Mercurial > hg > CbC > CbC_llvm
view clang/lib/CodeGen/CGVTables.cpp @ 152:e8a9b4f4d755
pull from 146
author | anatofuz |
---|---|
date | Wed, 11 Mar 2020 18:29:16 +0900 |
parents | 1d019706d866 |
children | 0572611fdcc8 |
line wrap: on
line source
//===--- CGVTables.cpp - Emit LLVM Code for C++ vtables -------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This contains code dealing with C++ code generation of virtual tables. // //===----------------------------------------------------------------------===// #include "CGCXXABI.h" #include "CodeGenFunction.h" #include "CodeGenModule.h" #include "clang/AST/Attr.h" #include "clang/AST/CXXInheritance.h" #include "clang/AST/RecordLayout.h" #include "clang/Basic/CodeGenOptions.h" #include "clang/CodeGen/CGFunctionInfo.h" #include "clang/CodeGen/ConstantInitBuilder.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/Support/Format.h" #include "llvm/Transforms/Utils/Cloning.h" #include <algorithm> #include <cstdio> using namespace clang; using namespace CodeGen; CodeGenVTables::CodeGenVTables(CodeGenModule &CGM) : CGM(CGM), VTContext(CGM.getContext().getVTableContext()) {} llvm::Constant *CodeGenModule::GetAddrOfThunk(StringRef Name, llvm::Type *FnTy, GlobalDecl GD) { return GetOrCreateLLVMFunction(Name, FnTy, GD, /*ForVTable=*/true, /*DontDefer=*/true, /*IsThunk=*/true); } static void setThunkProperties(CodeGenModule &CGM, const ThunkInfo &Thunk, llvm::Function *ThunkFn, bool ForVTable, GlobalDecl GD) { CGM.setFunctionLinkage(GD, ThunkFn); CGM.getCXXABI().setThunkLinkage(ThunkFn, ForVTable, GD, !Thunk.Return.isEmpty()); // Set the right visibility. CGM.setGVProperties(ThunkFn, GD); if (!CGM.getCXXABI().exportThunk()) { ThunkFn->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); ThunkFn->setDSOLocal(true); } if (CGM.supportsCOMDAT() && ThunkFn->isWeakForLinker()) ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName())); } #ifndef NDEBUG static bool similar(const ABIArgInfo &infoL, CanQualType typeL, const ABIArgInfo &infoR, CanQualType typeR) { return (infoL.getKind() == infoR.getKind() && (typeL == typeR || (isa<PointerType>(typeL) && isa<PointerType>(typeR)) || (isa<ReferenceType>(typeL) && isa<ReferenceType>(typeR)))); } #endif static RValue PerformReturnAdjustment(CodeGenFunction &CGF, QualType ResultType, RValue RV, const ThunkInfo &Thunk) { // Emit the return adjustment. bool NullCheckValue = !ResultType->isReferenceType(); llvm::BasicBlock *AdjustNull = nullptr; llvm::BasicBlock *AdjustNotNull = nullptr; llvm::BasicBlock *AdjustEnd = nullptr; llvm::Value *ReturnValue = RV.getScalarVal(); if (NullCheckValue) { AdjustNull = CGF.createBasicBlock("adjust.null"); AdjustNotNull = CGF.createBasicBlock("adjust.notnull"); AdjustEnd = CGF.createBasicBlock("adjust.end"); llvm::Value *IsNull = CGF.Builder.CreateIsNull(ReturnValue); CGF.Builder.CreateCondBr(IsNull, AdjustNull, AdjustNotNull); CGF.EmitBlock(AdjustNotNull); } auto ClassDecl = ResultType->getPointeeType()->getAsCXXRecordDecl(); auto ClassAlign = CGF.CGM.getClassPointerAlignment(ClassDecl); ReturnValue = CGF.CGM.getCXXABI().performReturnAdjustment(CGF, Address(ReturnValue, ClassAlign), Thunk.Return); if (NullCheckValue) { CGF.Builder.CreateBr(AdjustEnd); CGF.EmitBlock(AdjustNull); CGF.Builder.CreateBr(AdjustEnd); CGF.EmitBlock(AdjustEnd); llvm::PHINode *PHI = CGF.Builder.CreatePHI(ReturnValue->getType(), 2); PHI->addIncoming(ReturnValue, AdjustNotNull); PHI->addIncoming(llvm::Constant::getNullValue(ReturnValue->getType()), AdjustNull); ReturnValue = PHI; } return RValue::get(ReturnValue); } /// This function clones a function's DISubprogram node and enters it into /// a value map with the intent that the map can be utilized by the cloner /// to short-circuit Metadata node mapping. /// Furthermore, the function resolves any DILocalVariable nodes referenced /// by dbg.value intrinsics so they can be properly mapped during cloning. static void resolveTopLevelMetadata(llvm::Function *Fn, llvm::ValueToValueMapTy &VMap) { // Clone the DISubprogram node and put it into the Value map. auto *DIS = Fn->getSubprogram(); if (!DIS) return; auto *NewDIS = DIS->replaceWithDistinct(DIS->clone()); VMap.MD()[DIS].reset(NewDIS); // Find all llvm.dbg.declare intrinsics and resolve the DILocalVariable nodes // they are referencing. for (auto &BB : Fn->getBasicBlockList()) { for (auto &I : BB) { if (auto *DII = dyn_cast<llvm::DbgVariableIntrinsic>(&I)) { auto *DILocal = DII->getVariable(); if (!DILocal->isResolved()) DILocal->resolve(); } } } } // This function does roughly the same thing as GenerateThunk, but in a // very different way, so that va_start and va_end work correctly. // FIXME: This function assumes "this" is the first non-sret LLVM argument of // a function, and that there is an alloca built in the entry block // for all accesses to "this". // FIXME: This function assumes there is only one "ret" statement per function. // FIXME: Cloning isn't correct in the presence of indirect goto! // FIXME: This implementation of thunks bloats codesize by duplicating the // function definition. There are alternatives: // 1. Add some sort of stub support to LLVM for cases where we can // do a this adjustment, then a sibcall. // 2. We could transform the definition to take a va_list instead of an // actual variable argument list, then have the thunks (including a // no-op thunk for the regular definition) call va_start/va_end. // There's a bit of per-call overhead for this solution, but it's // better for codesize if the definition is long. llvm::Function * CodeGenFunction::GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, GlobalDecl GD, const ThunkInfo &Thunk) { const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); QualType ResultType = FPT->getReturnType(); // Get the original function assert(FnInfo.isVariadic()); llvm::Type *Ty = CGM.getTypes().GetFunctionType(FnInfo); llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); llvm::Function *BaseFn = cast<llvm::Function>(Callee); // Cloning can't work if we don't have a definition. The Microsoft ABI may // require thunks when a definition is not available. Emit an error in these // cases. if (!MD->isDefined()) { CGM.ErrorUnsupported(MD, "return-adjusting thunk with variadic arguments"); return Fn; } assert(!BaseFn->isDeclaration() && "cannot clone undefined variadic method"); // Clone to thunk. llvm::ValueToValueMapTy VMap; // We are cloning a function while some Metadata nodes are still unresolved. // Ensure that the value mapper does not encounter any of them. resolveTopLevelMetadata(BaseFn, VMap); llvm::Function *NewFn = llvm::CloneFunction(BaseFn, VMap); Fn->replaceAllUsesWith(NewFn); NewFn->takeName(Fn); Fn->eraseFromParent(); Fn = NewFn; // "Initialize" CGF (minimally). CurFn = Fn; // Get the "this" value llvm::Function::arg_iterator AI = Fn->arg_begin(); if (CGM.ReturnTypeUsesSRet(FnInfo)) ++AI; // Find the first store of "this", which will be to the alloca associated // with "this". Address ThisPtr(&*AI, CGM.getClassPointerAlignment(MD->getParent())); llvm::BasicBlock *EntryBB = &Fn->front(); llvm::BasicBlock::iterator ThisStore = std::find_if(EntryBB->begin(), EntryBB->end(), [&](llvm::Instruction &I) { return isa<llvm::StoreInst>(I) && I.getOperand(0) == ThisPtr.getPointer(); }); assert(ThisStore != EntryBB->end() && "Store of this should be in entry block?"); // Adjust "this", if necessary. Builder.SetInsertPoint(&*ThisStore); llvm::Value *AdjustedThisPtr = CGM.getCXXABI().performThisAdjustment(*this, ThisPtr, Thunk.This); AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisStore->getOperand(0)->getType()); ThisStore->setOperand(0, AdjustedThisPtr); if (!Thunk.Return.isEmpty()) { // Fix up the returned value, if necessary. for (llvm::BasicBlock &BB : *Fn) { llvm::Instruction *T = BB.getTerminator(); if (isa<llvm::ReturnInst>(T)) { RValue RV = RValue::get(T->getOperand(0)); T->eraseFromParent(); Builder.SetInsertPoint(&BB); RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk); Builder.CreateRet(RV.getScalarVal()); break; } } } return Fn; } void CodeGenFunction::StartThunk(llvm::Function *Fn, GlobalDecl GD, const CGFunctionInfo &FnInfo, bool IsUnprototyped) { assert(!CurGD.getDecl() && "CurGD was already set!"); CurGD = GD; CurFuncIsThunk = true; // Build FunctionArgs. const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); QualType ThisType = MD->getThisType(); QualType ResultType; if (IsUnprototyped) ResultType = CGM.getContext().VoidTy; else if (CGM.getCXXABI().HasThisReturn(GD)) ResultType = ThisType; else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) ResultType = CGM.getContext().VoidPtrTy; else ResultType = MD->getType()->castAs<FunctionProtoType>()->getReturnType(); FunctionArgList FunctionArgs; // Create the implicit 'this' parameter declaration. CGM.getCXXABI().buildThisParam(*this, FunctionArgs); // Add the rest of the parameters, if we have a prototype to work with. if (!IsUnprototyped) { FunctionArgs.append(MD->param_begin(), MD->param_end()); if (isa<CXXDestructorDecl>(MD)) CGM.getCXXABI().addImplicitStructorParams(*this, ResultType, FunctionArgs); } // Start defining the function. auto NL = ApplyDebugLocation::CreateEmpty(*this); StartFunction(GlobalDecl(), ResultType, Fn, FnInfo, FunctionArgs, MD->getLocation()); // Create a scope with an artificial location for the body of this function. auto AL = ApplyDebugLocation::CreateArtificial(*this); // Since we didn't pass a GlobalDecl to StartFunction, do this ourselves. CGM.getCXXABI().EmitInstanceFunctionProlog(*this); CXXThisValue = CXXABIThisValue; CurCodeDecl = MD; CurFuncDecl = MD; } void CodeGenFunction::FinishThunk() { // Clear these to restore the invariants expected by // StartFunction/FinishFunction. CurCodeDecl = nullptr; CurFuncDecl = nullptr; FinishFunction(); } void CodeGenFunction::EmitCallAndReturnForThunk(llvm::FunctionCallee Callee, const ThunkInfo *Thunk, bool IsUnprototyped) { assert(isa<CXXMethodDecl>(CurGD.getDecl()) && "Please use a new CGF for this thunk"); const CXXMethodDecl *MD = cast<CXXMethodDecl>(CurGD.getDecl()); // Adjust the 'this' pointer if necessary llvm::Value *AdjustedThisPtr = Thunk ? CGM.getCXXABI().performThisAdjustment( *this, LoadCXXThisAddress(), Thunk->This) : LoadCXXThis(); // If perfect forwarding is required a variadic method, a method using // inalloca, or an unprototyped thunk, use musttail. Emit an error if this // thunk requires a return adjustment, since that is impossible with musttail. if (CurFnInfo->usesInAlloca() || CurFnInfo->isVariadic() || IsUnprototyped) { if (Thunk && !Thunk->Return.isEmpty()) { if (IsUnprototyped) CGM.ErrorUnsupported( MD, "return-adjusting thunk with incomplete parameter type"); else if (CurFnInfo->isVariadic()) llvm_unreachable("shouldn't try to emit musttail return-adjusting " "thunks for variadic functions"); else CGM.ErrorUnsupported( MD, "non-trivial argument copy for return-adjusting thunk"); } EmitMustTailThunk(CurGD, AdjustedThisPtr, Callee); return; } // Start building CallArgs. CallArgList CallArgs; QualType ThisType = MD->getThisType(); CallArgs.add(RValue::get(AdjustedThisPtr), ThisType); if (isa<CXXDestructorDecl>(MD)) CGM.getCXXABI().adjustCallArgsForDestructorThunk(*this, CurGD, CallArgs); #ifndef NDEBUG unsigned PrefixArgs = CallArgs.size() - 1; #endif // Add the rest of the arguments. for (const ParmVarDecl *PD : MD->parameters()) EmitDelegateCallArg(CallArgs, PD, SourceLocation()); const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); #ifndef NDEBUG const CGFunctionInfo &CallFnInfo = CGM.getTypes().arrangeCXXMethodCall( CallArgs, FPT, RequiredArgs::forPrototypePlus(FPT, 1), PrefixArgs); assert(CallFnInfo.getRegParm() == CurFnInfo->getRegParm() && CallFnInfo.isNoReturn() == CurFnInfo->isNoReturn() && CallFnInfo.getCallingConvention() == CurFnInfo->getCallingConvention()); assert(isa<CXXDestructorDecl>(MD) || // ignore dtor return types similar(CallFnInfo.getReturnInfo(), CallFnInfo.getReturnType(), CurFnInfo->getReturnInfo(), CurFnInfo->getReturnType())); assert(CallFnInfo.arg_size() == CurFnInfo->arg_size()); for (unsigned i = 0, e = CurFnInfo->arg_size(); i != e; ++i) assert(similar(CallFnInfo.arg_begin()[i].info, CallFnInfo.arg_begin()[i].type, CurFnInfo->arg_begin()[i].info, CurFnInfo->arg_begin()[i].type)); #endif // Determine whether we have a return value slot to use. QualType ResultType = CGM.getCXXABI().HasThisReturn(CurGD) ? ThisType : CGM.getCXXABI().hasMostDerivedReturn(CurGD) ? CGM.getContext().VoidPtrTy : FPT->getReturnType(); ReturnValueSlot Slot; if (!ResultType->isVoidType() && CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) Slot = ReturnValueSlot(ReturnValue, ResultType.isVolatileQualified()); // Now emit our call. llvm::CallBase *CallOrInvoke; RValue RV = EmitCall(*CurFnInfo, CGCallee::forDirect(Callee, CurGD), Slot, CallArgs, &CallOrInvoke); // Consider return adjustment if we have ThunkInfo. if (Thunk && !Thunk->Return.isEmpty()) RV = PerformReturnAdjustment(*this, ResultType, RV, *Thunk); else if (llvm::CallInst* Call = dyn_cast<llvm::CallInst>(CallOrInvoke)) Call->setTailCallKind(llvm::CallInst::TCK_Tail); // Emit return. if (!ResultType->isVoidType() && Slot.isNull()) CGM.getCXXABI().EmitReturnFromThunk(*this, RV, ResultType); // Disable the final ARC autorelease. AutoreleaseResult = false; FinishThunk(); } void CodeGenFunction::EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr, llvm::FunctionCallee Callee) { // Emitting a musttail call thunk doesn't use any of the CGCall.cpp machinery // to translate AST arguments into LLVM IR arguments. For thunks, we know // that the caller prototype more or less matches the callee prototype with // the exception of 'this'. SmallVector<llvm::Value *, 8> Args; for (llvm::Argument &A : CurFn->args()) Args.push_back(&A); // Set the adjusted 'this' pointer. const ABIArgInfo &ThisAI = CurFnInfo->arg_begin()->info; if (ThisAI.isDirect()) { const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); int ThisArgNo = RetAI.isIndirect() && !RetAI.isSRetAfterThis() ? 1 : 0; llvm::Type *ThisType = Args[ThisArgNo]->getType(); if (ThisType != AdjustedThisPtr->getType()) AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType); Args[ThisArgNo] = AdjustedThisPtr; } else { assert(ThisAI.isInAlloca() && "this is passed directly or inalloca"); Address ThisAddr = GetAddrOfLocalVar(CXXABIThisDecl); llvm::Type *ThisType = ThisAddr.getElementType(); if (ThisType != AdjustedThisPtr->getType()) AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType); Builder.CreateStore(AdjustedThisPtr, ThisAddr); } // Emit the musttail call manually. Even if the prologue pushed cleanups, we // don't actually want to run them. llvm::CallInst *Call = Builder.CreateCall(Callee, Args); Call->setTailCallKind(llvm::CallInst::TCK_MustTail); // Apply the standard set of call attributes. unsigned CallingConv; llvm::AttributeList Attrs; CGM.ConstructAttributeList(Callee.getCallee()->getName(), *CurFnInfo, GD, Attrs, CallingConv, /*AttrOnCallSite=*/true); Call->setAttributes(Attrs); Call->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); if (Call->getType()->isVoidTy()) Builder.CreateRetVoid(); else Builder.CreateRet(Call); // Finish the function to maintain CodeGenFunction invariants. // FIXME: Don't emit unreachable code. EmitBlock(createBasicBlock()); FinishFunction(); } void CodeGenFunction::generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, GlobalDecl GD, const ThunkInfo &Thunk, bool IsUnprototyped) { StartThunk(Fn, GD, FnInfo, IsUnprototyped); // Create a scope with an artificial location for the body of this function. auto AL = ApplyDebugLocation::CreateArtificial(*this); // Get our callee. Use a placeholder type if this method is unprototyped so // that CodeGenModule doesn't try to set attributes. llvm::Type *Ty; if (IsUnprototyped) Ty = llvm::StructType::get(getLLVMContext()); else Ty = CGM.getTypes().GetFunctionType(FnInfo); llvm::Constant *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); // Fix up the function type for an unprototyped musttail call. if (IsUnprototyped) Callee = llvm::ConstantExpr::getBitCast(Callee, Fn->getType()); // Make the call and return the result. EmitCallAndReturnForThunk(llvm::FunctionCallee(Fn->getFunctionType(), Callee), &Thunk, IsUnprototyped); } static bool shouldEmitVTableThunk(CodeGenModule &CGM, const CXXMethodDecl *MD, bool IsUnprototyped, bool ForVTable) { // Always emit thunks in the MS C++ ABI. We cannot rely on other TUs to // provide thunks for us. if (CGM.getTarget().getCXXABI().isMicrosoft()) return true; // In the Itanium C++ ABI, vtable thunks are provided by TUs that provide // definitions of the main method. Therefore, emitting thunks with the vtable // is purely an optimization. Emit the thunk if optimizations are enabled and // all of the parameter types are complete. if (ForVTable) return CGM.getCodeGenOpts().OptimizationLevel && !IsUnprototyped; // Always emit thunks along with the method definition. return true; } llvm::Constant *CodeGenVTables::maybeEmitThunk(GlobalDecl GD, const ThunkInfo &TI, bool ForVTable) { const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); // First, get a declaration. Compute the mangled name. Don't worry about // getting the function prototype right, since we may only need this // declaration to fill in a vtable slot. SmallString<256> Name; MangleContext &MCtx = CGM.getCXXABI().getMangleContext(); llvm::raw_svector_ostream Out(Name); if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) MCtx.mangleCXXDtorThunk(DD, GD.getDtorType(), TI.This, Out); else MCtx.mangleThunk(MD, TI, Out); llvm::Type *ThunkVTableTy = CGM.getTypes().GetFunctionTypeForVTable(GD); llvm::Constant *Thunk = CGM.GetAddrOfThunk(Name, ThunkVTableTy, GD); // If we don't need to emit a definition, return this declaration as is. bool IsUnprototyped = !CGM.getTypes().isFuncTypeConvertible( MD->getType()->castAs<FunctionType>()); if (!shouldEmitVTableThunk(CGM, MD, IsUnprototyped, ForVTable)) return Thunk; // Arrange a function prototype appropriate for a function definition. In some // cases in the MS ABI, we may need to build an unprototyped musttail thunk. const CGFunctionInfo &FnInfo = IsUnprototyped ? CGM.getTypes().arrangeUnprototypedMustTailThunk(MD) : CGM.getTypes().arrangeGlobalDeclaration(GD); llvm::FunctionType *ThunkFnTy = CGM.getTypes().GetFunctionType(FnInfo); // If the type of the underlying GlobalValue is wrong, we'll have to replace // it. It should be a declaration. llvm::Function *ThunkFn = cast<llvm::Function>(Thunk->stripPointerCasts()); if (ThunkFn->getFunctionType() != ThunkFnTy) { llvm::GlobalValue *OldThunkFn = ThunkFn; assert(OldThunkFn->isDeclaration() && "Shouldn't replace non-declaration"); // Remove the name from the old thunk function and get a new thunk. OldThunkFn->setName(StringRef()); ThunkFn = llvm::Function::Create(ThunkFnTy, llvm::Function::ExternalLinkage, Name.str(), &CGM.getModule()); CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn); // If needed, replace the old thunk with a bitcast. if (!OldThunkFn->use_empty()) { llvm::Constant *NewPtrForOldDecl = llvm::ConstantExpr::getBitCast(ThunkFn, OldThunkFn->getType()); OldThunkFn->replaceAllUsesWith(NewPtrForOldDecl); } // Remove the old thunk. OldThunkFn->eraseFromParent(); } bool ABIHasKeyFunctions = CGM.getTarget().getCXXABI().hasKeyFunctions(); bool UseAvailableExternallyLinkage = ForVTable && ABIHasKeyFunctions; if (!ThunkFn->isDeclaration()) { if (!ABIHasKeyFunctions || UseAvailableExternallyLinkage) { // There is already a thunk emitted for this function, do nothing. return ThunkFn; } setThunkProperties(CGM, TI, ThunkFn, ForVTable, GD); return ThunkFn; } // If this will be unprototyped, add the "thunk" attribute so that LLVM knows // that the return type is meaningless. These thunks can be used to call // functions with differing return types, and the caller is required to cast // the prototype appropriately to extract the correct value. if (IsUnprototyped) ThunkFn->addFnAttr("thunk"); CGM.SetLLVMFunctionAttributesForDefinition(GD.getDecl(), ThunkFn); // Thunks for variadic methods are special because in general variadic // arguments cannot be perferctly forwarded. In the general case, clang // implements such thunks by cloning the original function body. However, for // thunks with no return adjustment on targets that support musttail, we can // use musttail to perfectly forward the variadic arguments. bool ShouldCloneVarArgs = false; if (!IsUnprototyped && ThunkFn->isVarArg()) { ShouldCloneVarArgs = true; if (TI.Return.isEmpty()) { switch (CGM.getTriple().getArch()) { case llvm::Triple::x86_64: case llvm::Triple::x86: case llvm::Triple::aarch64: ShouldCloneVarArgs = false; break; default: break; } } } if (ShouldCloneVarArgs) { if (UseAvailableExternallyLinkage) return ThunkFn; ThunkFn = CodeGenFunction(CGM).GenerateVarArgsThunk(ThunkFn, FnInfo, GD, TI); } else { // Normal thunk body generation. CodeGenFunction(CGM).generateThunk(ThunkFn, FnInfo, GD, TI, IsUnprototyped); } setThunkProperties(CGM, TI, ThunkFn, ForVTable, GD); return ThunkFn; } void CodeGenVTables::EmitThunks(GlobalDecl GD) { const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl())->getCanonicalDecl(); // We don't need to generate thunks for the base destructor. if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base) return; const VTableContextBase::ThunkInfoVectorTy *ThunkInfoVector = VTContext->getThunkInfo(GD); if (!ThunkInfoVector) return; for (const ThunkInfo& Thunk : *ThunkInfoVector) maybeEmitThunk(GD, Thunk, /*ForVTable=*/false); } void CodeGenVTables::addVTableComponent( ConstantArrayBuilder &builder, const VTableLayout &layout, unsigned idx, llvm::Constant *rtti, unsigned &nextVTableThunkIndex) { auto &component = layout.vtable_components()[idx]; auto addOffsetConstant = [&](CharUnits offset) { builder.add(llvm::ConstantExpr::getIntToPtr( llvm::ConstantInt::get(CGM.PtrDiffTy, offset.getQuantity()), CGM.Int8PtrTy)); }; switch (component.getKind()) { case VTableComponent::CK_VCallOffset: return addOffsetConstant(component.getVCallOffset()); case VTableComponent::CK_VBaseOffset: return addOffsetConstant(component.getVBaseOffset()); case VTableComponent::CK_OffsetToTop: return addOffsetConstant(component.getOffsetToTop()); case VTableComponent::CK_RTTI: return builder.add(llvm::ConstantExpr::getBitCast(rtti, CGM.Int8PtrTy)); case VTableComponent::CK_FunctionPointer: case VTableComponent::CK_CompleteDtorPointer: case VTableComponent::CK_DeletingDtorPointer: { GlobalDecl GD; // Get the right global decl. switch (component.getKind()) { default: llvm_unreachable("Unexpected vtable component kind"); case VTableComponent::CK_FunctionPointer: GD = component.getFunctionDecl(); break; case VTableComponent::CK_CompleteDtorPointer: GD = GlobalDecl(component.getDestructorDecl(), Dtor_Complete); break; case VTableComponent::CK_DeletingDtorPointer: GD = GlobalDecl(component.getDestructorDecl(), Dtor_Deleting); break; } if (CGM.getLangOpts().CUDA) { // Emit NULL for methods we can't codegen on this // side. Otherwise we'd end up with vtable with unresolved // references. const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); // OK on device side: functions w/ __device__ attribute // OK on host side: anything except __device__-only functions. bool CanEmitMethod = CGM.getLangOpts().CUDAIsDevice ? MD->hasAttr<CUDADeviceAttr>() : (MD->hasAttr<CUDAHostAttr>() || !MD->hasAttr<CUDADeviceAttr>()); if (!CanEmitMethod) return builder.addNullPointer(CGM.Int8PtrTy); // Method is acceptable, continue processing as usual. } auto getSpecialVirtualFn = [&](StringRef name) -> llvm::Constant * { // For NVPTX devices in OpenMP emit special functon as null pointers, // otherwise linking ends up with unresolved references. if (CGM.getLangOpts().OpenMP && CGM.getLangOpts().OpenMPIsDevice && CGM.getTriple().isNVPTX()) return llvm::ConstantPointerNull::get(CGM.Int8PtrTy); llvm::FunctionType *fnTy = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); llvm::Constant *fn = cast<llvm::Constant>( CGM.CreateRuntimeFunction(fnTy, name).getCallee()); if (auto f = dyn_cast<llvm::Function>(fn)) f->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); return llvm::ConstantExpr::getBitCast(fn, CGM.Int8PtrTy); }; llvm::Constant *fnPtr; // Pure virtual member functions. if (cast<CXXMethodDecl>(GD.getDecl())->isPure()) { if (!PureVirtualFn) PureVirtualFn = getSpecialVirtualFn(CGM.getCXXABI().GetPureVirtualCallName()); fnPtr = PureVirtualFn; // Deleted virtual member functions. } else if (cast<CXXMethodDecl>(GD.getDecl())->isDeleted()) { if (!DeletedVirtualFn) DeletedVirtualFn = getSpecialVirtualFn(CGM.getCXXABI().GetDeletedVirtualCallName()); fnPtr = DeletedVirtualFn; // Thunks. } else if (nextVTableThunkIndex < layout.vtable_thunks().size() && layout.vtable_thunks()[nextVTableThunkIndex].first == idx) { auto &thunkInfo = layout.vtable_thunks()[nextVTableThunkIndex].second; nextVTableThunkIndex++; fnPtr = maybeEmitThunk(GD, thunkInfo, /*ForVTable=*/true); // Otherwise we can use the method definition directly. } else { llvm::Type *fnTy = CGM.getTypes().GetFunctionTypeForVTable(GD); fnPtr = CGM.GetAddrOfFunction(GD, fnTy, /*ForVTable=*/true); } fnPtr = llvm::ConstantExpr::getBitCast(fnPtr, CGM.Int8PtrTy); builder.add(fnPtr); return; } case VTableComponent::CK_UnusedFunctionPointer: return builder.addNullPointer(CGM.Int8PtrTy); } llvm_unreachable("Unexpected vtable component kind"); } llvm::Type *CodeGenVTables::getVTableType(const VTableLayout &layout) { SmallVector<llvm::Type *, 4> tys; for (unsigned i = 0, e = layout.getNumVTables(); i != e; ++i) { tys.push_back(llvm::ArrayType::get(CGM.Int8PtrTy, layout.getVTableSize(i))); } return llvm::StructType::get(CGM.getLLVMContext(), tys); } void CodeGenVTables::createVTableInitializer(ConstantStructBuilder &builder, const VTableLayout &layout, llvm::Constant *rtti) { unsigned nextVTableThunkIndex = 0; for (unsigned i = 0, e = layout.getNumVTables(); i != e; ++i) { auto vtableElem = builder.beginArray(CGM.Int8PtrTy); size_t thisIndex = layout.getVTableOffset(i); size_t nextIndex = thisIndex + layout.getVTableSize(i); for (unsigned i = thisIndex; i != nextIndex; ++i) { addVTableComponent(vtableElem, layout, i, rtti, nextVTableThunkIndex); } vtableElem.finishAndAddTo(builder); } } llvm::GlobalVariable * CodeGenVTables::GenerateConstructionVTable(const CXXRecordDecl *RD, const BaseSubobject &Base, bool BaseIsVirtual, llvm::GlobalVariable::LinkageTypes Linkage, VTableAddressPointsMapTy& AddressPoints) { if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) DI->completeClassData(Base.getBase()); std::unique_ptr<VTableLayout> VTLayout( getItaniumVTableContext().createConstructionVTableLayout( Base.getBase(), Base.getBaseOffset(), BaseIsVirtual, RD)); // Add the address points. AddressPoints = VTLayout->getAddressPoints(); // Get the mangled construction vtable name. SmallString<256> OutName; llvm::raw_svector_ostream Out(OutName); cast<ItaniumMangleContext>(CGM.getCXXABI().getMangleContext()) .mangleCXXCtorVTable(RD, Base.getBaseOffset().getQuantity(), Base.getBase(), Out); StringRef Name = OutName.str(); llvm::Type *VTType = getVTableType(*VTLayout); // Construction vtable symbols are not part of the Itanium ABI, so we cannot // guarantee that they actually will be available externally. Instead, when // emitting an available_externally VTT, we provide references to an internal // linkage construction vtable. The ABI only requires complete-object vtables // to be the same for all instances of a type, not construction vtables. if (Linkage == llvm::GlobalVariable::AvailableExternallyLinkage) Linkage = llvm::GlobalVariable::InternalLinkage; unsigned Align = CGM.getDataLayout().getABITypeAlignment(VTType); // Create the variable that will hold the construction vtable. llvm::GlobalVariable *VTable = CGM.CreateOrReplaceCXXRuntimeVariable(Name, VTType, Linkage, Align); // V-tables are always unnamed_addr. VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); llvm::Constant *RTTI = CGM.GetAddrOfRTTIDescriptor( CGM.getContext().getTagDeclType(Base.getBase())); // Create and set the initializer. ConstantInitBuilder builder(CGM); auto components = builder.beginStruct(); createVTableInitializer(components, *VTLayout, RTTI); components.finishAndSetAsInitializer(VTable); // Set properties only after the initializer has been set to ensure that the // GV is treated as definition and not declaration. assert(!VTable->isDeclaration() && "Shouldn't set properties on declaration"); CGM.setGVProperties(VTable, RD); CGM.EmitVTableTypeMetadata(RD, VTable, *VTLayout.get()); return VTable; } static bool shouldEmitAvailableExternallyVTable(const CodeGenModule &CGM, const CXXRecordDecl *RD) { return CGM.getCodeGenOpts().OptimizationLevel > 0 && CGM.getCXXABI().canSpeculativelyEmitVTable(RD); } /// Compute the required linkage of the vtable for the given class. /// /// Note that we only call this at the end of the translation unit. llvm::GlobalVariable::LinkageTypes CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { if (!RD->isExternallyVisible()) return llvm::GlobalVariable::InternalLinkage; // We're at the end of the translation unit, so the current key // function is fully correct. const CXXMethodDecl *keyFunction = Context.getCurrentKeyFunction(RD); if (keyFunction && !RD->hasAttr<DLLImportAttr>()) { // If this class has a key function, use that to determine the // linkage of the vtable. const FunctionDecl *def = nullptr; if (keyFunction->hasBody(def)) keyFunction = cast<CXXMethodDecl>(def); switch (keyFunction->getTemplateSpecializationKind()) { case TSK_Undeclared: case TSK_ExplicitSpecialization: assert((def || CodeGenOpts.OptimizationLevel > 0 || CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo) && "Shouldn't query vtable linkage without key function, " "optimizations, or debug info"); if (!def && CodeGenOpts.OptimizationLevel > 0) return llvm::GlobalVariable::AvailableExternallyLinkage; if (keyFunction->isInlined()) return !Context.getLangOpts().AppleKext ? llvm::GlobalVariable::LinkOnceODRLinkage : llvm::Function::InternalLinkage; return llvm::GlobalVariable::ExternalLinkage; case TSK_ImplicitInstantiation: return !Context.getLangOpts().AppleKext ? llvm::GlobalVariable::LinkOnceODRLinkage : llvm::Function::InternalLinkage; case TSK_ExplicitInstantiationDefinition: return !Context.getLangOpts().AppleKext ? llvm::GlobalVariable::WeakODRLinkage : llvm::Function::InternalLinkage; case TSK_ExplicitInstantiationDeclaration: llvm_unreachable("Should not have been asked to emit this"); } } // -fapple-kext mode does not support weak linkage, so we must use // internal linkage. if (Context.getLangOpts().AppleKext) return llvm::Function::InternalLinkage; llvm::GlobalVariable::LinkageTypes DiscardableODRLinkage = llvm::GlobalValue::LinkOnceODRLinkage; llvm::GlobalVariable::LinkageTypes NonDiscardableODRLinkage = llvm::GlobalValue::WeakODRLinkage; if (RD->hasAttr<DLLExportAttr>()) { // Cannot discard exported vtables. DiscardableODRLinkage = NonDiscardableODRLinkage; } else if (RD->hasAttr<DLLImportAttr>()) { // Imported vtables are available externally. DiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage; NonDiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage; } switch (RD->getTemplateSpecializationKind()) { case TSK_Undeclared: case TSK_ExplicitSpecialization: case TSK_ImplicitInstantiation: return DiscardableODRLinkage; case TSK_ExplicitInstantiationDeclaration: // Explicit instantiations in MSVC do not provide vtables, so we must emit // our own. if (getTarget().getCXXABI().isMicrosoft()) return DiscardableODRLinkage; return shouldEmitAvailableExternallyVTable(*this, RD) ? llvm::GlobalVariable::AvailableExternallyLinkage : llvm::GlobalVariable::ExternalLinkage; case TSK_ExplicitInstantiationDefinition: return NonDiscardableODRLinkage; } llvm_unreachable("Invalid TemplateSpecializationKind!"); } /// This is a callback from Sema to tell us that a particular vtable is /// required to be emitted in this translation unit. /// /// This is only called for vtables that _must_ be emitted (mainly due to key /// functions). For weak vtables, CodeGen tracks when they are needed and /// emits them as-needed. void CodeGenModule::EmitVTable(CXXRecordDecl *theClass) { VTables.GenerateClassData(theClass); } void CodeGenVTables::GenerateClassData(const CXXRecordDecl *RD) { if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) DI->completeClassData(RD); if (RD->getNumVBases()) CGM.getCXXABI().emitVirtualInheritanceTables(RD); CGM.getCXXABI().emitVTableDefinitions(*this, RD); } /// At this point in the translation unit, does it appear that can we /// rely on the vtable being defined elsewhere in the program? /// /// The response is really only definitive when called at the end of /// the translation unit. /// /// The only semantic restriction here is that the object file should /// not contain a vtable definition when that vtable is defined /// strongly elsewhere. Otherwise, we'd just like to avoid emitting /// vtables when unnecessary. bool CodeGenVTables::isVTableExternal(const CXXRecordDecl *RD) { assert(RD->isDynamicClass() && "Non-dynamic classes have no VTable."); // We always synthesize vtables if they are needed in the MS ABI. MSVC doesn't // emit them even if there is an explicit template instantiation. if (CGM.getTarget().getCXXABI().isMicrosoft()) return false; // If we have an explicit instantiation declaration (and not a // definition), the vtable is defined elsewhere. TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind(); if (TSK == TSK_ExplicitInstantiationDeclaration) return true; // Otherwise, if the class is an instantiated template, the // vtable must be defined here. if (TSK == TSK_ImplicitInstantiation || TSK == TSK_ExplicitInstantiationDefinition) return false; // Otherwise, if the class doesn't have a key function (possibly // anymore), the vtable must be defined here. const CXXMethodDecl *keyFunction = CGM.getContext().getCurrentKeyFunction(RD); if (!keyFunction) return false; // Otherwise, if we don't have a definition of the key function, the // vtable must be defined somewhere else. return !keyFunction->hasBody(); } /// Given that we're currently at the end of the translation unit, and /// we've emitted a reference to the vtable for this class, should /// we define that vtable? static bool shouldEmitVTableAtEndOfTranslationUnit(CodeGenModule &CGM, const CXXRecordDecl *RD) { // If vtable is internal then it has to be done. if (!CGM.getVTables().isVTableExternal(RD)) return true; // If it's external then maybe we will need it as available_externally. return shouldEmitAvailableExternallyVTable(CGM, RD); } /// Given that at some point we emitted a reference to one or more /// vtables, and that we are now at the end of the translation unit, /// decide whether we should emit them. void CodeGenModule::EmitDeferredVTables() { #ifndef NDEBUG // Remember the size of DeferredVTables, because we're going to assume // that this entire operation doesn't modify it. size_t savedSize = DeferredVTables.size(); #endif for (const CXXRecordDecl *RD : DeferredVTables) if (shouldEmitVTableAtEndOfTranslationUnit(*this, RD)) VTables.GenerateClassData(RD); else if (shouldOpportunisticallyEmitVTables()) OpportunisticVTables.push_back(RD); assert(savedSize == DeferredVTables.size() && "deferred extra vtables during vtable emission?"); DeferredVTables.clear(); } bool CodeGenModule::HasLTOVisibilityPublicStd(const CXXRecordDecl *RD) { if (!getCodeGenOpts().LTOVisibilityPublicStd) return false; const DeclContext *DC = RD; while (1) { auto *D = cast<Decl>(DC); DC = DC->getParent(); if (isa<TranslationUnitDecl>(DC->getRedeclContext())) { if (auto *ND = dyn_cast<NamespaceDecl>(D)) if (const IdentifierInfo *II = ND->getIdentifier()) if (II->isStr("std") || II->isStr("stdext")) return true; break; } } return false; } bool CodeGenModule::HasHiddenLTOVisibility(const CXXRecordDecl *RD) { LinkageInfo LV = RD->getLinkageAndVisibility(); if (!isExternallyVisible(LV.getLinkage())) return true; if (RD->hasAttr<LTOVisibilityPublicAttr>() || RD->hasAttr<UuidAttr>()) return false; if (getTriple().isOSBinFormatCOFF()) { if (RD->hasAttr<DLLExportAttr>() || RD->hasAttr<DLLImportAttr>()) return false; } else { if (LV.getVisibility() != HiddenVisibility) return false; } return !HasLTOVisibilityPublicStd(RD); } llvm::GlobalObject::VCallVisibility CodeGenModule::GetVCallVisibilityLevel(const CXXRecordDecl *RD) { LinkageInfo LV = RD->getLinkageAndVisibility(); llvm::GlobalObject::VCallVisibility TypeVis; if (!isExternallyVisible(LV.getLinkage())) TypeVis = llvm::GlobalObject::VCallVisibilityTranslationUnit; else if (HasHiddenLTOVisibility(RD)) TypeVis = llvm::GlobalObject::VCallVisibilityLinkageUnit; else TypeVis = llvm::GlobalObject::VCallVisibilityPublic; for (auto B : RD->bases()) if (B.getType()->getAsCXXRecordDecl()->isDynamicClass()) TypeVis = std::min(TypeVis, GetVCallVisibilityLevel(B.getType()->getAsCXXRecordDecl())); for (auto B : RD->vbases()) if (B.getType()->getAsCXXRecordDecl()->isDynamicClass()) TypeVis = std::min(TypeVis, GetVCallVisibilityLevel(B.getType()->getAsCXXRecordDecl())); return TypeVis; } void CodeGenModule::EmitVTableTypeMetadata(const CXXRecordDecl *RD, llvm::GlobalVariable *VTable, const VTableLayout &VTLayout) { if (!getCodeGenOpts().LTOUnit) return; CharUnits PointerWidth = Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0)); typedef std::pair<const CXXRecordDecl *, unsigned> AddressPoint; std::vector<AddressPoint> AddressPoints; for (auto &&AP : VTLayout.getAddressPoints()) AddressPoints.push_back(std::make_pair( AP.first.getBase(), VTLayout.getVTableOffset(AP.second.VTableIndex) + AP.second.AddressPointIndex)); // Sort the address points for determinism. llvm::sort(AddressPoints, [this](const AddressPoint &AP1, const AddressPoint &AP2) { if (&AP1 == &AP2) return false; std::string S1; llvm::raw_string_ostream O1(S1); getCXXABI().getMangleContext().mangleTypeName( QualType(AP1.first->getTypeForDecl(), 0), O1); O1.flush(); std::string S2; llvm::raw_string_ostream O2(S2); getCXXABI().getMangleContext().mangleTypeName( QualType(AP2.first->getTypeForDecl(), 0), O2); O2.flush(); if (S1 < S2) return true; if (S1 != S2) return false; return AP1.second < AP2.second; }); ArrayRef<VTableComponent> Comps = VTLayout.vtable_components(); for (auto AP : AddressPoints) { // Create type metadata for the address point. AddVTableTypeMetadata(VTable, PointerWidth * AP.second, AP.first); // The class associated with each address point could also potentially be // used for indirect calls via a member function pointer, so we need to // annotate the address of each function pointer with the appropriate member // function pointer type. for (unsigned I = 0; I != Comps.size(); ++I) { if (Comps[I].getKind() != VTableComponent::CK_FunctionPointer) continue; llvm::Metadata *MD = CreateMetadataIdentifierForVirtualMemPtrType( Context.getMemberPointerType( Comps[I].getFunctionDecl()->getType(), Context.getRecordType(AP.first).getTypePtr())); VTable->addTypeMetadata((PointerWidth * I).getQuantity(), MD); } } if (getCodeGenOpts().VirtualFunctionElimination || getCodeGenOpts().WholeProgramVTables) { llvm::GlobalObject::VCallVisibility TypeVis = GetVCallVisibilityLevel(RD); if (TypeVis != llvm::GlobalObject::VCallVisibilityPublic) VTable->setVCallVisibilityMetadata(TypeVis); } }