Mercurial > hg > Gears > GearsAgda
comparison logic.agda @ 950:5c75fc6dfe59
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 13 Aug 2024 23:03:40 +0900 |
parents | 057d3309ed9d |
children |
comparison
equal
deleted
inserted
replaced
949:057d3309ed9d | 950:5c75fc6dfe59 |
---|---|
89 data Dec0 {n : Level} (A : Set n) : Set n where | 89 data Dec0 {n : Level} (A : Set n) : Set n where |
90 yes0 : A → Dec0 A | 90 yes0 : A → Dec0 A |
91 no0 : (A → ⊥) → Dec0 A | 91 no0 : (A → ⊥) → Dec0 A |
92 | 92 |
93 open _∧_ | 93 open _∧_ |
94 ∧-injective : {n m : Level} {A : Set n} {B : Set m} → {a b : A ∧ B} → proj1 a ≡ proj1 b → proj2 a ≡ proj2 b → a ≡ b | 94 ∧-uniue : {n m : Level} {A : Set n} {B : Set m} → {a b : A ∧ B} → proj1 a ≡ proj1 b → proj2 a ≡ proj2 b → a ≡ b |
95 ∧-injective refl refl = refl | 95 ∧-uniue refl refl = refl |
96 | 96 |
97 not-not-bool : { b : Bool } → not (not b) ≡ b | 97 not-not-bool : { b : Bool } → not (not b) ≡ b |
98 not-not-bool {true} = refl | 98 not-not-bool {true} = refl |
99 not-not-bool {false} = refl | 99 not-not-bool {false} = refl |
100 | 100 |