// RUN: mlir-opt %s --test-transform-dialect-interpreter --split-input-file | FileCheck %s // CHECK-DAG: #[[$map_p4:.*]] = affine_map<()[s0] -> (s0 + 4)> // CHECK-DAG: #[[$map_p8:.*]] = affine_map<()[s0] -> (s0 + 8)> // CHECK-LABEL: split_vector_transfer_read_2d( // CHECK-SAME: %[[A:[a-zA-Z0-9_]*]]: memref // CHECK-SAME: %[[i:[a-zA-Z0-9_]*]]: index // CHECK-SAME: %[[j:[a-zA-Z0-9_]*]]: index func.func @split_vector_transfer_read_2d(%A: memref, %i: index, %j: index) -> vector<4x8xf32> { %c0 = arith.constant 0 : index %f0 = arith.constant 0.0 : f32 // CHECK-DAG: %[[c8:.*]] = arith.constant 8 : index // CHECK-DAG: %[[c0:.*]] = arith.constant 0 : index // alloca for boundary full tile // CHECK: %[[alloc:.*]] = memref.alloca() {alignment = 32 : i64} : memref<4x8xf32> // %i + 4 <= dim(%A, 0) // CHECK: %[[idx0:.*]] = affine.apply #[[$map_p4]]()[%[[i]]] // CHECK: %[[d0:.*]] = memref.dim %[[A]], %[[c0]] : memref // CHECK: %[[cmp0:.*]] = arith.cmpi sle, %[[idx0]], %[[d0]] : index // %j + 8 <= dim(%A, 1) // CHECK: %[[idx1:.*]] = affine.apply #[[$map_p8]]()[%[[j]]] // CHECK: %[[cmp1:.*]] = arith.cmpi sle, %[[idx1]], %[[c8]] : index // are both conds true // CHECK: %[[cond:.*]] = arith.andi %[[cmp0]], %[[cmp1]] : i1 // CHECK: %[[ifres:.*]]:3 = scf.if %[[cond]] -> (memref, index, index) { // inBounds, just yield %A // CHECK: scf.yield %[[A]], %[[i]], %[[j]] : memref, index, index // CHECK: } else { // slow path, fill tmp alloc and yield a memref_casted version of it // CHECK: %[[slow:.*]] = vector.transfer_read %[[A]][%[[i]], %[[j]]], %cst : // CHECK-SAME: memref, vector<4x8xf32> // CHECK: %[[cast_alloc:.*]] = vector.type_cast %[[alloc]] : // CHECK-SAME: memref<4x8xf32> to memref> // CHECK: store %[[slow]], %[[cast_alloc]][] : memref> // CHECK: %[[yielded:.*]] = memref.cast %[[alloc]] : // CHECK-SAME: memref<4x8xf32> to memref // CHECK: scf.yield %[[yielded]], %[[c0]], %[[c0]] : // CHECK-SAME: memref, index, index // CHECK: } // CHECK: %[[res:.*]] = vector.transfer_read %[[ifres]]#0[%[[ifres]]#1, %[[ifres]]#2], %cst // CHECK-SAME: {in_bounds = [true, true]} : memref, vector<4x8xf32> %1 = vector.transfer_read %A[%i, %j], %f0 : memref, vector<4x8xf32> return %1: vector<4x8xf32> } // CHECK-LABEL: split_vector_transfer_read_strided_2d( // CHECK-SAME: %[[A:[a-zA-Z0-9_]*]]: memref // CHECK-SAME: %[[i:[a-zA-Z0-9_]*]]: index // CHECK-SAME: %[[j:[a-zA-Z0-9_]*]]: index func.func @split_vector_transfer_read_strided_2d( %A: memref<7x8xf32, strided<[?, 1], offset: ?>>, %i: index, %j: index) -> vector<4x8xf32> { %c0 = arith.constant 0 : index %f0 = arith.constant 0.0 : f32 // CHECK-DAG: %[[c7:.*]] = arith.constant 7 : index // CHECK-DAG: %[[c8:.*]] = arith.constant 8 : index // CHECK-DAG: %[[c0:.*]] = arith.constant 0 : index // alloca for boundary full tile // CHECK: %[[alloc:.*]] = memref.alloca() {alignment = 32 : i64} : memref<4x8xf32> // %i + 4 <= dim(%A, 0) // CHECK: %[[idx0:.*]] = affine.apply #[[$map_p4]]()[%[[i]]] // CHECK: %[[cmp0:.*]] = arith.cmpi sle, %[[idx0]], %[[c7]] : index // %j + 8 <= dim(%A, 1) // CHECK: %[[idx1:.*]] = affine.apply #[[$map_p8]]()[%[[j]]] // CHECK: %[[cmp1:.*]] = arith.cmpi sle, %[[idx1]], %[[c8]] : index // are both conds true // CHECK: %[[cond:.*]] = arith.andi %[[cmp0]], %[[cmp1]] : i1 // CHECK: %[[ifres:.*]]:3 = scf.if %[[cond]] -> (memref>, index, index) { // inBounds but not cast-compatible: yield a memref_casted form of %A // CHECK: %[[casted:.*]] = memref.cast %arg0 : // CHECK-SAME: memref<7x8xf32, strided<[?, 1], offset: ?>> to memref> // CHECK: scf.yield %[[casted]], %[[i]], %[[j]] : // CHECK-SAME: memref>, index, index // CHECK: } else { // slow path, fill tmp alloc and yield a memref_casted version of it // CHECK: %[[slow:.*]] = vector.transfer_read %[[A]][%[[i]], %[[j]]], %cst : // CHECK-SAME: memref<7x8xf32, strided<[?, 1], offset: ?>>, vector<4x8xf32> // CHECK: %[[cast_alloc:.*]] = vector.type_cast %[[alloc]] : // CHECK-SAME: memref<4x8xf32> to memref> // CHECK: store %[[slow]], %[[cast_alloc]][] : // CHECK-SAME: memref> // CHECK: %[[yielded:.*]] = memref.cast %[[alloc]] : // CHECK-SAME: memref<4x8xf32> to memref> // CHECK: scf.yield %[[yielded]], %[[c0]], %[[c0]] : // CHECK-SAME: memref>, index, index // CHECK: } // CHECK: %[[res:.*]] = vector.transfer_read {{.*}} {in_bounds = [true, true]} : // CHECK-SAME: memref>, vector<4x8xf32> %1 = vector.transfer_read %A[%i, %j], %f0 : memref<7x8xf32, strided<[?, 1], offset: ?>>, vector<4x8xf32> // CHECK: return %[[res]] : vector<4x8xf32> return %1 : vector<4x8xf32> } func.func @split_vector_transfer_read_mem_space(%A: memref, %i: index, %j: index) -> vector<4x8xf32> { %c0 = arith.constant 0 : index %f0 = arith.constant 0.0 : f32 // CHECK: scf.if {{.*}} -> (memref>, index, index) { // inBounds with a different memory space // CHECK: %[[space_cast:.*]] = memref.memory_space_cast %{{.*}} : // CHECK-SAME: memref to memref // CHECK: %[[cast:.*]] = memref.cast %[[space_cast]] : // CHECK-SAME: memref to memref> // CHECK: scf.yield %[[cast]], {{.*}} : memref>, index, index // CHECK: } else { // slow path, fill tmp alloc and yield a memref_casted version of it // CHECK: %[[slow:.*]] = vector.transfer_read %[[A]][%[[i]], %[[j]]], %cst : // CHECK-SAME: memref, vector<4x8xf32> // CHECK: %[[cast_alloc:.*]] = vector.type_cast %[[alloc]] : // CHECK-SAME: memref<4x8xf32> to memref> // CHECK: store %[[slow]], %[[cast_alloc]][] : memref> // CHECK: %[[yielded:.*]] = memref.cast %[[alloc]] : // CHECK-SAME: memref<4x8xf32> to memref> // CHECK: scf.yield %[[yielded]], %[[c0]], %[[c0]] : // CHECK-SAME: memref>, index, index // CHECK: } // CHECK: %[[res:.*]] = vector.transfer_read %[[ifres]]#0[%[[ifres]]#1, %[[ifres]]#2], %cst // CHECK-SAME: {in_bounds = [true, true]} : memref>, vector<4x8xf32> %1 = vector.transfer_read %A[%i, %j], %f0 : memref, vector<4x8xf32> return %1: vector<4x8xf32> } transform.sequence failures(propagate) { ^bb1(%func_op: !transform.op<"func.func">): transform.apply_patterns to %func_op { transform.apply_patterns.vector.split_transfer_full_partial split_transfer_strategy = "vector-transfer" } : !transform.op<"func.func"> } // ----- func.func @split_vector_transfer_write_2d(%V: vector<4x8xf32>, %A: memref, %i: index, %j: index) { vector.transfer_write %V, %A[%i, %j] : vector<4x8xf32>, memref return } // CHECK-DAG: #[[MAP0:.*]] = affine_map<()[s0] -> (s0 + 4)> // CHECK-DAG: #[[MAP1:.*]] = affine_map<()[s0] -> (s0 + 8)> // CHECK: func @split_vector_transfer_write_2d( // CHECK-SAME: %[[VEC:.*]]: vector<4x8xf32>, // CHECK-SAME: %[[DEST:.*]]: memref, // CHECK-SAME: %[[I:.*]]: index, // CHECK-SAME: %[[J:.*]]: index) { // CHECK-DAG: %[[C8:.*]] = arith.constant 8 : index // CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index // CHECK-DAG: %[[CT:.*]] = arith.constant true // CHECK: %[[TEMP:.*]] = memref.alloca() {alignment = 32 : i64} : memref<4x8xf32> // CHECK: %[[VAL_8:.*]] = affine.apply #[[MAP0]]()[%[[I]]] // CHECK: %[[DIM0:.*]] = memref.dim %[[DEST]], %[[C0]] : memref // CHECK: %[[DIM0_IN:.*]] = arith.cmpi sle, %[[VAL_8]], %[[DIM0]] : index // CHECK: %[[DIM1:.*]] = affine.apply #[[MAP1]]()[%[[J]]] // CHECK: %[[DIM1_IN:.*]] = arith.cmpi sle, %[[DIM1]], %[[C8]] : index // CHECK: %[[IN_BOUNDS:.*]] = arith.andi %[[DIM0_IN]], %[[DIM1_IN]] : i1 // CHECK: %[[IN_BOUND_DEST:.*]]:3 = scf.if %[[IN_BOUNDS]] -> // CHECK-SAME: (memref, index, index) { // CHECK: scf.yield %[[DEST]], %[[I]], %[[J]] : memref, index, index // CHECK: } else { // CHECK: %[[VAL_15:.*]] = memref.cast %[[TEMP]] // CHECK-SAME: : memref<4x8xf32> to memref // CHECK: scf.yield %[[VAL_15]], %[[C0]], %[[C0]] // CHECK-SAME: : memref, index, index // CHECK: } // CHECK: vector.transfer_write %[[VEC]], // CHECK-SAME: %[[IN_BOUND_DEST:.*]]#0[%[[IN_BOUND_DEST]]#1, %[[IN_BOUND_DEST]]#2] // CHECK-SAME: {in_bounds = [true, true]} : vector<4x8xf32>, memref // CHECK: %[[OUT_BOUNDS:.*]] = arith.xori %[[IN_BOUNDS]], %[[CT]] : i1 // CHECK: scf.if %[[OUT_BOUNDS]] { // CHECK: %[[CASTED:.*]] = vector.type_cast %[[TEMP]] // CHECK-SAME: : memref<4x8xf32> to memref> // CHECK: %[[RESULT_COPY:.*]] = memref.load %[[CASTED]][] // CHECK-SAME: : memref> // CHECK: vector.transfer_write %[[RESULT_COPY]], // CHECK-SAME: %[[DEST]][%[[I]], %[[J]]] // CHECK-SAME: : vector<4x8xf32>, memref // CHECK: } // CHECK: return // CHECK: } transform.sequence failures(propagate) { ^bb1(%func_op: !transform.op<"func.func">): transform.apply_patterns to %func_op { transform.apply_patterns.vector.split_transfer_full_partial split_transfer_strategy = "vector-transfer" } : !transform.op<"func.func"> } // ----- func.func @split_vector_transfer_write_strided_2d( %V: vector<4x8xf32>, %A: memref<7x8xf32, strided<[?, 1], offset: ?>>, %i: index, %j: index) { vector.transfer_write %V, %A[%i, %j] : vector<4x8xf32>, memref<7x8xf32, strided<[?, 1], offset: ?>> return } // CHECK-DAG: #[[MAP1:.*]] = affine_map<()[s0] -> (s0 + 4)> // CHECK-DAG: #[[MAP2:.*]] = affine_map<()[s0] -> (s0 + 8)> // CHECK: func @split_vector_transfer_write_strided_2d( // CHECK-SAME: %[[VEC:.*]]: vector<4x8xf32>, // CHECK-SAME: %[[DEST:.*]]: memref<7x8xf32, strided<[?, 1], offset: ?>>, // CHECK-SAME: %[[I:.*]]: index, // CHECK-SAME: %[[J:.*]]: index) { // CHECK-DAG: %[[C7:.*]] = arith.constant 7 : index // CHECK-DAG: %[[C8:.*]] = arith.constant 8 : index // CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index // CHECK-DAG: %[[CT:.*]] = arith.constant true // CHECK: %[[TEMP:.*]] = memref.alloca() {alignment = 32 : i64} : memref<4x8xf32> // CHECK: %[[DIM0:.*]] = affine.apply #[[MAP1]]()[%[[I]]] // CHECK: %[[DIM0_IN:.*]] = arith.cmpi sle, %[[DIM0]], %[[C7]] : index // CHECK: %[[DIM1:.*]] = affine.apply #[[MAP2]]()[%[[J]]] // CHECK: %[[DIM1_IN:.*]] = arith.cmpi sle, %[[DIM1]], %[[C8]] : index // CHECK: %[[IN_BOUNDS:.*]] = arith.andi %[[DIM0_IN]], %[[DIM1_IN]] : i1 // CHECK: %[[IN_BOUND_DEST:.*]]:3 = scf.if %[[IN_BOUNDS]] // CHECK-SAME: -> (memref>, index, index) { // CHECK: %[[VAL_15:.*]] = memref.cast %[[DEST]] // CHECK-SAME: : memref<7x8xf32, strided<[?, 1], offset: ?>> to memref> // CHECK: scf.yield %[[VAL_15]], %[[I]], %[[J]] // CHECK-SAME: : memref>, index, index // CHECK: } else { // CHECK: %[[VAL_16:.*]] = memref.cast %[[TEMP]] // CHECK-SAME: : memref<4x8xf32> to memref> // CHECK: scf.yield %[[VAL_16]], %[[C0]], %[[C0]] // CHECK-SAME: : memref>, index, index // CHECK: } // CHECK: vector.transfer_write %[[VEC]], // CHECK-SAME: %[[IN_BOUND_DEST:.*]]#0 // CHECK-SAME: [%[[IN_BOUND_DEST]]#1, %[[IN_BOUND_DEST]]#2] // CHECK-SAME: {in_bounds = [true, true]} : vector<4x8xf32>, memref> // CHECK: %[[OUT_BOUNDS:.*]] = arith.xori %[[IN_BOUNDS]], %[[CT]] : i1 // CHECK: scf.if %[[OUT_BOUNDS]] { // CHECK: %[[VAL_19:.*]] = vector.type_cast %[[TEMP]] // CHECK-SAME: : memref<4x8xf32> to memref> // CHECK: %[[VAL_20:.*]] = memref.load %[[VAL_19]][] // CHECK-SAME: : memref> // CHECK: vector.transfer_write %[[VAL_20]], %[[DEST]][%[[I]], %[[J]]] // CHECK-SAME: : vector<4x8xf32>, memref<7x8xf32, strided<[?, 1], offset: ?>> // CHECK: } // CHECK: return // CHECK: } transform.sequence failures(propagate) { ^bb1(%func_op: !transform.op<"func.func">): transform.apply_patterns to %func_op { transform.apply_patterns.vector.split_transfer_full_partial split_transfer_strategy = "vector-transfer" } : !transform.op<"func.func"> } // ----- func.func @split_vector_transfer_write_mem_space(%V: vector<4x8xf32>, %A: memref, %i: index, %j: index) { vector.transfer_write %V, %A[%i, %j] : vector<4x8xf32>, memref return } // CHECK: func @split_vector_transfer_write_mem_space( // CHECK: scf.if {{.*}} -> (memref>, index, index) { // CHECK: %[[space_cast:.*]] = memref.memory_space_cast %{{.*}} : // CHECK-SAME: memref to memref // CHECK: %[[cast:.*]] = memref.cast %[[space_cast]] : // CHECK-SAME: memref to memref> // CHECK: scf.yield %[[cast]], {{.*}} : memref>, index, index // CHECK: } else { // CHECK: %[[VAL_15:.*]] = memref.cast %[[TEMP]] // CHECK-SAME: : memref<4x8xf32> to memref> // CHECK: scf.yield %[[VAL_15]], %[[C0]], %[[C0]] // CHECK-SAME: : memref>, index, index // CHECK: } // CHECK: vector.transfer_write %[[VEC]], // CHECK-SAME: %[[IN_BOUND_DEST:.*]]#0[%[[IN_BOUND_DEST]]#1, %[[IN_BOUND_DEST]]#2] // CHECK-SAME: {in_bounds = [true, true]} : vector<4x8xf32>, memref> transform.sequence failures(propagate) { ^bb1(%func_op: !transform.op<"func.func">): transform.apply_patterns to %func_op { transform.apply_patterns.vector.split_transfer_full_partial split_transfer_strategy = "vector-transfer" } : !transform.op<"func.func"> } // ----- func.func private @fake_side_effecting_fun(%0: vector<2x2xf32>) -> () // CHECK-LABEL: transfer_read_within_async_execute func.func @transfer_read_within_async_execute(%A : memref) -> !async.token { %c0 = arith.constant 0 : index %f0 = arith.constant 0.0 : f32 // CHECK-NOT: alloca // CHECK: async.execute // CHECK: alloca %token = async.execute { %0 = vector.transfer_read %A[%c0, %c0], %f0 : memref, vector<2x2xf32> func.call @fake_side_effecting_fun(%0) : (vector<2x2xf32>) -> () async.yield } return %token : !async.token } // Ensure that `alloca`s are inserted outside of loops even though loops are // consdered allocation scopes. // CHECK-LABEL: transfer_read_within_scf_for func.func @transfer_read_within_scf_for(%A : memref, %lb : index, %ub : index, %step : index) { %c0 = arith.constant 0 : index %f0 = arith.constant 0.0 : f32 // CHECK: memref.alloca // CHECK: scf.for // CHECK-NOT: memref.alloca scf.for %i = %lb to %ub step %step { %0 = vector.transfer_read %A[%c0, %c0], %f0 : memref, vector<2x2xf32> func.call @fake_side_effecting_fun(%0) : (vector<2x2xf32>) -> () } return } transform.sequence failures(propagate) { ^bb1(%func_op: !transform.op<"func.func">): transform.apply_patterns to %func_op { transform.apply_patterns.vector.split_transfer_full_partial split_transfer_strategy = "vector-transfer" } : !transform.op<"func.func"> }