(); // At this point, we should know exactly which output sections are needed, // courtesy of scanSymbols() and scanRelocations(). createOutputSections<LP>(); // After this point, we create no new segments; HOWEVER, we might // yet create branch-range extension thunks for architectures whose // hardware call instructions have limited range, e.g., ARM(64). // The thunks are created as InputSections interspersed among // the ordinary __TEXT,_text InputSections. sortSegmentsAndSections(); createLoadCommands<LP>(); finalizeAddresses(); threadPool.async([&] { if (LLVM_ENABLE_THREADS && config->timeTraceEnabled) timeTraceProfilerInitialize(config->timeTraceGranularity, "writeMapFile"); writeMapFile(); if (LLVM_ENABLE_THREADS && config->timeTraceEnabled) timeTraceProfilerFinishThread(); }); finalizeLinkEditSegment(); writeOutputFile(); } template <class LP> void macho::writeResult() { Writer().run<LP>(); } void macho::resetWriter() { LCDylib::resetInstanceCount(); } void macho::createSyntheticSections() { in.header = make<MachHeaderSection>(); if (config->dedupLiterals) in.cStringSection = make<DeduplicatedCStringSection>(section_names::cString); else in.cStringSection = make<CStringSection>(section_names::cString); in.objcMethnameSection = make<DeduplicatedCStringSection>(section_names::objcMethname); in.wordLiteralSection = config->dedupLiterals ? make<WordLiteralSection>() : nullptr; if (config->emitChainedFixups) { in.chainedFixups = make<ChainedFixupsSection>(); } else { in.rebase = make<RebaseSection>(); in.binding = make<BindingSection>(); in.weakBinding = make<WeakBindingSection>(); in.lazyBinding = make<LazyBindingSection>(); in.lazyPointers = make<LazyPointerSection>(); in.stubHelper = make<StubHelperSection>(); } in.exports = make<ExportSection>(); in.got = make<GotSection>(); in.tlvPointers = make<TlvPointerSection>(); in.stubs = make<StubsSection>(); in.objcStubs = make<ObjCStubsSection>(); in.unwindInfo = makeUnwindInfoSection(); in.objCImageInfo = make<ObjCImageInfoSection>(); in.initOffsets = make<InitOffsetsSection>(); // This section contains space for just a single word, and will be used by // dyld to cache an address to the image loader it uses. uint8_t *arr = bAlloc().Allocate<uint8_t>(target->wordSize); memset(arr, 0, target->wordSize); in.imageLoaderCache = makeSyntheticInputSection( segment_names::data, section_names::data, S_REGULAR, ArrayRef<uint8_t>{arr, target->wordSize}, /*align=*/target->wordSize); // References from dyld are not visible to us, so ensure this section is // always treated as live. in.imageLoaderCache->live = true; } OutputSection *macho::firstTLVDataSection = nullptr; template void macho::writeResult<LP64>(); template void macho::writeResult<ILP32>();