Mercurial > hg > Gears > GearsAgda
comparison hoareBinaryTree.agda @ 631:956ee8ae42b9
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 10 Nov 2021 10:18:34 +0900 |
parents | 24bec7639079 |
children | b58991f8e2e4 |
comparison
equal
deleted
inserted
replaced
630:24bec7639079 | 631:956ee8ae42b9 |
---|---|
194 record findPR {n : Level} {A : Set n} (key : ℕ) (tree : bt A ) (stack : List (bt A)) (C : bt A → List (bt A) → Set n) : Set n where | 194 record findPR {n : Level} {A : Set n} (key : ℕ) (tree : bt A ) (stack : List (bt A)) (C : bt A → List (bt A) → Set n) : Set n where |
195 field | 195 field |
196 tree0 : bt A | 196 tree0 : bt A |
197 ti : treeInvariant tree0 | 197 ti : treeInvariant tree0 |
198 si : stackInvariant key tree tree0 stack | 198 si : stackInvariant key tree tree0 stack |
199 ci : C tree stack | 199 ci : C tree stack -- data continuation |
200 | 200 |
201 findPP : {n m : Level} {A : Set n} {t : Set m} | 201 findPP : {n m : Level} {A : Set n} {t : Set m} |
202 → (key : ℕ) → (tree : bt A ) → (stack : List (bt A)) | 202 → (key : ℕ) → (tree : bt A ) → (stack : List (bt A)) |
203 → (Pre : findPR key tree stack (λ t s → Lift n ⊤)) | 203 → (Pre : findPR key tree stack (λ t s → Lift n ⊤)) |
204 → (next : (tree1 : bt A) → (stack1 : List (bt A)) → findPR key tree1 stack1 (λ t s → Lift n ⊤) → bt-depth tree1 < bt-depth tree → t ) | 204 → (next : (tree1 : bt A) → (stack1 : List (bt A)) → findPR key tree1 stack1 (λ t s → Lift n ⊤) → bt-depth tree1 < bt-depth tree → t ) |