Mercurial > hg > Gears > GearsAgda
comparison hoareBinaryTree.agda @ 627:967547859521
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 08 Nov 2021 23:17:35 +0900 |
parents | 6465673df5bc |
children | ec2506b532ba |
comparison
equal
deleted
inserted
replaced
626:6465673df5bc | 627:967547859521 |
---|---|
96 → treeInvariant (node key₁ value₁ (node key value t₁ t₂) (node key₂ value₂ t₃ t₄)) | 96 → treeInvariant (node key₁ value₁ (node key value t₁ t₂) (node key₂ value₂ t₃ t₄)) |
97 | 97 |
98 treeInvariantTest1 : treeInvariant (node 3 0 leaf (node 1 1 leaf (node 3 5 leaf leaf))) | 98 treeInvariantTest1 : treeInvariant (node 3 0 leaf (node 1 1 leaf (node 3 5 leaf leaf))) |
99 treeInvariantTest1 = {!!} | 99 treeInvariantTest1 = {!!} |
100 | 100 |
101 data stackInvariant {n : Level} {A : Set n} : (tree tree0 : bt A) → (stack : List (bt A)) → Set n where | 101 data stackInvariant {n : Level} {A : Set n} (key0 : ℕ) : (tree tree0 : bt A) → (stack : List (bt A)) → Set n where |
102 s-nil : stackInvariant leaf leaf [] | 102 s-nil : stackInvariant key0 leaf leaf [] |
103 s-single : (tree : bt A) → stackInvariant tree tree (tree ∷ [] ) | 103 s-single : (tree : bt A) → stackInvariant key0 tree tree (tree ∷ [] ) |
104 s-< : (tree0 tree : bt A) → {key : ℕ } → {value : A } { left : bt A} → {st : List (bt A)} | 104 s-< : (tree0 tree : bt A) → {key : ℕ } → {value : A } { left : bt A} → {st : List (bt A)} |
105 → stackInvariant (node key value left tree ) tree0 (node key value left tree ∷ st ) → stackInvariant tree tree0 (tree ∷ node key value left tree ∷ st ) | 105 → key < key0 → stackInvariant key0(node key value left tree ) tree0 (node key value left tree ∷ st ) → stackInvariant key0 tree tree0 (tree ∷ node key value left tree ∷ st ) |
106 s-> : (tree0 tree : bt A) → {key : ℕ } → {value : A } { right : bt A} → {st : List (bt A)} | 106 s-> : (tree0 tree : bt A) → {key : ℕ } → {value : A } { right : bt A} → {st : List (bt A)} |
107 → stackInvariant (node key value tree right ) tree0 (node key value tree right ∷ st ) → stackInvariant tree tree0 (tree ∷ node key value tree right ∷ st ) | 107 → key0 < key → stackInvariant key0(node key value tree right ) tree0 (node key value tree right ∷ st ) → stackInvariant key0 tree tree0 (tree ∷ node key value tree right ∷ st ) |
108 | 108 |
109 data replacedTree {n : Level} {A : Set n} (key : ℕ) (value : A) : (tree tree1 : bt A ) → Set n where | 109 data replacedTree {n : Level} {A : Set n} (key : ℕ) (value : A) : (tree tree1 : bt A ) → Set n where |
110 r-leaf : replacedTree key value leaf (node key value leaf leaf) | 110 r-leaf : replacedTree key value leaf (node key value leaf leaf) |
111 r-node : {value₁ : A} → {t t₁ : bt A} → replacedTree key value (node key value₁ t t₁) (node key value t t₁) | 111 r-node : {value₁ : A} → {t t₁ : bt A} → replacedTree key value (node key value₁ t t₁) (node key value t t₁) |
112 r-right : {k : ℕ } {v : A} → {t t1 t2 : bt A} | 112 r-right : {k : ℕ } {v : A} → {t t1 t2 : bt A} |
113 → k > key → ( replacedTree key value t1 t2 → replacedTree key value (node k v t t1) (node k v t t2) ) | 113 → k > key → replacedTree key value t1 t2 → replacedTree key value (node k v t t1) (node k v t t2) |
114 r-left : {k : ℕ } {v : A} → {t t1 t2 : bt A} | 114 r-left : {k : ℕ } {v : A} → {t t1 t2 : bt A} |
115 → k < key → ( replacedTree key value t1 t2 → replacedTree key value (node k v t1 t) (node k v t2 t) ) | 115 → k < key → replacedTree key value t1 t2 → replacedTree key value (node k v t1 t) (node k v t2 t) |
116 | 116 |
117 findP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree tree0 : bt A ) → (stack : List (bt A)) | 117 findP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree tree0 : bt A ) → (stack : List (bt A)) |
118 → treeInvariant tree ∧ stackInvariant tree tree0 stack | 118 → treeInvariant tree ∧ stackInvariant key tree tree0 stack |
119 → (next : (tree1 tree0 : bt A) → (stack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant tree1 tree0 stack → bt-depth tree1 < bt-depth tree → t ) | 119 → (next : (tree1 tree0 : bt A) → (stack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant key tree1 tree0 stack → bt-depth tree1 < bt-depth tree → t ) |
120 → (exit : (tree1 tree0 : bt A) → (stack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant tree1 tree0 stack → t ) → t | 120 → (exit : (tree1 tree0 : bt A) → (stack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant key tree1 tree0 stack → t ) → t |
121 findP key leaf tree0 st Pre _ exit = exit leaf tree0 st {!!} | 121 findP key leaf tree0 st Pre _ exit = exit leaf tree0 st {!!} |
122 findP key (node key₁ v tree tree₁) tree0 st Pre next exit with <-cmp key key₁ | 122 findP key (node key₁ v tree tree₁) tree0 st Pre next exit with <-cmp key key₁ |
123 findP key n tree0 st Pre _ exit | tri≈ ¬a b ¬c = exit n tree0 st {!!} | 123 findP key n tree0 st Pre _ exit | tri≈ ¬a b ¬c = exit n tree0 st {!!} |
124 findP key n@(node key₁ v tree tree₁) tree0 st Pre next _ | tri< a ¬b ¬c = next tree tree0 (n ∷ st) {!!} {!!} | 124 findP key n@(node key₁ v tree tree₁) tree0 st Pre next _ | tri< a ¬b ¬c = next tree tree0 (n ∷ st) {!!} {!!} |
125 findP key n@(node key₁ v tree tree₁) tree0 st Pre next _ | tri> ¬a ¬b c = next tree₁ tree0 (n ∷ st) {!!} {!!} | 125 findP key n@(node key₁ v tree tree₁) tree0 st Pre next _ | tri> ¬a ¬b c = next tree₁ tree0 (n ∷ st) {!!} {!!} |
128 → ((tree1 : bt A) → treeInvariant tree1 → replacedTree key value tree tree1 → t) → t | 128 → ((tree1 : bt A) → treeInvariant tree1 → replacedTree key value tree tree1 → t) → t |
129 replaceNodeP k v leaf P next = next (node k v leaf leaf) {!!} {!!} | 129 replaceNodeP k v leaf P next = next (node k v leaf leaf) {!!} {!!} |
130 replaceNodeP k v (node key value t t₁) P next = next (node k v t t₁) {!!} {!!} | 130 replaceNodeP k v (node key value t t₁) P next = next (node k v t t₁) {!!} {!!} |
131 | 131 |
132 replaceP : {n m : Level} {A : Set n} {t : Set m} | 132 replaceP : {n m : Level} {A : Set n} {t : Set m} |
133 → (key : ℕ) → (value : A) → (tree repl : bt A) → (stack : List (bt A)) → treeInvariant tree ∧ stackInvariant repl tree stack ∧ replacedTree key value tree repl | 133 → (key : ℕ) → (value : A) → (tree repl : bt A) → (stack : List (bt A)) → treeInvariant tree ∧ stackInvariant key repl tree stack ∧ replacedTree key value tree repl |
134 → (next : ℕ → A → (tree1 repl : bt A) → (stack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant repl tree1 stack ∧ replacedTree key value tree1 repl → bt-depth tree1 < bt-depth tree → t ) | 134 → (next : ℕ → A → (tree1 repl : bt A) → (stack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant key repl tree1 stack ∧ replacedTree key value tree1 repl → bt-depth tree1 < bt-depth tree → t ) |
135 → (exit : (tree1 repl : bt A) → treeInvariant tree1 ∧ replacedTree key value tree1 repl → t) → t | 135 → (exit : (tree1 repl : bt A) → treeInvariant tree1 ∧ replacedTree key value tree1 repl → t) → t |
136 replaceP key value tree repl [] Pre next exit = exit tree repl {!!} | 136 replaceP key value tree repl [] Pre next exit = exit tree repl {!!} |
137 replaceP key value tree repl (leaf ∷ st) Pre next exit = next key value tree {!!} st {!!} {!!} | 137 replaceP key value tree repl (leaf ∷ st) Pre next exit = next key value tree {!!} st {!!} {!!} |
138 replaceP key value tree repl (node key₁ value₁ left right ∷ st) Pre next exit with <-cmp key key₁ | 138 replaceP key value tree repl (node key₁ value₁ left right ∷ st) Pre next exit with <-cmp key key₁ |
139 ... | tri< a ¬b ¬c = next key value (node key₁ value₁ tree right ) {!!} st {!!} {!!} | 139 ... | tri< a ¬b ¬c = next key value (node key₁ value₁ tree right ) {!!} st {!!} {!!} |
173 RTtoTI1 = {!!} | 173 RTtoTI1 = {!!} |
174 | 174 |
175 insertTreeP : {n m : Level} {A : Set n} {t : Set m} → (tree : bt A) → (key : ℕ) → (value : A) → treeInvariant tree | 175 insertTreeP : {n m : Level} {A : Set n} {t : Set m} → (tree : bt A) → (key : ℕ) → (value : A) → treeInvariant tree |
176 → (exit : (tree repl : bt A) → treeInvariant tree ∧ replacedTree key value tree repl → t ) → t | 176 → (exit : (tree repl : bt A) → treeInvariant tree ∧ replacedTree key value tree repl → t ) → t |
177 insertTreeP {n} {m} {A} {t} tree key value P exit = | 177 insertTreeP {n} {m} {A} {t} tree key value P exit = |
178 TerminatingLoopS (bt A ∧ List (bt A) ) {λ p → treeInvariant (proj1 p) ∧ stackInvariant (proj1 p) tree (proj2 p) } (λ p → bt-depth (proj1 p)) ⟪ tree , [] ⟫ ⟪ P , {!!} ⟫ | 178 TerminatingLoopS (bt A ∧ List (bt A) ) {λ p → treeInvariant (proj1 p) ∧ stackInvariant key (proj1 p) tree (proj2 p) } (λ p → bt-depth (proj1 p)) ⟪ tree , [] ⟫ ⟪ P , {!!} ⟫ |
179 $ λ p P loop → findP key (proj1 p) tree (proj2 p) {!!} (λ t _ s P1 lt → loop ⟪ t , s ⟫ {!!} lt ) | 179 $ λ p P loop → findP key (proj1 p) tree (proj2 p) {!!} (λ t _ s P1 lt → loop ⟪ t , s ⟫ {!!} lt ) |
180 $ λ t _ s P → replaceNodeP key value t (proj1 P) | 180 $ λ t _ s P → replaceNodeP key value t (proj1 P) |
181 $ λ t1 P1 R → TerminatingLoopS (List (bt A) ∧ (bt A ∧ bt A )) | 181 $ λ t1 P1 R → TerminatingLoopS (List (bt A) ∧ (bt A ∧ bt A )) |
182 {λ p → treeInvariant (proj1 (proj2 p)) ∧ stackInvariant (proj1 (proj2 p)) tree (proj1 p) ∧ replacedTree key value (proj1 (proj2 p)) (proj2 (proj2 p)) } | 182 {λ p → treeInvariant (proj1 (proj2 p)) ∧ stackInvariant key (proj1 (proj2 p)) tree (proj1 p) ∧ replacedTree key value (proj1 (proj2 p)) (proj2 (proj2 p)) } |
183 (λ p → bt-depth (proj1 (proj2 p))) ⟪ s , ⟪ t , t1 ⟫ ⟫ ⟪ proj1 P , ⟪ {!!} , R ⟫ ⟫ | 183 (λ p → bt-depth (proj1 (proj2 p))) ⟪ s , ⟪ t , t1 ⟫ ⟫ ⟪ proj1 P , ⟪ {!!} , R ⟫ ⟫ |
184 $ λ p P1 loop → replaceP key value (proj1 (proj2 p)) (proj2 (proj2 p)) (proj1 p) {!!} | 184 $ λ p P1 loop → replaceP key value (proj1 (proj2 p)) (proj2 (proj2 p)) (proj1 p) {!!} |
185 (λ key value tree1 repl1 stack P2 lt → loop ⟪ stack , ⟪ tree1 , repl1 ⟫ ⟫ {!!} lt ) exit | 185 (λ key value tree1 repl1 stack P2 lt → loop ⟪ stack , ⟪ tree1 , repl1 ⟫ ⟫ {!!} lt ) exit |
186 | 186 |
187 top-value : {n : Level} {A : Set n} → (tree : bt A) → Maybe A | 187 top-value : {n : Level} {A : Set n} → (tree : bt A) → Maybe A |
189 top-value (node key value tree tree₁) = just value | 189 top-value (node key value tree tree₁) = just value |
190 | 190 |
191 insertTreeSpec0 : {n : Level} {A : Set n} → (tree : bt A) → (value : A) → top-value tree ≡ just value → ⊤ | 191 insertTreeSpec0 : {n : Level} {A : Set n} → (tree : bt A) → (value : A) → top-value tree ≡ just value → ⊤ |
192 insertTreeSpec0 _ _ _ = tt | 192 insertTreeSpec0 _ _ _ = tt |
193 | 193 |
194 record findPR {n : Level} {A : Set n} (tree : bt A ) (stack : List (bt A)) (C : bt A → List (bt A) → Set n) : Set n where | 194 record findPR {n : Level} {A : Set n} (key : ℕ) (tree : bt A ) (stack : List (bt A)) (C : bt A → List (bt A) → Set n) : Set n where |
195 field | 195 field |
196 tree0 : bt A | 196 tree0 : bt A |
197 ti : treeInvariant tree0 | 197 ti : treeInvariant tree0 |
198 si : stackInvariant tree tree0 stack | 198 si : stackInvariant key tree tree0 stack |
199 ci : C tree stack | 199 ci : C tree stack |
200 | 200 |
201 findPP : {n m : Level} {A : Set n} {t : Set m} | 201 findPP : {n m : Level} {A : Set n} {t : Set m} |
202 → (key : ℕ) → (tree : bt A ) → (stack : List (bt A)) | 202 → (key : ℕ) → (tree : bt A ) → (stack : List (bt A)) |
203 → (Pre : findPR tree stack (λ t s → Lift n ⊤)) | 203 → (Pre : findPR key tree stack (λ t s → Lift n ⊤)) |
204 → (next : (tree1 : bt A) → (stack1 : List (bt A)) → findPR tree1 stack1 (λ t s → Lift n ⊤) → bt-depth tree1 < bt-depth tree → t ) | 204 → (next : (tree1 : bt A) → (stack1 : List (bt A)) → findPR key tree1 stack1 (λ t s → Lift n ⊤) → bt-depth tree1 < bt-depth tree → t ) |
205 → (exit : (tree1 : bt A) → (stack1 : List (bt A)) → ( tree1 ≡ leaf ) ∨ ( node-key tree1 ≡ just key) → findPR tree1 stack1 (λ t s → Lift n ⊤) → t) → t | 205 → (exit : (tree1 : bt A) → (stack1 : List (bt A)) → ( tree1 ≡ leaf ) ∨ ( node-key tree1 ≡ just key) → findPR key tree1 stack1 (λ t s → Lift n ⊤) → t) → t |
206 findPP key leaf st Pre next exit = exit leaf st (case1 refl) Pre | 206 findPP key leaf st Pre next exit = exit leaf st (case1 refl) Pre |
207 findPP key (node key₁ v tree tree₁) st Pre next exit with <-cmp key key₁ | 207 findPP key (node key₁ v tree tree₁) st Pre next exit with <-cmp key key₁ |
208 findPP key n st P next exit | tri≈ ¬a b ¬c = exit n st (case2 {!!}) P | 208 findPP key n st P next exit | tri≈ ¬a b ¬c = exit n st (case2 {!!}) P |
209 findPP {_} {_} {A} key n@(node key₁ v tree tree₁) st Pre next exit | tri< a ¬b ¬c = | 209 findPP {_} {_} {A} key n@(node key₁ v tree tree₁) st Pre next exit | tri< a ¬b ¬c = |
210 next tree (n ∷ st) (record {ti = findPR.ti Pre ; si = findPP2 st (findPR.si Pre) ; ci = lift tt} ) findPP1 where | 210 next tree (n ∷ st) (record {ti = findPR.ti Pre ; si = findPP2 st (findPR.si Pre) ; ci = lift tt} ) findPP1 where |
211 tree0 = findPR.tree0 Pre | 211 tree0 = findPR.tree0 Pre |
212 findPP2 : (st : List (bt A)) → stackInvariant {!!} tree0 st → stackInvariant {!!} tree0 (node key₁ v tree tree₁ ∷ st) | 212 findPP2 : (st : List (bt A)) → stackInvariant key {!!} tree0 st → stackInvariant key {!!} tree0 (node key₁ v tree tree₁ ∷ st) |
213 findPP2 = {!!} | 213 findPP2 = {!!} |
214 findPP1 : suc ( bt-depth tree ) ≤ suc (bt-depth tree Data.Nat.⊔ bt-depth tree₁) | 214 findPP1 : suc ( bt-depth tree ) ≤ suc (bt-depth tree Data.Nat.⊔ bt-depth tree₁) |
215 findPP1 = {!!} | 215 findPP1 = {!!} |
216 findPP key n@(node key₁ v tree tree₁) st Pre next exit | tri> ¬a ¬b c = next tree₁ (n ∷ st) {!!} findPP2 where -- Cond n st → Cond tree₁ (n ∷ st) | 216 findPP key n@(node key₁ v tree tree₁) st Pre next exit | tri> ¬a ¬b c = next tree₁ (n ∷ st) {!!} findPP2 where -- Cond n st → Cond tree₁ (n ∷ st) |
217 findPP2 : suc (bt-depth tree₁) ≤ suc (bt-depth tree Data.Nat.⊔ bt-depth tree₁) | 217 findPP2 : suc (bt-depth tree₁) ≤ suc (bt-depth tree Data.Nat.⊔ bt-depth tree₁) |
218 findPP2 = {!!} | 218 findPP2 = {!!} |
219 | 219 |
220 insertTreePP : {n m : Level} {A : Set n} {t : Set m} → (tree : bt A) → (key : ℕ) → (value : A) → treeInvariant tree | 220 insertTreePP : {n m : Level} {A : Set n} {t : Set m} → (tree : bt A) → (key : ℕ) → (value : A) → treeInvariant tree |
221 → (exit : (tree repl : bt A) → treeInvariant tree ∧ replacedTree key value tree repl → t ) → t | 221 → (exit : (tree repl : bt A) → treeInvariant tree ∧ replacedTree key value tree repl → t ) → t |
222 insertTreePP {n} {m} {A} {t} tree key value P exit = | 222 insertTreePP {n} {m} {A} {t} tree key value P exit = |
223 TerminatingLoopS (bt A ∧ List (bt A) ) {λ p → findPR (proj1 p) (proj2 p) (λ t s → Lift n ⊤) } (λ p → bt-depth (proj1 p)) ⟪ tree , [] ⟫ {!!} | 223 TerminatingLoopS (bt A ∧ List (bt A) ) {λ p → findPR key (proj1 p) (proj2 p) (λ t s → Lift n ⊤) } (λ p → bt-depth (proj1 p)) ⟪ tree , [] ⟫ {!!} |
224 $ λ p P loop → findPP key (proj1 p) (proj2 p) {!!} (λ t s P1 lt → loop ⟪ t , s ⟫ {!!} lt ) | 224 $ λ p P loop → findPP key (proj1 p) (proj2 p) {!!} (λ t s P1 lt → loop ⟪ t , s ⟫ {!!} lt ) |
225 $ λ t s _ P → replaceNodeP key value t {!!} | 225 $ λ t s _ P → replaceNodeP key value t {!!} |
226 $ λ t1 P1 R → TerminatingLoopS (List (bt A) ∧ (bt A ∧ bt A )) | 226 $ λ t1 P1 R → TerminatingLoopS (List (bt A) ∧ (bt A ∧ bt A )) |
227 {λ p → treeInvariant (proj1 (proj2 p)) ∧ stackInvariant (proj1 (proj2 p)) tree (proj1 p) ∧ replacedTree key value (proj1 (proj2 p)) (proj2 (proj2 p)) } | 227 {λ p → treeInvariant (proj1 (proj2 p)) ∧ stackInvariant key (proj1 (proj2 p)) tree (proj1 p) ∧ replacedTree key value (proj1 (proj2 p)) (proj2 (proj2 p)) } |
228 (λ p → bt-depth (proj1 (proj2 p))) ⟪ s , ⟪ t , t1 ⟫ ⟫ ⟪ {!!} , ⟪ {!!} , R ⟫ ⟫ | 228 (λ p → bt-depth (proj1 (proj2 p))) ⟪ s , ⟪ t , t1 ⟫ ⟫ ⟪ {!!} , ⟪ {!!} , R ⟫ ⟫ |
229 $ λ p P1 loop → replaceP key value (proj1 (proj2 p)) (proj2 (proj2 p)) (proj1 p) {!!} | 229 $ λ p P1 loop → replaceP key value (proj1 (proj2 p)) (proj2 (proj2 p)) (proj1 p) {!!} |
230 (λ key value tree1 repl1 stack P2 lt → loop ⟪ stack , ⟪ tree1 , repl1 ⟫ ⟫ {!!} lt ) exit | 230 (λ key value tree1 repl1 stack P2 lt → loop ⟪ stack , ⟪ tree1 , repl1 ⟫ ⟫ {!!} lt ) exit |
231 | 231 |
232 -- findP key tree stack = findPP key tree stack {findPR} → record { ti = tree-invariant tree ; si stack-invariant tree stack } → | 232 -- findP key tree stack = findPP key tree stack {findPR} → record { ti = tree-invariant tree ; si stack-invariant tree stack } → |
238 tree1 : bt A | 238 tree1 : bt A |
239 ci : replacedTree key1 value1 tree tree1 | 239 ci : replacedTree key1 value1 tree tree1 |
240 | 240 |
241 findPPC : {n m : Level} {A : Set n} {t : Set m} | 241 findPPC : {n m : Level} {A : Set n} {t : Set m} |
242 → (key : ℕ) → (tree : bt A ) → (stack : List (bt A)) | 242 → (key : ℕ) → (tree : bt A ) → (stack : List (bt A)) |
243 → (Pre : findPR tree stack findP-contains) | 243 → (Pre : findPR key tree stack findP-contains) |
244 → (next : (tree1 : bt A) → (stack1 : List (bt A)) → findPR tree1 stack1 findP-contains → bt-depth tree1 < bt-depth tree → t ) | 244 → (next : (tree1 : bt A) → (stack1 : List (bt A)) → findPR key tree1 stack1 findP-contains → bt-depth tree1 < bt-depth tree → t ) |
245 → (exit : (tree1 : bt A) → (stack1 : List (bt A)) → ( tree1 ≡ leaf ) ∨ ( node-key tree1 ≡ just key) → findPR tree1 stack1 findP-contains → t) → t | 245 → (exit : (tree1 : bt A) → (stack1 : List (bt A)) → ( tree1 ≡ leaf ) ∨ ( node-key tree1 ≡ just key) → findPR key tree1 stack1 findP-contains → t) → t |
246 findPPC = {!!} | 246 findPPC = {!!} |
247 | 247 |
248 containsTree : {n m : Level} {A : Set n} {t : Set m} → (tree tree1 : bt A) → (key : ℕ) → (value : A) → treeInvariant tree1 → replacedTree key value tree1 tree → ⊤ | 248 containsTree : {n m : Level} {A : Set n} {t : Set m} → (tree tree1 : bt A) → (key : ℕ) → (value : A) → treeInvariant tree1 → replacedTree key value tree1 tree → ⊤ |
249 containsTree {n} {m} {A} {t} tree tree1 key value P RT = | 249 containsTree {n} {m} {A} {t} tree tree1 key value P RT = |
250 TerminatingLoopS (bt A ∧ List (bt A) ) | 250 TerminatingLoopS (bt A ∧ List (bt A) ) |
251 {λ p → findPR (proj1 p) (proj2 p) findP-contains } (λ p → bt-depth (proj1 p)) | 251 {λ p → findPR key (proj1 p) (proj2 p) findP-contains } (λ p → bt-depth (proj1 p)) |
252 ⟪ tree1 , [] ⟫ {!!} | 252 ⟪ tree1 , [] ⟫ {!!} |
253 $ λ p P loop → findPPC key (proj1 p) (proj2 p) {!!} (λ t s P1 lt → loop ⟪ t , s ⟫ {!!} lt ) | 253 $ λ p P loop → findPPC key (proj1 p) (proj2 p) {!!} (λ t s P1 lt → loop ⟪ t , s ⟫ {!!} lt ) |
254 $ λ t1 s1 found? P2 → insertTreeSpec0 t1 value {!!} where | 254 $ λ t1 s1 found? P2 → insertTreeSpec0 t1 value (lemma7 {!!} {!!} found? ) where |
255 lemma7 : {key : ℕ } {value1 : A } {t1 tree : bt A } { s1 : List (bt A) } → | 255 lemma7 : {key : ℕ } {value1 : A } {t1 tree : bt A } { s1 : List (bt A) } → |
256 replacedTree key value1 tree t1 → stackInvariant t1 tree s1 → ( t1 ≡ leaf ) ∨ ( node-key t1 ≡ just key) → node-key t1 ≡ just key | 256 replacedTree key value1 tree t1 → stackInvariant key t1 tree s1 → ( t1 ≡ leaf ) ∨ ( node-key t1 ≡ just key) → top-value t1 ≡ just value |
257 lemma7 {key} {value1} {.(node key value1 leaf leaf)} {leaf} r-leaf s (case1 ()) | 257 lemma7 = ? |
258 lemma7 {key} {value1} {.(node key value1 leaf leaf)} {leaf} r-leaf s (case2 x) = x | 258 |
259 lemma7 {.key₁} {value1} {.(node key₁ value1 s1 s2)} {node key₁ value s1 s2} r-node s or = {!!} | |
260 lemma7 {key} {value1} {.(node key₁ value s1 _)} {node key₁ value s1 s2} (r-right x r) s or = {!!} | |
261 lemma7 {key} {value1} {.(node key₁ value _ s2)} {node key₁ value s1 s2} (r-left x r) s or = {!!} | |
262 |