Mercurial > hg > Gears > GearsAgda
comparison hoareBinaryTree.agda @ 664:1f702351fd1f
findP done
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 22 Nov 2021 08:24:21 +0900 |
parents | cf5095488bbd |
children | 1708fe988ac5 |
comparison
equal
deleted
inserted
replaced
663:cf5095488bbd | 664:1f702351fd1f |
---|---|
63 replaceNode k v1 leaf next = next (node k v1 leaf leaf) | 63 replaceNode k v1 leaf next = next (node k v1 leaf leaf) |
64 replaceNode k v1 (node key value t t₁) next = next (node k v1 t t₁) | 64 replaceNode k v1 (node key value t t₁) next = next (node k v1 t t₁) |
65 | 65 |
66 replace : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → bt A → List (bt A) → (next : ℕ → A → bt A → List (bt A) → t ) → (exit : bt A → t) → t | 66 replace : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → bt A → List (bt A) → (next : ℕ → A → bt A → List (bt A) → t ) → (exit : bt A → t) → t |
67 replace key value tree [] next exit = exit tree | 67 replace key value tree [] next exit = exit tree |
68 replace key value tree (leaf ∷ _) next exit = exit (node key value leaf leaf) | 68 replace key value tree (leaf ∷ []) next exit = exit (node key value leaf leaf) |
69 replace key value tree (node key₁ value₁ left right ∷ []) next exit with <-cmp key key₁ | |
70 ... | tri< a ¬b ¬c = exit (node key₁ value₁ tree right ) | |
71 ... | tri≈ ¬a b ¬c = exit (node key₁ value left right ) | |
72 ... | tri> ¬a ¬b c = exit (node key₁ value₁ left tree ) | |
73 replace key value tree (leaf ∷ st) next exit = next key value (node key value leaf leaf) st | |
69 replace key value tree (node key₁ value₁ left right ∷ st) next exit with <-cmp key key₁ | 74 replace key value tree (node key₁ value₁ left right ∷ st) next exit with <-cmp key key₁ |
70 ... | tri< a ¬b ¬c = next key value (node key₁ value₁ tree right ) st | 75 ... | tri< a ¬b ¬c = next key value (node key₁ value₁ tree right ) st |
71 ... | tri≈ ¬a b ¬c = next key value (node key₁ value left right ) st | 76 ... | tri≈ ¬a b ¬c = next key value (node key₁ value left right ) st |
72 ... | tri> ¬a ¬b c = next key value (node key₁ value₁ left tree ) st | 77 ... | tri> ¬a ¬b c = next key value (node key₁ value₁ left tree ) st |
73 | 78 |
212 treeRightDown {n} {A} {_} {v1} .leaf .leaf (t-single _ .v1) = t-leaf | 217 treeRightDown {n} {A} {_} {v1} .leaf .leaf (t-single _ .v1) = t-leaf |
213 treeRightDown {n} {A} {_} {v1} .leaf .(node _ _ _ _) (t-right x ti) = ti | 218 treeRightDown {n} {A} {_} {v1} .leaf .(node _ _ _ _) (t-right x ti) = ti |
214 treeRightDown {n} {A} {_} {v1} .(node _ _ _ _) .leaf (t-left x ti) = t-leaf | 219 treeRightDown {n} {A} {_} {v1} .(node _ _ _ _) .leaf (t-left x ti) = t-leaf |
215 treeRightDown {n} {A} {_} {v1} .(node _ _ _ _) .(node _ _ _ _) (t-node x x₁ ti ti₁) = ti₁ | 220 treeRightDown {n} {A} {_} {v1} .(node _ _ _ _) .(node _ _ _ _) (t-node x x₁ ti ti₁) = ti₁ |
216 | 221 |
222 nat-≤> : { x y : ℕ } → x ≤ y → y < x → ⊥ | |
223 nat-≤> (s≤s x<y) (s≤s y<x) = nat-≤> x<y y<x | |
224 nat-<> : { x y : ℕ } → x < y → y < x → ⊥ | |
225 nat-<> (s≤s x<y) (s≤s y<x) = nat-<> x<y y<x | |
217 | 226 |
218 open _∧_ | 227 open _∧_ |
219 | 228 |
220 findP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree tree0 : bt A ) → (stack : List (bt A)) | 229 findP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree tree0 : bt A ) → (stack : List (bt A)) |
221 → treeInvariant tree ∧ stackInvariant key tree tree0 stack | 230 → treeInvariant tree ∧ stackInvariant key tree tree0 stack |
223 → (exit : (tree1 tree0 : bt A) → (stack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant key tree1 tree0 stack | 232 → (exit : (tree1 tree0 : bt A) → (stack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant key tree1 tree0 stack |
224 → (tree1 ≡ leaf ) ∨ ( node-key tree1 ≡ just key ) → t ) → t | 233 → (tree1 ≡ leaf ) ∨ ( node-key tree1 ≡ just key ) → t ) → t |
225 findP key leaf tree0 st Pre _ exit = exit leaf tree0 st Pre (case1 refl) | 234 findP key leaf tree0 st Pre _ exit = exit leaf tree0 st Pre (case1 refl) |
226 findP key (node key₁ v1 tree tree₁) tree0 st Pre next exit with <-cmp key key₁ | 235 findP key (node key₁ v1 tree tree₁) tree0 st Pre next exit with <-cmp key key₁ |
227 findP key n tree0 st Pre _ exit | tri≈ ¬a refl ¬c = exit n tree0 st Pre (case2 refl) | 236 findP key n tree0 st Pre _ exit | tri≈ ¬a refl ¬c = exit n tree0 st Pre (case2 refl) |
228 findP {n} {_} {A} key nd@(node key₁ v1 tree tree₁) tree0 st Pre next _ | tri< a ¬b ¬c = next tree tree0 (tree ∷ st) | 237 findP {n} {_} {A} key (node key₁ v1 tree tree₁) tree0 st Pre next _ | tri< a ¬b ¬c = next tree tree0 (tree ∷ st) |
229 ⟪ treeLeftDown tree tree₁ (proj1 Pre) , findP1 a st (proj2 Pre) ⟫ depth-1< where | 238 ⟪ treeLeftDown tree tree₁ (proj1 Pre) , findP1 a st (proj2 Pre) ⟫ depth-1< where |
230 findP1 : key < key₁ → (st : List (bt A)) → stackInvariant key (node key₁ v1 tree tree₁) tree0 st → stackInvariant key tree tree0 (tree ∷ st) | 239 findP1 : key < key₁ → (st : List (bt A)) → stackInvariant key (node key₁ v1 tree tree₁) tree0 st → stackInvariant key tree tree0 (tree ∷ st) |
231 findP1 a .(node key₁ v1 tree tree₁ ∷ []) s-single = {!!} | 240 findP1 a (x ∷ st) si = s-left a si |
232 findP1 a .(node key₁ v1 tree tree₁ ∷ _) (s-right x si) = {!!} | |
233 findP1 a .(node key₁ v1 tree tree₁ ∷ _) (s-left x si) = {!!} | |
234 findP key n@(node key₁ v1 tree tree₁) tree0 st Pre next _ | tri> ¬a ¬b c = next tree₁ tree0 (tree₁ ∷ st) ⟪ treeRightDown tree tree₁ (proj1 Pre) , s-right c (proj2 Pre) ⟫ depth-2< | 241 findP key n@(node key₁ v1 tree tree₁) tree0 st Pre next _ | tri> ¬a ¬b c = next tree₁ tree0 (tree₁ ∷ st) ⟪ treeRightDown tree tree₁ (proj1 Pre) , s-right c (proj2 Pre) ⟫ depth-2< |
235 | 242 |
236 replaceTree1 : {n : Level} {A : Set n} {t t₁ : bt A } → ( k : ℕ ) → (v1 value : A ) → treeInvariant (node k v1 t t₁) → treeInvariant (node k value t t₁) | 243 replaceTree1 : {n : Level} {A : Set n} {t t₁ : bt A } → ( k : ℕ ) → (v1 value : A ) → treeInvariant (node k v1 t t₁) → treeInvariant (node k value t t₁) |
237 replaceTree1 k v1 value (t-single .k .v1) = t-single k value | 244 replaceTree1 k v1 value (t-single .k .v1) = t-single k value |
238 replaceTree1 k v1 value (t-right x t) = t-right x t | 245 replaceTree1 k v1 value (t-right x t) = t-right x t |
239 replaceTree1 k v1 value (t-left x t) = t-left x t | 246 replaceTree1 k v1 value (t-left x t) = t-left x t |
240 replaceTree1 k v1 value (t-node x x₁ t t₁) = t-node x x₁ t t₁ | 247 replaceTree1 k v1 value (t-node x x₁ t t₁) = t-node x x₁ t t₁ |
241 | 248 |
242 open import Relation.Binary.Definitions | 249 open import Relation.Binary.Definitions |
243 | 250 |
244 nat-≤> : { x y : ℕ } → x ≤ y → y < x → ⊥ | |
245 nat-≤> (s≤s x<y) (s≤s y<x) = nat-≤> x<y y<x | |
246 nat-<> : { x y : ℕ } → x < y → y < x → ⊥ | |
247 nat-<> (s≤s x<y) (s≤s y<x) = nat-<> x<y y<x | |
248 lemma3 : {i j : ℕ} → 0 ≡ i → j < i → ⊥ | 251 lemma3 : {i j : ℕ} → 0 ≡ i → j < i → ⊥ |
249 lemma3 refl () | 252 lemma3 refl () |
250 lemma5 : {i j : ℕ} → i < 1 → j < i → ⊥ | 253 lemma5 : {i j : ℕ} → i < 1 → j < i → ⊥ |
251 lemma5 (s≤s z≤n) () | 254 lemma5 (s≤s z≤n) () |
252 | 255 |
260 → (key : ℕ) → (value : A) → {tree0 tree tree-st : bt A} ( repl : bt A) | 263 → (key : ℕ) → (value : A) → {tree0 tree tree-st : bt A} ( repl : bt A) |
261 → (stack : List (bt A)) → treeInvariant tree0 ∧ stackInvariant key tree-st tree0 stack ∧ replacedTree key value tree repl | 264 → (stack : List (bt A)) → treeInvariant tree0 ∧ stackInvariant key tree-st tree0 stack ∧ replacedTree key value tree repl |
262 → (next : ℕ → A → {tree0 tree1 tree-st : bt A } (repl : bt A) → (stack1 : List (bt A)) | 265 → (next : ℕ → A → {tree0 tree1 tree-st : bt A } (repl : bt A) → (stack1 : List (bt A)) |
263 → treeInvariant tree0 ∧ stackInvariant key tree-st tree0 stack1 ∧ replacedTree key value tree1 repl → length stack1 < length stack → t) | 266 → treeInvariant tree0 ∧ stackInvariant key tree-st tree0 stack1 ∧ replacedTree key value tree1 repl → length stack1 < length stack → t) |
264 → (exit : (tree1 repl : bt A) → treeInvariant tree1 ∧ replacedTree key value tree1 repl → t) → t | 267 → (exit : (tree1 repl : bt A) → treeInvariant tree1 ∧ replacedTree key value tree1 repl → t) → t |
265 replaceP key value {tree0} {tree} {tree-st} repl [] Pre next exit with proj1 (proj2 Pre) | 268 replaceP key value {tree0} {tree} {tree-st} repl [] Pre next exit = {!!} -- can't happen |
266 ... | t = {!!} | 269 replaceP key value {tree0} {tree} {tree-st} repl (leaf ∷ []) Pre next exit = exit tree0 (node key value leaf leaf) ? |
267 replaceP {_} {_} {A} key value {tree0} {tree} {tree-st} repl (leaf ∷ []) Pre next exit with proj1 (proj2 Pre) | 270 replaceP key value {tree0} {tree} {tree-st} repl (node key₁ value₁ left right ∷ []) Pre next exit with <-cmp key key₁ |
268 ... | s-single = {!!} | 271 ... | tri< a ¬b ¬c = exit tree0 (node key₁ value₁ tree right ) ? |
269 ... | s-right x t = {!!} | 272 ... | tri≈ ¬a b ¬c = exit tree0 (node key₁ value left right ) ? |
270 ... | s-left x t = {!!} | 273 ... | tri> ¬a ¬b c = exit tree0 (node key₁ value₁ left tree ) ? |
271 replaceP key value {tree0} {tree} {tree-st} repl (leaf ∷ leaf ∷ st) Pre next exit with proj1 (proj2 Pre) | 274 replaceP key value {tree0} {tree} {tree-st} repl (leaf ∷ st@(_ ∷ _)) Pre next exit = {!!} -- exit (node key value leaf leaf) |
272 ... | s-right x t = {!!} | 275 replaceP key value {tree0} {tree} {tree-st} repl (node key₁ value₁ left right ∷ st@(_ ∷ _)) Pre next exit with <-cmp key key₁ |
273 ... | s-left x t = {!!} | 276 ... | tri< a ¬b ¬c = next key value {tree0} (node key₁ value₁ tree right ) st ? ≤-refl |
274 replaceP {_} {_} {A} key value {tree0} {tree} {tree-st} repl (leaf ∷ node key₁ value₁ left right ∷ st) Pre next exit with <-cmp key key₁ | 277 ... | tri≈ ¬a b ¬c = next key value {tree0} (node key₁ value left right ) st ? ≤-refl |
275 ... | tri< a ¬b ¬c = next key value (node key₁ value₁ repl right ) (node key₁ value₁ tree right ∷ st) | 278 ... | tri> ¬a ¬b c = next key value {tree0} (node key₁ value₁ left tree ) st ? ≤-refl |
276 ⟪ proj1 Pre , ⟪ repl5 (proj1 (proj2 Pre)) , r-left a (proj2 (proj2 Pre)) ⟫ ⟫ ≤-refl where | |
277 repl5 : stackInvariant key tree-st tree0 (leaf ∷ node key₁ value₁ left right ∷ st) → stackInvariant key (node key₁ value₁ tree right) tree0 (node key₁ value₁ tree right ∷ st ) | |
278 repl5 si with si-property1 _ _ _ {!!} si | |
279 repl5 (s-right x si ) | refl = s-left a {!!} | |
280 repl5 (s-left x si ) | refl = s-left a {!!} | |
281 ... | tri≈ ¬a b ¬c = next key value (node key₁ value left right) st {!!} depth-3< | |
282 ... | tri> ¬a ¬b c = next key value (node key₁ value₁ repl right) st {!!} depth-3< | |
283 replaceP key value {tree0} {tree} {tree-st} repl (node key₁ value₁ left right ∷ st) Pre next exit with <-cmp key key₁ | |
284 ... | tri> ¬a ¬b c = next key value (node key₁ value₁ repl right ) st {!!} ≤-refl | |
285 ... | tri≈ ¬a b ¬c = next key value (node key value left right ) st {!!} ≤-refl where -- this case won't happen | |
286 ... | tri< a ¬b ¬c with proj1 (proj2 Pre) | |
287 ... | s-single = {!!} | |
288 ... | s-right x si1 = {!!} | |
289 ... | s-left x si1 = next key value (node key₁ value₁ repl right ) st ⟪ proj1 Pre , ⟪ si1 , r-left a (proj2 (proj2 Pre)) ⟫ ⟫ ≤-refl | |
290 -- = next key value (node key₁ value₁ repl right ) st ⟪ proj1 Pre , ⟪ repl2 (proj1 (proj2 Pre)) , r-left a {!!} ⟫ ⟫ ≤-refl where | |
291 -- repl2 : stackInvariant key tree tree0 (node key₁ value₁ left right ∷ st) → stackInvariant key (node key₁ value₁ left right) tree0 st | |
292 -- repl2 (s-single .(node key₁ value₁ left right)) = {!!} | |
293 -- repl2 (s-right {_} {_} {_} {key₂} {v1} x si) with si-property1 _ _ _ _ si | |
294 -- ... | eq = {!!} | |
295 -- repl2 (s-left x si) with si-property1 _ _ _ _ (s-left x si) | |
296 -- ... | refl = {!!} | |
297 | |
298 | 279 |
299 TerminatingLoopS : {l m : Level} {t : Set l} (Index : Set m ) → {Invraiant : Index → Set m } → ( reduce : Index → ℕ) | 280 TerminatingLoopS : {l m : Level} {t : Set l} (Index : Set m ) → {Invraiant : Index → Set m } → ( reduce : Index → ℕ) |
300 → (r : Index) → (p : Invraiant r) | 281 → (r : Index) → (p : Invraiant r) |
301 → (loop : (r : Index) → Invraiant r → (next : (r1 : Index) → Invraiant r1 → reduce r1 < reduce r → t ) → t) → t | 282 → (loop : (r : Index) → Invraiant r → (next : (r1 : Index) → Invraiant r1 → reduce r1 < reduce r → t ) → t) → t |
302 TerminatingLoopS {_} {_} {t} Index {Invraiant} reduce r p loop with <-cmp 0 (reduce r) | 283 TerminatingLoopS {_} {_} {t} Index {Invraiant} reduce r p loop with <-cmp 0 (reduce r) |