Mercurial > hg > CbC > CbC_llvm
view llvm/lib/Support/Host.cpp @ 181:df311c476dd5
CreateIdentifierInfo in ParseCbC (not yet worked)
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 31 May 2020 12:30:11 +0900 |
parents | 0572611fdcc8 |
children | 2e18cbf3894f |
line wrap: on
line source
//===-- Host.cpp - Implement OS Host Concept --------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the operating system Host concept. // //===----------------------------------------------------------------------===// #include "llvm/Support/Host.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/ADT/Triple.h" #include "llvm/Config/llvm-config.h" #include "llvm/Support/Debug.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/TargetParser.h" #include "llvm/Support/raw_ostream.h" #include <assert.h> #include <string.h> // Include the platform-specific parts of this class. #ifdef LLVM_ON_UNIX #include "Unix/Host.inc" #include <sched.h> #endif #ifdef _WIN32 #include "Windows/Host.inc" #endif #ifdef _MSC_VER #include <intrin.h> #endif #if defined(__APPLE__) && (!defined(__x86_64__)) #include <mach/host_info.h> #include <mach/mach.h> #include <mach/mach_host.h> #include <mach/machine.h> #endif #define DEBUG_TYPE "host-detection" //===----------------------------------------------------------------------===// // // Implementations of the CPU detection routines // //===----------------------------------------------------------------------===// using namespace llvm; static std::unique_ptr<llvm::MemoryBuffer> LLVM_ATTRIBUTE_UNUSED getProcCpuinfoContent() { llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text = llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo"); if (std::error_code EC = Text.getError()) { llvm::errs() << "Can't read " << "/proc/cpuinfo: " << EC.message() << "\n"; return nullptr; } return std::move(*Text); } StringRef sys::detail::getHostCPUNameForPowerPC(StringRef ProcCpuinfoContent) { // Access to the Processor Version Register (PVR) on PowerPC is privileged, // and so we must use an operating-system interface to determine the current // processor type. On Linux, this is exposed through the /proc/cpuinfo file. const char *generic = "generic"; // The cpu line is second (after the 'processor: 0' line), so if this // buffer is too small then something has changed (or is wrong). StringRef::const_iterator CPUInfoStart = ProcCpuinfoContent.begin(); StringRef::const_iterator CPUInfoEnd = ProcCpuinfoContent.end(); StringRef::const_iterator CIP = CPUInfoStart; StringRef::const_iterator CPUStart = 0; size_t CPULen = 0; // We need to find the first line which starts with cpu, spaces, and a colon. // After the colon, there may be some additional spaces and then the cpu type. while (CIP < CPUInfoEnd && CPUStart == 0) { if (CIP < CPUInfoEnd && *CIP == '\n') ++CIP; if (CIP < CPUInfoEnd && *CIP == 'c') { ++CIP; if (CIP < CPUInfoEnd && *CIP == 'p') { ++CIP; if (CIP < CPUInfoEnd && *CIP == 'u') { ++CIP; while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t')) ++CIP; if (CIP < CPUInfoEnd && *CIP == ':') { ++CIP; while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t')) ++CIP; if (CIP < CPUInfoEnd) { CPUStart = CIP; while (CIP < CPUInfoEnd && (*CIP != ' ' && *CIP != '\t' && *CIP != ',' && *CIP != '\n')) ++CIP; CPULen = CIP - CPUStart; } } } } } if (CPUStart == 0) while (CIP < CPUInfoEnd && *CIP != '\n') ++CIP; } if (CPUStart == 0) return generic; return StringSwitch<const char *>(StringRef(CPUStart, CPULen)) .Case("604e", "604e") .Case("604", "604") .Case("7400", "7400") .Case("7410", "7400") .Case("7447", "7400") .Case("7455", "7450") .Case("G4", "g4") .Case("POWER4", "970") .Case("PPC970FX", "970") .Case("PPC970MP", "970") .Case("G5", "g5") .Case("POWER5", "g5") .Case("A2", "a2") .Case("POWER6", "pwr6") .Case("POWER7", "pwr7") .Case("POWER8", "pwr8") .Case("POWER8E", "pwr8") .Case("POWER8NVL", "pwr8") .Case("POWER9", "pwr9") // FIXME: If we get a simulator or machine with the capabilities of // mcpu=future, we should revisit this and add the name reported by the // simulator/machine. .Default(generic); } StringRef sys::detail::getHostCPUNameForARM(StringRef ProcCpuinfoContent) { // The cpuid register on arm is not accessible from user space. On Linux, // it is exposed through the /proc/cpuinfo file. // Read 32 lines from /proc/cpuinfo, which should contain the CPU part line // in all cases. SmallVector<StringRef, 32> Lines; ProcCpuinfoContent.split(Lines, "\n"); // Look for the CPU implementer line. StringRef Implementer; StringRef Hardware; for (unsigned I = 0, E = Lines.size(); I != E; ++I) { if (Lines[I].startswith("CPU implementer")) Implementer = Lines[I].substr(15).ltrim("\t :"); if (Lines[I].startswith("Hardware")) Hardware = Lines[I].substr(8).ltrim("\t :"); } if (Implementer == "0x41") { // ARM Ltd. // MSM8992/8994 may give cpu part for the core that the kernel is running on, // which is undeterministic and wrong. Always return cortex-a53 for these SoC. if (Hardware.endswith("MSM8994") || Hardware.endswith("MSM8996")) return "cortex-a53"; // Look for the CPU part line. for (unsigned I = 0, E = Lines.size(); I != E; ++I) if (Lines[I].startswith("CPU part")) // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The // values correspond to the "Part number" in the CP15/c0 register. The // contents are specified in the various processor manuals. // This corresponds to the Main ID Register in Technical Reference Manuals. // and is used in programs like sys-utils return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :")) .Case("0x926", "arm926ej-s") .Case("0xb02", "mpcore") .Case("0xb36", "arm1136j-s") .Case("0xb56", "arm1156t2-s") .Case("0xb76", "arm1176jz-s") .Case("0xc08", "cortex-a8") .Case("0xc09", "cortex-a9") .Case("0xc0f", "cortex-a15") .Case("0xc20", "cortex-m0") .Case("0xc23", "cortex-m3") .Case("0xc24", "cortex-m4") .Case("0xd22", "cortex-m55") .Case("0xd02", "cortex-a34") .Case("0xd04", "cortex-a35") .Case("0xd03", "cortex-a53") .Case("0xd07", "cortex-a57") .Case("0xd08", "cortex-a72") .Case("0xd09", "cortex-a73") .Case("0xd0a", "cortex-a75") .Case("0xd0b", "cortex-a76") .Default("generic"); } if (Implementer == "0x42" || Implementer == "0x43") { // Broadcom | Cavium. for (unsigned I = 0, E = Lines.size(); I != E; ++I) { if (Lines[I].startswith("CPU part")) { return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :")) .Case("0x516", "thunderx2t99") .Case("0x0516", "thunderx2t99") .Case("0xaf", "thunderx2t99") .Case("0x0af", "thunderx2t99") .Case("0xa1", "thunderxt88") .Case("0x0a1", "thunderxt88") .Default("generic"); } } } if (Implementer == "0x46") { // Fujitsu Ltd. for (unsigned I = 0, E = Lines.size(); I != E; ++I) { if (Lines[I].startswith("CPU part")) { return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :")) .Case("0x001", "a64fx") .Default("generic"); } } } if (Implementer == "0x4e") { // NVIDIA Corporation for (unsigned I = 0, E = Lines.size(); I != E; ++I) { if (Lines[I].startswith("CPU part")) { return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :")) .Case("0x004", "carmel") .Default("generic"); } } } if (Implementer == "0x48") // HiSilicon Technologies, Inc. // Look for the CPU part line. for (unsigned I = 0, E = Lines.size(); I != E; ++I) if (Lines[I].startswith("CPU part")) // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The // values correspond to the "Part number" in the CP15/c0 register. The // contents are specified in the various processor manuals. return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :")) .Case("0xd01", "tsv110") .Default("generic"); if (Implementer == "0x51") // Qualcomm Technologies, Inc. // Look for the CPU part line. for (unsigned I = 0, E = Lines.size(); I != E; ++I) if (Lines[I].startswith("CPU part")) // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The // values correspond to the "Part number" in the CP15/c0 register. The // contents are specified in the various processor manuals. return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :")) .Case("0x06f", "krait") // APQ8064 .Case("0x201", "kryo") .Case("0x205", "kryo") .Case("0x211", "kryo") .Case("0x800", "cortex-a73") .Case("0x801", "cortex-a73") .Case("0x802", "cortex-a73") .Case("0x803", "cortex-a73") .Case("0x804", "cortex-a73") .Case("0x805", "cortex-a73") .Case("0xc00", "falkor") .Case("0xc01", "saphira") .Default("generic"); if (Implementer == "0x53") { // Samsung Electronics Co., Ltd. // The Exynos chips have a convoluted ID scheme that doesn't seem to follow // any predictive pattern across variants and parts. unsigned Variant = 0, Part = 0; // Look for the CPU variant line, whose value is a 1 digit hexadecimal // number, corresponding to the Variant bits in the CP15/C0 register. for (auto I : Lines) if (I.consume_front("CPU variant")) I.ltrim("\t :").getAsInteger(0, Variant); // Look for the CPU part line, whose value is a 3 digit hexadecimal // number, corresponding to the PartNum bits in the CP15/C0 register. for (auto I : Lines) if (I.consume_front("CPU part")) I.ltrim("\t :").getAsInteger(0, Part); unsigned Exynos = (Variant << 12) | Part; switch (Exynos) { default: // Default by falling through to Exynos M3. LLVM_FALLTHROUGH; case 0x1002: return "exynos-m3"; case 0x1003: return "exynos-m4"; } } return "generic"; } StringRef sys::detail::getHostCPUNameForS390x(StringRef ProcCpuinfoContent) { // STIDP is a privileged operation, so use /proc/cpuinfo instead. // The "processor 0:" line comes after a fair amount of other information, // including a cache breakdown, but this should be plenty. SmallVector<StringRef, 32> Lines; ProcCpuinfoContent.split(Lines, "\n"); // Look for the CPU features. SmallVector<StringRef, 32> CPUFeatures; for (unsigned I = 0, E = Lines.size(); I != E; ++I) if (Lines[I].startswith("features")) { size_t Pos = Lines[I].find(":"); if (Pos != StringRef::npos) { Lines[I].drop_front(Pos + 1).split(CPUFeatures, ' '); break; } } // We need to check for the presence of vector support independently of // the machine type, since we may only use the vector register set when // supported by the kernel (and hypervisor). bool HaveVectorSupport = false; for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) { if (CPUFeatures[I] == "vx") HaveVectorSupport = true; } // Now check the processor machine type. for (unsigned I = 0, E = Lines.size(); I != E; ++I) { if (Lines[I].startswith("processor ")) { size_t Pos = Lines[I].find("machine = "); if (Pos != StringRef::npos) { Pos += sizeof("machine = ") - 1; unsigned int Id; if (!Lines[I].drop_front(Pos).getAsInteger(10, Id)) { if (Id >= 8561 && HaveVectorSupport) return "z15"; if (Id >= 3906 && HaveVectorSupport) return "z14"; if (Id >= 2964 && HaveVectorSupport) return "z13"; if (Id >= 2827) return "zEC12"; if (Id >= 2817) return "z196"; } } break; } } return "generic"; } StringRef sys::detail::getHostCPUNameForBPF() { #if !defined(__linux__) || !defined(__x86_64__) return "generic"; #else uint8_t v3_insns[40] __attribute__ ((aligned (8))) = /* BPF_MOV64_IMM(BPF_REG_0, 0) */ { 0xb7, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, /* BPF_MOV64_IMM(BPF_REG_2, 1) */ 0xb7, 0x2, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0, /* BPF_JMP32_REG(BPF_JLT, BPF_REG_0, BPF_REG_2, 1) */ 0xae, 0x20, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, /* BPF_MOV64_IMM(BPF_REG_0, 1) */ 0xb7, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0, /* BPF_EXIT_INSN() */ 0x95, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 }; uint8_t v2_insns[40] __attribute__ ((aligned (8))) = /* BPF_MOV64_IMM(BPF_REG_0, 0) */ { 0xb7, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, /* BPF_MOV64_IMM(BPF_REG_2, 1) */ 0xb7, 0x2, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0, /* BPF_JMP_REG(BPF_JLT, BPF_REG_0, BPF_REG_2, 1) */ 0xad, 0x20, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, /* BPF_MOV64_IMM(BPF_REG_0, 1) */ 0xb7, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0, /* BPF_EXIT_INSN() */ 0x95, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 }; struct bpf_prog_load_attr { uint32_t prog_type; uint32_t insn_cnt; uint64_t insns; uint64_t license; uint32_t log_level; uint32_t log_size; uint64_t log_buf; uint32_t kern_version; uint32_t prog_flags; } attr = {}; attr.prog_type = 1; /* BPF_PROG_TYPE_SOCKET_FILTER */ attr.insn_cnt = 5; attr.insns = (uint64_t)v3_insns; attr.license = (uint64_t)"DUMMY"; int fd = syscall(321 /* __NR_bpf */, 5 /* BPF_PROG_LOAD */, &attr, sizeof(attr)); if (fd >= 0) { close(fd); return "v3"; } /* Clear the whole attr in case its content changed by syscall. */ memset(&attr, 0, sizeof(attr)); attr.prog_type = 1; /* BPF_PROG_TYPE_SOCKET_FILTER */ attr.insn_cnt = 5; attr.insns = (uint64_t)v2_insns; attr.license = (uint64_t)"DUMMY"; fd = syscall(321 /* __NR_bpf */, 5 /* BPF_PROG_LOAD */, &attr, sizeof(attr)); if (fd >= 0) { close(fd); return "v2"; } return "v1"; #endif } #if defined(__i386__) || defined(_M_IX86) || \ defined(__x86_64__) || defined(_M_X64) enum VendorSignatures { SIG_INTEL = 0x756e6547 /* Genu */, SIG_AMD = 0x68747541 /* Auth */ }; // The check below for i386 was copied from clang's cpuid.h (__get_cpuid_max). // Check motivated by bug reports for OpenSSL crashing on CPUs without CPUID // support. Consequently, for i386, the presence of CPUID is checked first // via the corresponding eflags bit. // Removal of cpuid.h header motivated by PR30384 // Header cpuid.h and method __get_cpuid_max are not used in llvm, clang, openmp // or test-suite, but are used in external projects e.g. libstdcxx static bool isCpuIdSupported() { #if defined(__GNUC__) || defined(__clang__) #if defined(__i386__) int __cpuid_supported; __asm__(" pushfl\n" " popl %%eax\n" " movl %%eax,%%ecx\n" " xorl $0x00200000,%%eax\n" " pushl %%eax\n" " popfl\n" " pushfl\n" " popl %%eax\n" " movl $0,%0\n" " cmpl %%eax,%%ecx\n" " je 1f\n" " movl $1,%0\n" "1:" : "=r"(__cpuid_supported) : : "eax", "ecx"); if (!__cpuid_supported) return false; #endif return true; #endif return true; } /// getX86CpuIDAndInfo - Execute the specified cpuid and return the 4 values in /// the specified arguments. If we can't run cpuid on the host, return true. static bool getX86CpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX, unsigned *rECX, unsigned *rEDX) { #if defined(__GNUC__) || defined(__clang__) #if defined(__x86_64__) // gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually. // FIXME: should we save this for Clang? __asm__("movq\t%%rbx, %%rsi\n\t" "cpuid\n\t" "xchgq\t%%rbx, %%rsi\n\t" : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX) : "a"(value)); return false; #elif defined(__i386__) __asm__("movl\t%%ebx, %%esi\n\t" "cpuid\n\t" "xchgl\t%%ebx, %%esi\n\t" : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX) : "a"(value)); return false; #else return true; #endif #elif defined(_MSC_VER) // The MSVC intrinsic is portable across x86 and x64. int registers[4]; __cpuid(registers, value); *rEAX = registers[0]; *rEBX = registers[1]; *rECX = registers[2]; *rEDX = registers[3]; return false; #else return true; #endif } /// getX86CpuIDAndInfoEx - Execute the specified cpuid with subleaf and return /// the 4 values in the specified arguments. If we can't run cpuid on the host, /// return true. static bool getX86CpuIDAndInfoEx(unsigned value, unsigned subleaf, unsigned *rEAX, unsigned *rEBX, unsigned *rECX, unsigned *rEDX) { #if defined(__GNUC__) || defined(__clang__) #if defined(__x86_64__) // gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually. // FIXME: should we save this for Clang? __asm__("movq\t%%rbx, %%rsi\n\t" "cpuid\n\t" "xchgq\t%%rbx, %%rsi\n\t" : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX) : "a"(value), "c"(subleaf)); return false; #elif defined(__i386__) __asm__("movl\t%%ebx, %%esi\n\t" "cpuid\n\t" "xchgl\t%%ebx, %%esi\n\t" : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX) : "a"(value), "c"(subleaf)); return false; #else return true; #endif #elif defined(_MSC_VER) int registers[4]; __cpuidex(registers, value, subleaf); *rEAX = registers[0]; *rEBX = registers[1]; *rECX = registers[2]; *rEDX = registers[3]; return false; #else return true; #endif } // Read control register 0 (XCR0). Used to detect features such as AVX. static bool getX86XCR0(unsigned *rEAX, unsigned *rEDX) { #if defined(__GNUC__) || defined(__clang__) // Check xgetbv; this uses a .byte sequence instead of the instruction // directly because older assemblers do not include support for xgetbv and // there is no easy way to conditionally compile based on the assembler used. __asm__(".byte 0x0f, 0x01, 0xd0" : "=a"(*rEAX), "=d"(*rEDX) : "c"(0)); return false; #elif defined(_MSC_FULL_VER) && defined(_XCR_XFEATURE_ENABLED_MASK) unsigned long long Result = _xgetbv(_XCR_XFEATURE_ENABLED_MASK); *rEAX = Result; *rEDX = Result >> 32; return false; #else return true; #endif } static void detectX86FamilyModel(unsigned EAX, unsigned *Family, unsigned *Model) { *Family = (EAX >> 8) & 0xf; // Bits 8 - 11 *Model = (EAX >> 4) & 0xf; // Bits 4 - 7 if (*Family == 6 || *Family == 0xf) { if (*Family == 0xf) // Examine extended family ID if family ID is F. *Family += (EAX >> 20) & 0xff; // Bits 20 - 27 // Examine extended model ID if family ID is 6 or F. *Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19 } } static void getIntelProcessorTypeAndSubtype(unsigned Family, unsigned Model, unsigned Brand_id, unsigned Features, unsigned Features2, unsigned Features3, unsigned *Type, unsigned *Subtype) { if (Brand_id != 0) return; switch (Family) { case 3: *Type = X86::INTEL_i386; break; case 4: *Type = X86::INTEL_i486; break; case 5: if (Features & (1 << X86::FEATURE_MMX)) { *Type = X86::INTEL_PENTIUM_MMX; break; } *Type = X86::INTEL_PENTIUM; break; case 6: switch (Model) { case 0x01: // Pentium Pro processor *Type = X86::INTEL_PENTIUM_PRO; break; case 0x03: // Intel Pentium II OverDrive processor, Pentium II processor, // model 03 case 0x05: // Pentium II processor, model 05, Pentium II Xeon processor, // model 05, and Intel Celeron processor, model 05 case 0x06: // Celeron processor, model 06 *Type = X86::INTEL_PENTIUM_II; break; case 0x07: // Pentium III processor, model 07, and Pentium III Xeon // processor, model 07 case 0x08: // Pentium III processor, model 08, Pentium III Xeon processor, // model 08, and Celeron processor, model 08 case 0x0a: // Pentium III Xeon processor, model 0Ah case 0x0b: // Pentium III processor, model 0Bh *Type = X86::INTEL_PENTIUM_III; break; case 0x09: // Intel Pentium M processor, Intel Celeron M processor model 09. case 0x0d: // Intel Pentium M processor, Intel Celeron M processor, model // 0Dh. All processors are manufactured using the 90 nm process. case 0x15: // Intel EP80579 Integrated Processor and Intel EP80579 // Integrated Processor with Intel QuickAssist Technology *Type = X86::INTEL_PENTIUM_M; break; case 0x0e: // Intel Core Duo processor, Intel Core Solo processor, model // 0Eh. All processors are manufactured using the 65 nm process. *Type = X86::INTEL_CORE_DUO; break; // yonah case 0x0f: // Intel Core 2 Duo processor, Intel Core 2 Duo mobile // processor, Intel Core 2 Quad processor, Intel Core 2 Quad // mobile processor, Intel Core 2 Extreme processor, Intel // Pentium Dual-Core processor, Intel Xeon processor, model // 0Fh. All processors are manufactured using the 65 nm process. case 0x16: // Intel Celeron processor model 16h. All processors are // manufactured using the 65 nm process *Type = X86::INTEL_CORE2; // "core2" *Subtype = X86::INTEL_CORE2_65; break; case 0x17: // Intel Core 2 Extreme processor, Intel Xeon processor, model // 17h. All processors are manufactured using the 45 nm process. // // 45nm: Penryn , Wolfdale, Yorkfield (XE) case 0x1d: // Intel Xeon processor MP. All processors are manufactured using // the 45 nm process. *Type = X86::INTEL_CORE2; // "penryn" *Subtype = X86::INTEL_CORE2_45; break; case 0x1a: // Intel Core i7 processor and Intel Xeon processor. All // processors are manufactured using the 45 nm process. case 0x1e: // Intel(R) Core(TM) i7 CPU 870 @ 2.93GHz. // As found in a Summer 2010 model iMac. case 0x1f: case 0x2e: // Nehalem EX *Type = X86::INTEL_COREI7; // "nehalem" *Subtype = X86::INTEL_COREI7_NEHALEM; break; case 0x25: // Intel Core i7, laptop version. case 0x2c: // Intel Core i7 processor and Intel Xeon processor. All // processors are manufactured using the 32 nm process. case 0x2f: // Westmere EX *Type = X86::INTEL_COREI7; // "westmere" *Subtype = X86::INTEL_COREI7_WESTMERE; break; case 0x2a: // Intel Core i7 processor. All processors are manufactured // using the 32 nm process. case 0x2d: *Type = X86::INTEL_COREI7; //"sandybridge" *Subtype = X86::INTEL_COREI7_SANDYBRIDGE; break; case 0x3a: case 0x3e: // Ivy Bridge EP *Type = X86::INTEL_COREI7; // "ivybridge" *Subtype = X86::INTEL_COREI7_IVYBRIDGE; break; // Haswell: case 0x3c: case 0x3f: case 0x45: case 0x46: *Type = X86::INTEL_COREI7; // "haswell" *Subtype = X86::INTEL_COREI7_HASWELL; break; // Broadwell: case 0x3d: case 0x47: case 0x4f: case 0x56: *Type = X86::INTEL_COREI7; // "broadwell" *Subtype = X86::INTEL_COREI7_BROADWELL; break; // Skylake: case 0x4e: // Skylake mobile case 0x5e: // Skylake desktop case 0x8e: // Kaby Lake mobile case 0x9e: // Kaby Lake desktop case 0xa5: // Comet Lake-H/S case 0xa6: // Comet Lake-U *Type = X86::INTEL_COREI7; // "skylake" *Subtype = X86::INTEL_COREI7_SKYLAKE; break; // Skylake Xeon: case 0x55: *Type = X86::INTEL_COREI7; if (Features2 & (1 << (X86::FEATURE_AVX512BF16 - 32))) *Subtype = X86::INTEL_COREI7_COOPERLAKE; // "cooperlake" else if (Features2 & (1 << (X86::FEATURE_AVX512VNNI - 32))) *Subtype = X86::INTEL_COREI7_CASCADELAKE; // "cascadelake" else *Subtype = X86::INTEL_COREI7_SKYLAKE_AVX512; // "skylake-avx512" break; // Cannonlake: case 0x66: *Type = X86::INTEL_COREI7; *Subtype = X86::INTEL_COREI7_CANNONLAKE; // "cannonlake" break; // Icelake: case 0x7d: case 0x7e: *Type = X86::INTEL_COREI7; *Subtype = X86::INTEL_COREI7_ICELAKE_CLIENT; // "icelake-client" break; // Icelake Xeon: case 0x6a: case 0x6c: *Type = X86::INTEL_COREI7; *Subtype = X86::INTEL_COREI7_ICELAKE_SERVER; // "icelake-server" break; case 0x1c: // Most 45 nm Intel Atom processors case 0x26: // 45 nm Atom Lincroft case 0x27: // 32 nm Atom Medfield case 0x35: // 32 nm Atom Midview case 0x36: // 32 nm Atom Midview *Type = X86::INTEL_BONNELL; break; // "bonnell" // Atom Silvermont codes from the Intel software optimization guide. case 0x37: case 0x4a: case 0x4d: case 0x5a: case 0x5d: case 0x4c: // really airmont *Type = X86::INTEL_SILVERMONT; break; // "silvermont" // Goldmont: case 0x5c: // Apollo Lake case 0x5f: // Denverton *Type = X86::INTEL_GOLDMONT; break; // "goldmont" case 0x7a: *Type = X86::INTEL_GOLDMONT_PLUS; break; case 0x86: *Type = X86::INTEL_TREMONT; break; case 0x57: *Type = X86::INTEL_KNL; // knl break; case 0x85: *Type = X86::INTEL_KNM; // knm break; default: // Unknown family 6 CPU, try to guess. // TODO detect tigerlake host if (Features3 & (1 << (X86::FEATURE_AVX512VP2INTERSECT - 64))) { *Type = X86::INTEL_COREI7; *Subtype = X86::INTEL_COREI7_TIGERLAKE; break; } if (Features & (1 << X86::FEATURE_AVX512VBMI2)) { *Type = X86::INTEL_COREI7; *Subtype = X86::INTEL_COREI7_ICELAKE_CLIENT; break; } if (Features & (1 << X86::FEATURE_AVX512VBMI)) { *Type = X86::INTEL_COREI7; *Subtype = X86::INTEL_COREI7_CANNONLAKE; break; } if (Features2 & (1 << (X86::FEATURE_AVX512BF16 - 32))) { *Type = X86::INTEL_COREI7; *Subtype = X86::INTEL_COREI7_COOPERLAKE; break; } if (Features2 & (1 << (X86::FEATURE_AVX512VNNI - 32))) { *Type = X86::INTEL_COREI7; *Subtype = X86::INTEL_COREI7_CASCADELAKE; break; } if (Features & (1 << X86::FEATURE_AVX512VL)) { *Type = X86::INTEL_COREI7; *Subtype = X86::INTEL_COREI7_SKYLAKE_AVX512; break; } if (Features & (1 << X86::FEATURE_AVX512ER)) { *Type = X86::INTEL_KNL; // knl break; } if (Features3 & (1 << (X86::FEATURE_CLFLUSHOPT - 64))) { if (Features3 & (1 << (X86::FEATURE_SHA - 64))) { *Type = X86::INTEL_GOLDMONT; } else { *Type = X86::INTEL_COREI7; *Subtype = X86::INTEL_COREI7_SKYLAKE; } break; } if (Features3 & (1 << (X86::FEATURE_ADX - 64))) { *Type = X86::INTEL_COREI7; *Subtype = X86::INTEL_COREI7_BROADWELL; break; } if (Features & (1 << X86::FEATURE_AVX2)) { *Type = X86::INTEL_COREI7; *Subtype = X86::INTEL_COREI7_HASWELL; break; } if (Features & (1 << X86::FEATURE_AVX)) { *Type = X86::INTEL_COREI7; *Subtype = X86::INTEL_COREI7_SANDYBRIDGE; break; } if (Features & (1 << X86::FEATURE_SSE4_2)) { if (Features3 & (1 << (X86::FEATURE_MOVBE - 64))) { *Type = X86::INTEL_SILVERMONT; } else { *Type = X86::INTEL_COREI7; *Subtype = X86::INTEL_COREI7_NEHALEM; } break; } if (Features & (1 << X86::FEATURE_SSE4_1)) { *Type = X86::INTEL_CORE2; // "penryn" *Subtype = X86::INTEL_CORE2_45; break; } if (Features & (1 << X86::FEATURE_SSSE3)) { if (Features3 & (1 << (X86::FEATURE_MOVBE - 64))) { *Type = X86::INTEL_BONNELL; // "bonnell" } else { *Type = X86::INTEL_CORE2; // "core2" *Subtype = X86::INTEL_CORE2_65; } break; } if (Features3 & (1 << (X86::FEATURE_EM64T - 64))) { *Type = X86::INTEL_CORE2; // "core2" *Subtype = X86::INTEL_CORE2_65; break; } if (Features & (1 << X86::FEATURE_SSE3)) { *Type = X86::INTEL_CORE_DUO; break; } if (Features & (1 << X86::FEATURE_SSE2)) { *Type = X86::INTEL_PENTIUM_M; break; } if (Features & (1 << X86::FEATURE_SSE)) { *Type = X86::INTEL_PENTIUM_III; break; } if (Features & (1 << X86::FEATURE_MMX)) { *Type = X86::INTEL_PENTIUM_II; break; } *Type = X86::INTEL_PENTIUM_PRO; break; } break; case 15: { if (Features3 & (1 << (X86::FEATURE_EM64T - 64))) { *Type = X86::INTEL_NOCONA; break; } if (Features & (1 << X86::FEATURE_SSE3)) { *Type = X86::INTEL_PRESCOTT; break; } *Type = X86::INTEL_PENTIUM_IV; break; } default: break; /*"generic"*/ } } static void getAMDProcessorTypeAndSubtype(unsigned Family, unsigned Model, unsigned Features, unsigned *Type, unsigned *Subtype) { // FIXME: this poorly matches the generated SubtargetFeatureKV table. There // appears to be no way to generate the wide variety of AMD-specific targets // from the information returned from CPUID. switch (Family) { case 4: *Type = X86::AMD_i486; break; case 5: *Type = X86::AMDPENTIUM; switch (Model) { case 6: case 7: *Subtype = X86::AMDPENTIUM_K6; break; // "k6" case 8: *Subtype = X86::AMDPENTIUM_K62; break; // "k6-2" case 9: case 13: *Subtype = X86::AMDPENTIUM_K63; break; // "k6-3" case 10: *Subtype = X86::AMDPENTIUM_GEODE; break; // "geode" } break; case 6: if (Features & (1 << X86::FEATURE_SSE)) { *Type = X86::AMD_ATHLON_XP; break; // "athlon-xp" } *Type = X86::AMD_ATHLON; break; // "athlon" case 15: if (Features & (1 << X86::FEATURE_SSE3)) { *Type = X86::AMD_K8SSE3; break; // "k8-sse3" } *Type = X86::AMD_K8; break; // "k8" case 16: *Type = X86::AMDFAM10H; // "amdfam10" switch (Model) { case 2: *Subtype = X86::AMDFAM10H_BARCELONA; break; case 4: *Subtype = X86::AMDFAM10H_SHANGHAI; break; case 8: *Subtype = X86::AMDFAM10H_ISTANBUL; break; } break; case 20: *Type = X86::AMD_BTVER1; break; // "btver1"; case 21: *Type = X86::AMDFAM15H; if (Model >= 0x60 && Model <= 0x7f) { *Subtype = X86::AMDFAM15H_BDVER4; break; // "bdver4"; 60h-7Fh: Excavator } if (Model >= 0x30 && Model <= 0x3f) { *Subtype = X86::AMDFAM15H_BDVER3; break; // "bdver3"; 30h-3Fh: Steamroller } if ((Model >= 0x10 && Model <= 0x1f) || Model == 0x02) { *Subtype = X86::AMDFAM15H_BDVER2; break; // "bdver2"; 02h, 10h-1Fh: Piledriver } if (Model <= 0x0f) { *Subtype = X86::AMDFAM15H_BDVER1; break; // "bdver1"; 00h-0Fh: Bulldozer } break; case 22: *Type = X86::AMD_BTVER2; break; // "btver2" case 23: *Type = X86::AMDFAM17H; if ((Model >= 0x30 && Model <= 0x3f) || Model == 0x71) { *Subtype = X86::AMDFAM17H_ZNVER2; break; // "znver2"; 30h-3fh, 71h: Zen2 } if (Model <= 0x0f) { *Subtype = X86::AMDFAM17H_ZNVER1; break; // "znver1"; 00h-0Fh: Zen1 } break; default: break; // "generic" } } static void getAvailableFeatures(unsigned ECX, unsigned EDX, unsigned MaxLeaf, unsigned *FeaturesOut, unsigned *Features2Out, unsigned *Features3Out) { unsigned Features = 0; unsigned Features2 = 0; unsigned Features3 = 0; unsigned EAX, EBX; auto setFeature = [&](unsigned F) { if (F < 32) Features |= 1U << (F & 0x1f); else if (F < 64) Features2 |= 1U << ((F - 32) & 0x1f); else if (F < 96) Features3 |= 1U << ((F - 64) & 0x1f); else llvm_unreachable("Unexpected FeatureBit"); }; if ((EDX >> 15) & 1) setFeature(X86::FEATURE_CMOV); if ((EDX >> 23) & 1) setFeature(X86::FEATURE_MMX); if ((EDX >> 25) & 1) setFeature(X86::FEATURE_SSE); if ((EDX >> 26) & 1) setFeature(X86::FEATURE_SSE2); if ((ECX >> 0) & 1) setFeature(X86::FEATURE_SSE3); if ((ECX >> 1) & 1) setFeature(X86::FEATURE_PCLMUL); if ((ECX >> 9) & 1) setFeature(X86::FEATURE_SSSE3); if ((ECX >> 12) & 1) setFeature(X86::FEATURE_FMA); if ((ECX >> 19) & 1) setFeature(X86::FEATURE_SSE4_1); if ((ECX >> 20) & 1) setFeature(X86::FEATURE_SSE4_2); if ((ECX >> 23) & 1) setFeature(X86::FEATURE_POPCNT); if ((ECX >> 25) & 1) setFeature(X86::FEATURE_AES); if ((ECX >> 22) & 1) setFeature(X86::FEATURE_MOVBE); // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV // indicates that the AVX registers will be saved and restored on context // switch, then we have full AVX support. const unsigned AVXBits = (1 << 27) | (1 << 28); bool HasAVX = ((ECX & AVXBits) == AVXBits) && !getX86XCR0(&EAX, &EDX) && ((EAX & 0x6) == 0x6); #if defined(__APPLE__) // Darwin lazily saves the AVX512 context on first use: trust that the OS will // save the AVX512 context if we use AVX512 instructions, even the bit is not // set right now. bool HasAVX512Save = true; #else // AVX512 requires additional context to be saved by the OS. bool HasAVX512Save = HasAVX && ((EAX & 0xe0) == 0xe0); #endif if (HasAVX) setFeature(X86::FEATURE_AVX); bool HasLeaf7 = MaxLeaf >= 0x7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX); if (HasLeaf7 && ((EBX >> 3) & 1)) setFeature(X86::FEATURE_BMI); if (HasLeaf7 && ((EBX >> 5) & 1) && HasAVX) setFeature(X86::FEATURE_AVX2); if (HasLeaf7 && ((EBX >> 8) & 1)) setFeature(X86::FEATURE_BMI2); if (HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save) setFeature(X86::FEATURE_AVX512F); if (HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save) setFeature(X86::FEATURE_AVX512DQ); if (HasLeaf7 && ((EBX >> 19) & 1)) setFeature(X86::FEATURE_ADX); if (HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save) setFeature(X86::FEATURE_AVX512IFMA); if (HasLeaf7 && ((EBX >> 23) & 1)) setFeature(X86::FEATURE_CLFLUSHOPT); if (HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save) setFeature(X86::FEATURE_AVX512PF); if (HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save) setFeature(X86::FEATURE_AVX512ER); if (HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save) setFeature(X86::FEATURE_AVX512CD); if (HasLeaf7 && ((EBX >> 29) & 1)) setFeature(X86::FEATURE_SHA); if (HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save) setFeature(X86::FEATURE_AVX512BW); if (HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save) setFeature(X86::FEATURE_AVX512VL); if (HasLeaf7 && ((ECX >> 1) & 1) && HasAVX512Save) setFeature(X86::FEATURE_AVX512VBMI); if (HasLeaf7 && ((ECX >> 6) & 1) && HasAVX512Save) setFeature(X86::FEATURE_AVX512VBMI2); if (HasLeaf7 && ((ECX >> 8) & 1)) setFeature(X86::FEATURE_GFNI); if (HasLeaf7 && ((ECX >> 10) & 1) && HasAVX) setFeature(X86::FEATURE_VPCLMULQDQ); if (HasLeaf7 && ((ECX >> 11) & 1) && HasAVX512Save) setFeature(X86::FEATURE_AVX512VNNI); if (HasLeaf7 && ((ECX >> 12) & 1) && HasAVX512Save) setFeature(X86::FEATURE_AVX512BITALG); if (HasLeaf7 && ((ECX >> 14) & 1) && HasAVX512Save) setFeature(X86::FEATURE_AVX512VPOPCNTDQ); if (HasLeaf7 && ((EDX >> 2) & 1) && HasAVX512Save) setFeature(X86::FEATURE_AVX5124VNNIW); if (HasLeaf7 && ((EDX >> 3) & 1) && HasAVX512Save) setFeature(X86::FEATURE_AVX5124FMAPS); if (HasLeaf7 && ((EDX >> 8) & 1) && HasAVX512Save) setFeature(X86::FEATURE_AVX512VP2INTERSECT); bool HasLeaf7Subleaf1 = MaxLeaf >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x1, &EAX, &EBX, &ECX, &EDX); if (HasLeaf7Subleaf1 && ((EAX >> 5) & 1) && HasAVX512Save) setFeature(X86::FEATURE_AVX512BF16); unsigned MaxExtLevel; getX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX); bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 && !getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX); if (HasExtLeaf1 && ((ECX >> 6) & 1)) setFeature(X86::FEATURE_SSE4_A); if (HasExtLeaf1 && ((ECX >> 11) & 1)) setFeature(X86::FEATURE_XOP); if (HasExtLeaf1 && ((ECX >> 16) & 1)) setFeature(X86::FEATURE_FMA4); if (HasExtLeaf1 && ((EDX >> 29) & 1)) setFeature(X86::FEATURE_EM64T); *FeaturesOut = Features; *Features2Out = Features2; *Features3Out = Features3; } StringRef sys::getHostCPUName() { unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0; unsigned MaxLeaf, Vendor; #if defined(__GNUC__) || defined(__clang__) //FIXME: include cpuid.h from clang or copy __get_cpuid_max here // and simplify it to not invoke __cpuid (like cpu_model.c in // compiler-rt/lib/builtins/cpu_model.c? // Opting for the second option. if(!isCpuIdSupported()) return "generic"; #endif if (getX86CpuIDAndInfo(0, &MaxLeaf, &Vendor, &ECX, &EDX) || MaxLeaf < 1) return "generic"; getX86CpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX); unsigned Brand_id = EBX & 0xff; unsigned Family = 0, Model = 0; unsigned Features = 0, Features2 = 0, Features3 = 0; detectX86FamilyModel(EAX, &Family, &Model); getAvailableFeatures(ECX, EDX, MaxLeaf, &Features, &Features2, &Features3); unsigned Type = 0; unsigned Subtype = 0; if (Vendor == SIG_INTEL) { getIntelProcessorTypeAndSubtype(Family, Model, Brand_id, Features, Features2, Features3, &Type, &Subtype); } else if (Vendor == SIG_AMD) { getAMDProcessorTypeAndSubtype(Family, Model, Features, &Type, &Subtype); } // Check subtypes first since those are more specific. #define X86_CPU_SUBTYPE(ARCHNAME, ENUM) \ if (Subtype == X86::ENUM) \ return ARCHNAME; #include "llvm/Support/X86TargetParser.def" // Now check types. #define X86_CPU_TYPE(ARCHNAME, ENUM) \ if (Type == X86::ENUM) \ return ARCHNAME; #include "llvm/Support/X86TargetParser.def" return "generic"; } #elif defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__)) StringRef sys::getHostCPUName() { host_basic_info_data_t hostInfo; mach_msg_type_number_t infoCount; infoCount = HOST_BASIC_INFO_COUNT; mach_port_t hostPort = mach_host_self(); host_info(hostPort, HOST_BASIC_INFO, (host_info_t)&hostInfo, &infoCount); mach_port_deallocate(mach_task_self(), hostPort); if (hostInfo.cpu_type != CPU_TYPE_POWERPC) return "generic"; switch (hostInfo.cpu_subtype) { case CPU_SUBTYPE_POWERPC_601: return "601"; case CPU_SUBTYPE_POWERPC_602: return "602"; case CPU_SUBTYPE_POWERPC_603: return "603"; case CPU_SUBTYPE_POWERPC_603e: return "603e"; case CPU_SUBTYPE_POWERPC_603ev: return "603ev"; case CPU_SUBTYPE_POWERPC_604: return "604"; case CPU_SUBTYPE_POWERPC_604e: return "604e"; case CPU_SUBTYPE_POWERPC_620: return "620"; case CPU_SUBTYPE_POWERPC_750: return "750"; case CPU_SUBTYPE_POWERPC_7400: return "7400"; case CPU_SUBTYPE_POWERPC_7450: return "7450"; case CPU_SUBTYPE_POWERPC_970: return "970"; default:; } return "generic"; } #elif defined(__linux__) && (defined(__ppc__) || defined(__powerpc__)) StringRef sys::getHostCPUName() { std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent(); StringRef Content = P ? P->getBuffer() : ""; return detail::getHostCPUNameForPowerPC(Content); } #elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__)) StringRef sys::getHostCPUName() { std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent(); StringRef Content = P ? P->getBuffer() : ""; return detail::getHostCPUNameForARM(Content); } #elif defined(__linux__) && defined(__s390x__) StringRef sys::getHostCPUName() { std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent(); StringRef Content = P ? P->getBuffer() : ""; return detail::getHostCPUNameForS390x(Content); } #elif defined(__APPLE__) && defined(__aarch64__) StringRef sys::getHostCPUName() { return "cyclone"; } #elif defined(__APPLE__) && defined(__arm__) StringRef sys::getHostCPUName() { host_basic_info_data_t hostInfo; mach_msg_type_number_t infoCount; infoCount = HOST_BASIC_INFO_COUNT; mach_port_t hostPort = mach_host_self(); host_info(hostPort, HOST_BASIC_INFO, (host_info_t)&hostInfo, &infoCount); mach_port_deallocate(mach_task_self(), hostPort); if (hostInfo.cpu_type != CPU_TYPE_ARM) { assert(false && "CPUType not equal to ARM should not be possible on ARM"); return "generic"; } switch (hostInfo.cpu_subtype) { case CPU_SUBTYPE_ARM_V7S: return "swift"; default:; } return "generic"; } #else StringRef sys::getHostCPUName() { return "generic"; } #endif #if defined(__linux__) && (defined(__i386__) || defined(__x86_64__)) // On Linux, the number of physical cores can be computed from /proc/cpuinfo, // using the number of unique physical/core id pairs. The following // implementation reads the /proc/cpuinfo format on an x86_64 system. int computeHostNumPhysicalCores() { // Enabled represents the number of physical id/core id pairs with at least // one processor id enabled by the CPU affinity mask. cpu_set_t Affinity, Enabled; if (sched_getaffinity(0, sizeof(Affinity), &Affinity) != 0) return -1; CPU_ZERO(&Enabled); // Read /proc/cpuinfo as a stream (until EOF reached). It cannot be // mmapped because it appears to have 0 size. llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text = llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo"); if (std::error_code EC = Text.getError()) { llvm::errs() << "Can't read " << "/proc/cpuinfo: " << EC.message() << "\n"; return -1; } SmallVector<StringRef, 8> strs; (*Text)->getBuffer().split(strs, "\n", /*MaxSplit=*/-1, /*KeepEmpty=*/false); int CurProcessor = -1; int CurPhysicalId = -1; int CurSiblings = -1; int CurCoreId = -1; for (StringRef Line : strs) { std::pair<StringRef, StringRef> Data = Line.split(':'); auto Name = Data.first.trim(); auto Val = Data.second.trim(); // These fields are available if the kernel is configured with CONFIG_SMP. if (Name == "processor") Val.getAsInteger(10, CurProcessor); else if (Name == "physical id") Val.getAsInteger(10, CurPhysicalId); else if (Name == "siblings") Val.getAsInteger(10, CurSiblings); else if (Name == "core id") { Val.getAsInteger(10, CurCoreId); // The processor id corresponds to an index into cpu_set_t. if (CPU_ISSET(CurProcessor, &Affinity)) CPU_SET(CurPhysicalId * CurSiblings + CurCoreId, &Enabled); } } return CPU_COUNT(&Enabled); } #elif defined(__APPLE__) && defined(__x86_64__) #include <sys/param.h> #include <sys/sysctl.h> // Gets the number of *physical cores* on the machine. int computeHostNumPhysicalCores() { uint32_t count; size_t len = sizeof(count); sysctlbyname("hw.physicalcpu", &count, &len, NULL, 0); if (count < 1) { int nm[2]; nm[0] = CTL_HW; nm[1] = HW_AVAILCPU; sysctl(nm, 2, &count, &len, NULL, 0); if (count < 1) return -1; } return count; } #elif defined(_WIN32) && LLVM_ENABLE_THREADS != 0 // Defined in llvm/lib/Support/Windows/Threading.inc int computeHostNumPhysicalCores(); #else // On other systems, return -1 to indicate unknown. static int computeHostNumPhysicalCores() { return -1; } #endif int sys::getHostNumPhysicalCores() { static int NumCores = computeHostNumPhysicalCores(); return NumCores; } #if defined(__i386__) || defined(_M_IX86) || \ defined(__x86_64__) || defined(_M_X64) bool sys::getHostCPUFeatures(StringMap<bool> &Features) { unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0; unsigned MaxLevel; union { unsigned u[3]; char c[12]; } text; if (getX86CpuIDAndInfo(0, &MaxLevel, text.u + 0, text.u + 2, text.u + 1) || MaxLevel < 1) return false; getX86CpuIDAndInfo(1, &EAX, &EBX, &ECX, &EDX); Features["cx8"] = (EDX >> 8) & 1; Features["cmov"] = (EDX >> 15) & 1; Features["mmx"] = (EDX >> 23) & 1; Features["fxsr"] = (EDX >> 24) & 1; Features["sse"] = (EDX >> 25) & 1; Features["sse2"] = (EDX >> 26) & 1; Features["sse3"] = (ECX >> 0) & 1; Features["pclmul"] = (ECX >> 1) & 1; Features["ssse3"] = (ECX >> 9) & 1; Features["cx16"] = (ECX >> 13) & 1; Features["sse4.1"] = (ECX >> 19) & 1; Features["sse4.2"] = (ECX >> 20) & 1; Features["movbe"] = (ECX >> 22) & 1; Features["popcnt"] = (ECX >> 23) & 1; Features["aes"] = (ECX >> 25) & 1; Features["rdrnd"] = (ECX >> 30) & 1; // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV // indicates that the AVX registers will be saved and restored on context // switch, then we have full AVX support. bool HasAVXSave = ((ECX >> 27) & 1) && ((ECX >> 28) & 1) && !getX86XCR0(&EAX, &EDX) && ((EAX & 0x6) == 0x6); #if defined(__APPLE__) // Darwin lazily saves the AVX512 context on first use: trust that the OS will // save the AVX512 context if we use AVX512 instructions, even the bit is not // set right now. bool HasAVX512Save = true; #else // AVX512 requires additional context to be saved by the OS. bool HasAVX512Save = HasAVXSave && ((EAX & 0xe0) == 0xe0); #endif Features["avx"] = HasAVXSave; Features["fma"] = ((ECX >> 12) & 1) && HasAVXSave; // Only enable XSAVE if OS has enabled support for saving YMM state. Features["xsave"] = ((ECX >> 26) & 1) && HasAVXSave; Features["f16c"] = ((ECX >> 29) & 1) && HasAVXSave; unsigned MaxExtLevel; getX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX); bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 && !getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX); Features["sahf"] = HasExtLeaf1 && ((ECX >> 0) & 1); Features["lzcnt"] = HasExtLeaf1 && ((ECX >> 5) & 1); Features["sse4a"] = HasExtLeaf1 && ((ECX >> 6) & 1); Features["prfchw"] = HasExtLeaf1 && ((ECX >> 8) & 1); Features["xop"] = HasExtLeaf1 && ((ECX >> 11) & 1) && HasAVXSave; Features["lwp"] = HasExtLeaf1 && ((ECX >> 15) & 1); Features["fma4"] = HasExtLeaf1 && ((ECX >> 16) & 1) && HasAVXSave; Features["tbm"] = HasExtLeaf1 && ((ECX >> 21) & 1); Features["mwaitx"] = HasExtLeaf1 && ((ECX >> 29) & 1); Features["64bit"] = HasExtLeaf1 && ((EDX >> 29) & 1); // Miscellaneous memory related features, detected by // using the 0x80000008 leaf of the CPUID instruction bool HasExtLeaf8 = MaxExtLevel >= 0x80000008 && !getX86CpuIDAndInfo(0x80000008, &EAX, &EBX, &ECX, &EDX); Features["clzero"] = HasExtLeaf8 && ((EBX >> 0) & 1); Features["wbnoinvd"] = HasExtLeaf8 && ((EBX >> 9) & 1); bool HasLeaf7 = MaxLevel >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX); Features["fsgsbase"] = HasLeaf7 && ((EBX >> 0) & 1); Features["sgx"] = HasLeaf7 && ((EBX >> 2) & 1); Features["bmi"] = HasLeaf7 && ((EBX >> 3) & 1); // AVX2 is only supported if we have the OS save support from AVX. Features["avx2"] = HasLeaf7 && ((EBX >> 5) & 1) && HasAVXSave; Features["bmi2"] = HasLeaf7 && ((EBX >> 8) & 1); Features["invpcid"] = HasLeaf7 && ((EBX >> 10) & 1); Features["rtm"] = HasLeaf7 && ((EBX >> 11) & 1); // AVX512 is only supported if the OS supports the context save for it. Features["avx512f"] = HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save; Features["avx512dq"] = HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save; Features["rdseed"] = HasLeaf7 && ((EBX >> 18) & 1); Features["adx"] = HasLeaf7 && ((EBX >> 19) & 1); Features["avx512ifma"] = HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save; Features["clflushopt"] = HasLeaf7 && ((EBX >> 23) & 1); Features["clwb"] = HasLeaf7 && ((EBX >> 24) & 1); Features["avx512pf"] = HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save; Features["avx512er"] = HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save; Features["avx512cd"] = HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save; Features["sha"] = HasLeaf7 && ((EBX >> 29) & 1); Features["avx512bw"] = HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save; Features["avx512vl"] = HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save; Features["prefetchwt1"] = HasLeaf7 && ((ECX >> 0) & 1); Features["avx512vbmi"] = HasLeaf7 && ((ECX >> 1) & 1) && HasAVX512Save; Features["pku"] = HasLeaf7 && ((ECX >> 4) & 1); Features["waitpkg"] = HasLeaf7 && ((ECX >> 5) & 1); Features["avx512vbmi2"] = HasLeaf7 && ((ECX >> 6) & 1) && HasAVX512Save; Features["shstk"] = HasLeaf7 && ((ECX >> 7) & 1); Features["gfni"] = HasLeaf7 && ((ECX >> 8) & 1); Features["vaes"] = HasLeaf7 && ((ECX >> 9) & 1) && HasAVXSave; Features["vpclmulqdq"] = HasLeaf7 && ((ECX >> 10) & 1) && HasAVXSave; Features["avx512vnni"] = HasLeaf7 && ((ECX >> 11) & 1) && HasAVX512Save; Features["avx512bitalg"] = HasLeaf7 && ((ECX >> 12) & 1) && HasAVX512Save; Features["avx512vpopcntdq"] = HasLeaf7 && ((ECX >> 14) & 1) && HasAVX512Save; Features["rdpid"] = HasLeaf7 && ((ECX >> 22) & 1); Features["cldemote"] = HasLeaf7 && ((ECX >> 25) & 1); Features["movdiri"] = HasLeaf7 && ((ECX >> 27) & 1); Features["movdir64b"] = HasLeaf7 && ((ECX >> 28) & 1); Features["enqcmd"] = HasLeaf7 && ((ECX >> 29) & 1); Features["serialize"] = HasLeaf7 && ((EDX >> 14) & 1); Features["tsxldtrk"] = HasLeaf7 && ((EDX >> 16) & 1); // There are two CPUID leafs which information associated with the pconfig // instruction: // EAX=0x7, ECX=0x0 indicates the availability of the instruction (via the 18th // bit of EDX), while the EAX=0x1b leaf returns information on the // availability of specific pconfig leafs. // The target feature here only refers to the the first of these two. // Users might need to check for the availability of specific pconfig // leaves using cpuid, since that information is ignored while // detecting features using the "-march=native" flag. // For more info, see X86 ISA docs. Features["pconfig"] = HasLeaf7 && ((EDX >> 18) & 1); bool HasLeaf7Subleaf1 = MaxLevel >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x1, &EAX, &EBX, &ECX, &EDX); Features["avx512bf16"] = HasLeaf7Subleaf1 && ((EAX >> 5) & 1) && HasAVX512Save; bool HasLeafD = MaxLevel >= 0xd && !getX86CpuIDAndInfoEx(0xd, 0x1, &EAX, &EBX, &ECX, &EDX); // Only enable XSAVE if OS has enabled support for saving YMM state. Features["xsaveopt"] = HasLeafD && ((EAX >> 0) & 1) && HasAVXSave; Features["xsavec"] = HasLeafD && ((EAX >> 1) & 1) && HasAVXSave; Features["xsaves"] = HasLeafD && ((EAX >> 3) & 1) && HasAVXSave; bool HasLeaf14 = MaxLevel >= 0x14 && !getX86CpuIDAndInfoEx(0x14, 0x0, &EAX, &EBX, &ECX, &EDX); Features["ptwrite"] = HasLeaf14 && ((EBX >> 4) & 1); return true; } #elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__)) bool sys::getHostCPUFeatures(StringMap<bool> &Features) { std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent(); if (!P) return false; SmallVector<StringRef, 32> Lines; P->getBuffer().split(Lines, "\n"); SmallVector<StringRef, 32> CPUFeatures; // Look for the CPU features. for (unsigned I = 0, E = Lines.size(); I != E; ++I) if (Lines[I].startswith("Features")) { Lines[I].split(CPUFeatures, ' '); break; } #if defined(__aarch64__) // Keep track of which crypto features we have seen enum { CAP_AES = 0x1, CAP_PMULL = 0x2, CAP_SHA1 = 0x4, CAP_SHA2 = 0x8 }; uint32_t crypto = 0; #endif for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) { StringRef LLVMFeatureStr = StringSwitch<StringRef>(CPUFeatures[I]) #if defined(__aarch64__) .Case("asimd", "neon") .Case("fp", "fp-armv8") .Case("crc32", "crc") #else .Case("half", "fp16") .Case("neon", "neon") .Case("vfpv3", "vfp3") .Case("vfpv3d16", "d16") .Case("vfpv4", "vfp4") .Case("idiva", "hwdiv-arm") .Case("idivt", "hwdiv") #endif .Default(""); #if defined(__aarch64__) // We need to check crypto separately since we need all of the crypto // extensions to enable the subtarget feature if (CPUFeatures[I] == "aes") crypto |= CAP_AES; else if (CPUFeatures[I] == "pmull") crypto |= CAP_PMULL; else if (CPUFeatures[I] == "sha1") crypto |= CAP_SHA1; else if (CPUFeatures[I] == "sha2") crypto |= CAP_SHA2; #endif if (LLVMFeatureStr != "") Features[LLVMFeatureStr] = true; } #if defined(__aarch64__) // If we have all crypto bits we can add the feature if (crypto == (CAP_AES | CAP_PMULL | CAP_SHA1 | CAP_SHA2)) Features["crypto"] = true; #endif return true; } #elif defined(_WIN32) && (defined(__aarch64__) || defined(_M_ARM64)) bool sys::getHostCPUFeatures(StringMap<bool> &Features) { if (IsProcessorFeaturePresent(PF_ARM_NEON_INSTRUCTIONS_AVAILABLE)) Features["neon"] = true; if (IsProcessorFeaturePresent(PF_ARM_V8_CRC32_INSTRUCTIONS_AVAILABLE)) Features["crc"] = true; if (IsProcessorFeaturePresent(PF_ARM_V8_CRYPTO_INSTRUCTIONS_AVAILABLE)) Features["crypto"] = true; return true; } #else bool sys::getHostCPUFeatures(StringMap<bool> &Features) { return false; } #endif std::string sys::getProcessTriple() { std::string TargetTripleString = updateTripleOSVersion(LLVM_HOST_TRIPLE); Triple PT(Triple::normalize(TargetTripleString)); if (sizeof(void *) == 8 && PT.isArch32Bit()) PT = PT.get64BitArchVariant(); if (sizeof(void *) == 4 && PT.isArch64Bit()) PT = PT.get32BitArchVariant(); return PT.str(); }