Mercurial > hg > Gears > GearsAgda
comparison hoareBinaryTree.agda @ 632:b58991f8e2e4
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 11 Nov 2021 15:48:36 +0900 |
parents | 956ee8ae42b9 |
children | 119f340c0b10 |
comparison
equal
deleted
inserted
replaced
631:956ee8ae42b9 | 632:b58991f8e2e4 |
---|---|
46 bt-depth (node key value t t₁) = suc (Data.Nat._⊔_ (bt-depth t ) (bt-depth t₁ )) | 46 bt-depth (node key value t t₁) = suc (Data.Nat._⊔_ (bt-depth t ) (bt-depth t₁ )) |
47 | 47 |
48 find : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree : bt A ) → List (bt A) | 48 find : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree : bt A ) → List (bt A) |
49 → (next : bt A → List (bt A) → t ) → (exit : bt A → List (bt A) → t ) → t | 49 → (next : bt A → List (bt A) → t ) → (exit : bt A → List (bt A) → t ) → t |
50 find key leaf st _ exit = exit leaf st | 50 find key leaf st _ exit = exit leaf st |
51 find key (node key₁ v tree tree₁) st next exit with <-cmp key key₁ | 51 find key (node key₁ v1 tree tree₁) st next exit with <-cmp key key₁ |
52 find key n st _ exit | tri≈ ¬a b ¬c = exit n st | 52 find key n st _ exit | tri≈ ¬a b ¬c = exit n st |
53 find key n@(node key₁ v tree tree₁) st next _ | tri< a ¬b ¬c = next tree (n ∷ st) | 53 find key n@(node key₁ v1 tree tree₁) st next _ | tri< a ¬b ¬c = next tree (n ∷ st) |
54 find key n@(node key₁ v tree tree₁) st next _ | tri> ¬a ¬b c = next tree₁ (n ∷ st) | 54 find key n@(node key₁ v1 tree tree₁) st next _ | tri> ¬a ¬b c = next tree₁ (n ∷ st) |
55 | 55 |
56 {-# TERMINATING #-} | 56 {-# TERMINATING #-} |
57 find-loop : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → bt A → List (bt A) → (exit : bt A → List (bt A) → t) → t | 57 find-loop : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → bt A → List (bt A) → (exit : bt A → List (bt A) → t) → t |
58 find-loop {n} {m} {A} {t} key tree st exit = find-loop1 tree st where | 58 find-loop {n} {m} {A} {t} key tree st exit = find-loop1 tree st where |
59 find-loop1 : bt A → List (bt A) → t | 59 find-loop1 : bt A → List (bt A) → t |
60 find-loop1 tree st = find key tree st find-loop1 exit | 60 find-loop1 tree st = find key tree st find-loop1 exit |
61 | 61 |
62 replaceNode : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → bt A → (bt A → t) → t | 62 replaceNode : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → bt A → (bt A → t) → t |
63 replaceNode k v leaf next = next (node k v leaf leaf) | 63 replaceNode k v1 leaf next = next (node k v1 leaf leaf) |
64 replaceNode k v (node key value t t₁) next = next (node k v t t₁) | 64 replaceNode k v1 (node key value t t₁) next = next (node k v1 t t₁) |
65 | 65 |
66 replace : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → bt A → List (bt A) → (next : ℕ → A → bt A → List (bt A) → t ) → (exit : bt A → t) → t | 66 replace : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → bt A → List (bt A) → (next : ℕ → A → bt A → List (bt A) → t ) → (exit : bt A → t) → t |
67 replace key value tree [] next exit = exit tree | 67 replace key value tree [] next exit = exit tree |
68 replace key value tree (leaf ∷ st) next exit = next key value tree st | 68 replace key value tree (leaf ∷ st) next exit = next key value tree st |
69 replace key value tree (node key₁ value₁ left right ∷ st) next exit with <-cmp key key₁ | 69 replace key value tree (node key₁ value₁ left right ∷ st) next exit with <-cmp key key₁ |
85 | 85 |
86 open import Data.Unit hiding ( _≟_ ; _≤?_ ; _≤_) | 86 open import Data.Unit hiding ( _≟_ ; _≤?_ ; _≤_) |
87 | 87 |
88 data treeInvariant {n : Level} {A : Set n} : (tree : bt A) → Set n where | 88 data treeInvariant {n : Level} {A : Set n} : (tree : bt A) → Set n where |
89 t-leaf : treeInvariant leaf | 89 t-leaf : treeInvariant leaf |
90 t-single : {key : ℕ} → {value : A} → treeInvariant (node key value leaf leaf) | 90 t-single : (key : ℕ) → (value : A) → treeInvariant (node key value leaf leaf) |
91 t-right : {key key₁ : ℕ} → {value value₁ : A} → {t₁ t₂ : bt A} → (key < key₁) → treeInvariant (node key₁ value₁ t₁ t₂) → treeInvariant (node key value leaf (node key₁ value₁ t₁ t₂)) | 91 t-right : {key key₁ : ℕ} → {value value₁ : A} → {t₁ t₂ : bt A} → (key < key₁) → treeInvariant (node key₁ value₁ t₁ t₂) |
92 t-left : {key key₁ : ℕ} → {value value₁ : A} → {t₁ t₂ : bt A} → (key₁ < key) → treeInvariant (node key value₁ t₁ t₂) → treeInvariant (node key₁ value₁ (node key value₁ t₁ t₂) leaf ) | 92 → treeInvariant (node key value leaf (node key₁ value₁ t₁ t₂)) |
93 t-left : {key key₁ : ℕ} → {value value₁ : A} → {t₁ t₂ : bt A} → (key₁ < key) → treeInvariant (node key value t₁ t₂) | |
94 → treeInvariant (node key₁ value₁ (node key value t₁ t₂) leaf ) | |
93 t-node : {key key₁ key₂ : ℕ} → {value value₁ value₂ : A} → {t₁ t₂ t₃ t₄ : bt A} → (key < key₁) → (key₁ < key₂) | 95 t-node : {key key₁ key₂ : ℕ} → {value value₁ value₂ : A} → {t₁ t₂ t₃ t₄ : bt A} → (key < key₁) → (key₁ < key₂) |
94 → treeInvariant (node key value t₁ t₂) | 96 → treeInvariant (node key value t₁ t₂) |
95 → treeInvariant (node key₂ value₂ t₃ t₄) | 97 → treeInvariant (node key₂ value₂ t₃ t₄) |
96 → treeInvariant (node key₁ value₁ (node key value t₁ t₂) (node key₂ value₂ t₃ t₄)) | 98 → treeInvariant (node key₁ value₁ (node key value t₁ t₂) (node key₂ value₂ t₃ t₄)) |
97 | 99 |
98 treeInvariantTest1 : treeInvariant (node 3 0 leaf (node 1 1 leaf (node 3 5 leaf leaf))) | 100 add< : { i : ℕ } (j : ℕ ) → i < suc i + j |
99 treeInvariantTest1 = {!!} | 101 add< {i} j = begin |
102 suc i ≤⟨ m≤m+n (suc i) j ⟩ | |
103 suc i + j ∎ where open ≤-Reasoning | |
104 | |
105 treeTest1 : bt ℕ | |
106 treeTest1 = node 1 0 leaf (node 3 1 (node 2 5 (node 4 7 leaf leaf ) leaf) (node 5 5 leaf leaf)) | |
107 treeTest2 : bt ℕ | |
108 treeTest2 = node 3 1 (node 2 5 (node 4 7 leaf leaf ) leaf) (node 5 5 leaf leaf) | |
109 | |
110 treeInvariantTest1 : treeInvariant treeTest1 | |
111 treeInvariantTest1 = t-right (m≤m+n _ 1) (t-node (add< 0) (add< 1) (t-left (add< 1) (t-single 4 7)) (t-single 5 5) ) | |
100 | 112 |
101 data stackInvariant {n : Level} {A : Set n} (key0 : ℕ) : (tree tree0 : bt A) → (stack : List (bt A)) → Set n where | 113 data stackInvariant {n : Level} {A : Set n} (key0 : ℕ) : (tree tree0 : bt A) → (stack : List (bt A)) → Set n where |
102 s-nil : stackInvariant key0 leaf leaf [] | 114 s-nil : stackInvariant key0 leaf leaf [] |
103 s-single : (tree : bt A) → stackInvariant key0 tree tree (tree ∷ [] ) | 115 s-single : (tree : bt A) → stackInvariant key0 tree tree (tree ∷ [] ) |
104 s-right : (tree0 tree : bt A) → {key : ℕ } → {value : A } { left : bt A} → {st : List (bt A)} | 116 s-right : {tree0 tree : bt A} → {key : ℕ } → {value : A } { left : bt A} → {st : List (bt A)} |
105 → key < key0 → stackInvariant key0(node key value left tree ) tree0 (node key value left tree ∷ st ) → stackInvariant key0 tree tree0 (tree ∷ node key value left tree ∷ st ) | 117 → key < key0 → stackInvariant key0(node key value left tree ) tree0 (node key value left tree ∷ st ) → stackInvariant key0 tree tree0 (tree ∷ node key value left tree ∷ st ) |
106 s-left : (tree0 tree : bt A) → {key : ℕ } → {value : A } { right : bt A} → {st : List (bt A)} | 118 s-left : {tree0 tree : bt A} → {key : ℕ } → {value : A } { right : bt A} → {st : List (bt A)} |
107 → key0 < key → stackInvariant key0(node key value tree right ) tree0 (node key value tree right ∷ st ) → stackInvariant key0 tree tree0 (tree ∷ node key value tree right ∷ st ) | 119 → key0 < key → stackInvariant key0(node key value tree right ) tree0 (node key value tree right ∷ st ) → stackInvariant key0 tree tree0 (tree ∷ node key value tree right ∷ st ) |
120 | |
121 stackInvariantTest0 : stackInvariant {_} {ℕ} 1 leaf leaf [] | |
122 stackInvariantTest0 = s-nil | |
123 | |
124 stackInvariantTest1 : stackInvariant 3 treeTest2 treeTest1 ( treeTest2 ∷ treeTest1 ∷ [] ) | |
125 stackInvariantTest1 = s-right (add< 1) (s-single treeTest1 ) | |
108 | 126 |
109 data replacedTree {n : Level} {A : Set n} (key : ℕ) (value : A) : (tree tree1 : bt A ) → Set n where | 127 data replacedTree {n : Level} {A : Set n} (key : ℕ) (value : A) : (tree tree1 : bt A ) → Set n where |
110 r-leaf : replacedTree key value leaf (node key value leaf leaf) | 128 r-leaf : replacedTree key value leaf (node key value leaf leaf) |
111 r-node : {value₁ : A} → {t t₁ : bt A} → replacedTree key value (node key value₁ t t₁) (node key value t t₁) | 129 r-node : {value₁ : A} → {t t₁ : bt A} → replacedTree key value (node key value₁ t t₁) (node key value t t₁) |
112 r-right : {k : ℕ } {v : A} → {t t1 t2 : bt A} | 130 r-right : {k : ℕ } {v1 : A} → {t t1 t2 : bt A} |
113 → k > key → replacedTree key value t1 t2 → replacedTree key value (node k v t t1) (node k v t t2) | 131 → k > key → replacedTree key value t1 t2 → replacedTree key value (node k v1 t t1) (node k v1 t t2) |
114 r-left : {k : ℕ } {v : A} → {t t1 t2 : bt A} | 132 r-left : {k : ℕ } {v1 : A} → {t t1 t2 : bt A} |
115 → k < key → replacedTree key value t1 t2 → replacedTree key value (node k v t1 t) (node k v t2 t) | 133 → k < key → replacedTree key value t1 t2 → replacedTree key value (node k v1 t1 t) (node k v1 t2 t) |
134 | |
135 depth-1< : {i j : ℕ} → suc i ≤ suc (i Data.Nat.⊔ j ) | |
136 depth-1< {i} {j} = s≤s (m≤m⊔n _ j) | |
137 | |
138 depth-2< : {i j : ℕ} → suc i ≤ suc (j Data.Nat.⊔ i ) | |
139 depth-2< {i} {j} = s≤s (m≤n⊔m _ i) | |
116 | 140 |
117 findP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree tree0 : bt A ) → (stack : List (bt A)) | 141 findP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree tree0 : bt A ) → (stack : List (bt A)) |
118 → treeInvariant tree ∧ stackInvariant key tree tree0 stack | 142 → treeInvariant tree ∧ stackInvariant key tree tree0 stack |
119 → (next : (tree1 tree0 : bt A) → (stack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant key tree1 tree0 stack → bt-depth tree1 < bt-depth tree → t ) | 143 → (next : (tree1 tree0 : bt A) → (stack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant key tree1 tree0 stack → bt-depth tree1 < bt-depth tree → t ) |
120 → (exit : (tree1 tree0 : bt A) → (stack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant key tree1 tree0 stack → t ) → t | 144 → (exit : (tree1 tree0 : bt A) → (stack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant key tree1 tree0 stack → t ) → t |
121 findP key leaf tree0 st Pre _ exit = exit leaf tree0 st Pre | 145 findP key leaf tree0 st Pre _ exit = exit leaf tree0 st Pre |
122 findP key (node key₁ v tree tree₁) tree0 st Pre next exit with <-cmp key key₁ | 146 findP key (node key₁ v1 tree tree₁) tree0 st Pre next exit with <-cmp key key₁ |
123 findP key n tree0 st Pre _ exit | tri≈ ¬a b ¬c = exit n tree0 st Pre | 147 findP key n tree0 st Pre _ exit | tri≈ ¬a b ¬c = exit n tree0 st Pre |
124 findP key n@(node key₁ v tree tree₁) tree0 st Pre next _ | tri< a ¬b ¬c = next tree tree0 (n ∷ st) {!!} {!!} | 148 findP key n@(node key₁ v1 tree tree₁) tree0 st Pre next _ | tri< a ¬b ¬c = next tree tree0 (n ∷ st) {!!} depth-1< |
125 findP key n@(node key₁ v tree tree₁) tree0 st Pre next _ | tri> ¬a ¬b c = next tree₁ tree0 (n ∷ st) {!!} {!!} | 149 findP key n@(node key₁ v1 tree tree₁) tree0 st Pre next _ | tri> ¬a ¬b c = next tree₁ tree0 (n ∷ st) {!!} depth-2< |
150 -- Pre : treeInvariant (node key₁ v1 tree tree₁) | |
151 -- → treeInvariant tree ∧ | |
152 -- stackInvariant key (node key₁ v1 tree tree₁) tree0 st | |
153 - → stackInvariant key tree tree0 (node key₁ v1 tree tree₁ ∷ st) | |
154 | |
126 | 155 |
127 replaceNodeP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → (tree : bt A) → (treeInvariant tree ) | 156 replaceNodeP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → (tree : bt A) → (treeInvariant tree ) |
128 → ((tree1 : bt A) → treeInvariant tree1 → replacedTree key value tree tree1 → t) → t | 157 → ((tree1 : bt A) → treeInvariant tree1 → replacedTree key value tree tree1 → t) → t |
129 replaceNodeP k v leaf P next = next (node k v leaf leaf) {!!} {!!} | 158 replaceNodeP k v1 leaf P next = next (node k v1 leaf leaf) {!!} {!!} |
130 replaceNodeP k v (node key value t t₁) P next = next (node k v t t₁) {!!} {!!} | 159 replaceNodeP k v1 (node key value t t₁) P next = next (node k v1 t t₁) {!!} {!!} |
131 | 160 |
132 replaceP : {n m : Level} {A : Set n} {t : Set m} | 161 replaceP : {n m : Level} {A : Set n} {t : Set m} |
133 → (key : ℕ) → (value : A) → (tree repl : bt A) → (stack : List (bt A)) → treeInvariant tree ∧ stackInvariant key repl tree stack ∧ replacedTree key value tree repl | 162 → (key : ℕ) → (value : A) → (tree repl : bt A) → (stack : List (bt A)) → treeInvariant tree ∧ stackInvariant key repl tree stack ∧ replacedTree key value tree repl |
134 → (next : ℕ → A → (tree1 repl : bt A) → (stack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant key repl tree1 stack ∧ replacedTree key value tree1 repl → bt-depth tree1 < bt-depth tree → t ) | 163 → (next : ℕ → A → (tree1 repl : bt A) → (stack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant key repl tree1 stack ∧ replacedTree key value tree1 repl → bt-depth tree1 < bt-depth tree → t ) |
135 → (exit : (tree1 repl : bt A) → treeInvariant tree1 ∧ replacedTree key value tree1 repl → t) → t | 164 → (exit : (tree1 repl : bt A) → treeInvariant tree1 ∧ replacedTree key value tree1 repl → t) → t |
202 → (key : ℕ) → (tree : bt A ) → (stack : List (bt A)) | 231 → (key : ℕ) → (tree : bt A ) → (stack : List (bt A)) |
203 → (Pre : findPR key tree stack (λ t s → Lift n ⊤)) | 232 → (Pre : findPR key tree stack (λ t s → Lift n ⊤)) |
204 → (next : (tree1 : bt A) → (stack1 : List (bt A)) → findPR key tree1 stack1 (λ t s → Lift n ⊤) → bt-depth tree1 < bt-depth tree → t ) | 233 → (next : (tree1 : bt A) → (stack1 : List (bt A)) → findPR key tree1 stack1 (λ t s → Lift n ⊤) → bt-depth tree1 < bt-depth tree → t ) |
205 → (exit : (tree1 : bt A) → (stack1 : List (bt A)) → ( tree1 ≡ leaf ) ∨ ( node-key tree1 ≡ just key) → findPR key tree1 stack1 (λ t s → Lift n ⊤) → t) → t | 234 → (exit : (tree1 : bt A) → (stack1 : List (bt A)) → ( tree1 ≡ leaf ) ∨ ( node-key tree1 ≡ just key) → findPR key tree1 stack1 (λ t s → Lift n ⊤) → t) → t |
206 findPP key leaf st Pre next exit = exit leaf st (case1 refl) Pre | 235 findPP key leaf st Pre next exit = exit leaf st (case1 refl) Pre |
207 findPP key (node key₁ v tree tree₁) st Pre next exit with <-cmp key key₁ | 236 findPP key (node key₁ v1 tree tree₁) st Pre next exit with <-cmp key key₁ |
208 findPP key n st P next exit | tri≈ ¬a b ¬c = exit n st (case2 {!!}) P | 237 findPP key n st P next exit | tri≈ ¬a b ¬c = exit n st (case2 {!!}) P |
209 findPP {_} {_} {A} key n@(node key₁ v tree tree₁) st Pre next exit | tri< a ¬b ¬c = | 238 findPP {_} {_} {A} key n@(node key₁ v1 tree tree₁) st Pre next exit | tri< a ¬b ¬c = |
210 next tree (n ∷ st) (record {ti = findPR.ti Pre ; si = findPP2 st (findPR.si Pre) ; ci = lift tt} ) findPP1 where | 239 next tree (n ∷ st) (record {ti = findPR.ti Pre ; si = findPP2 st (findPR.si Pre) ; ci = lift tt} ) findPP1 where |
211 tree0 = findPR.tree0 Pre | 240 tree0 = findPR.tree0 Pre |
212 findPP2 : (st : List (bt A)) → stackInvariant key {!!} tree0 st → stackInvariant key {!!} tree0 (node key₁ v tree tree₁ ∷ st) | 241 findPP2 : (st : List (bt A)) → stackInvariant key {!!} tree0 st → stackInvariant key {!!} tree0 (node key₁ v1 tree tree₁ ∷ st) |
213 findPP2 = {!!} | 242 findPP2 = {!!} |
214 findPP1 : suc ( bt-depth tree ) ≤ suc (bt-depth tree Data.Nat.⊔ bt-depth tree₁) | 243 findPP1 : suc ( bt-depth tree ) ≤ suc (bt-depth tree Data.Nat.⊔ bt-depth tree₁) |
215 findPP1 = {!!} | 244 findPP1 = {!!} |
216 findPP key n@(node key₁ v tree tree₁) st Pre next exit | tri> ¬a ¬b c = next tree₁ (n ∷ st) {!!} findPP2 where -- Cond n st → Cond tree₁ (n ∷ st) | 245 findPP key n@(node key₁ v1 tree tree₁) st Pre next exit | tri> ¬a ¬b c = next tree₁ (n ∷ st) {!!} findPP2 where -- Cond n st → Cond tree₁ (n ∷ st) |
217 findPP2 : suc (bt-depth tree₁) ≤ suc (bt-depth tree Data.Nat.⊔ bt-depth tree₁) | 246 findPP2 : suc (bt-depth tree₁) ≤ suc (bt-depth tree Data.Nat.⊔ bt-depth tree₁) |
218 findPP2 = {!!} | 247 findPP2 = {!!} |
219 | 248 |
220 insertTreePP : {n m : Level} {A : Set n} {t : Set m} → (tree : bt A) → (key : ℕ) → (value : A) → treeInvariant tree | 249 insertTreePP : {n m : Level} {A : Set n} {t : Set m} → (tree : bt A) → (key : ℕ) → (value : A) → treeInvariant tree |
221 → (exit : (tree repl : bt A) → treeInvariant tree ∧ replacedTree key value tree repl → t ) → t | 250 → (exit : (tree repl : bt A) → treeInvariant tree ∧ replacedTree key value tree repl → t ) → t |
238 → (key : ℕ) → (value : A) → (tree : bt A ) → (stack : List (bt A)) | 267 → (key : ℕ) → (value : A) → (tree : bt A ) → (stack : List (bt A)) |
239 → (Pre : findPR key tree stack (findPC key value)) | 268 → (Pre : findPR key tree stack (findPC key value)) |
240 → (next : (tree1 : bt A) → (stack1 : List (bt A)) → findPR key tree1 stack1 (findPC key value) → bt-depth tree1 < bt-depth tree → t ) | 269 → (next : (tree1 : bt A) → (stack1 : List (bt A)) → findPR key tree1 stack1 (findPC key value) → bt-depth tree1 < bt-depth tree → t ) |
241 → (exit : (tree1 : bt A) → (stack1 : List (bt A)) → ( tree1 ≡ leaf ) ∨ ( node-key tree1 ≡ just key) → findPR key tree1 stack1 (findPC key value) → t) → t | 270 → (exit : (tree1 : bt A) → (stack1 : List (bt A)) → ( tree1 ≡ leaf ) ∨ ( node-key tree1 ≡ just key) → findPR key tree1 stack1 (findPC key value) → t) → t |
242 findPPC key value leaf st Pre next exit = exit leaf st (case1 refl) Pre | 271 findPPC key value leaf st Pre next exit = exit leaf st (case1 refl) Pre |
243 findPPC key value (node key₁ v tree tree₁) st Pre next exit with <-cmp key key₁ | 272 findPPC key value (node key₁ v1 tree tree₁) st Pre next exit with <-cmp key key₁ |
244 findPPC key value n st P next exit | tri≈ ¬a b ¬c = exit n st (case2 {!!}) P | 273 findPPC key value n st P next exit | tri≈ ¬a b ¬c = exit n st (case2 {!!}) P |
245 findPPC {_} {_} {A} key value n@(node key₁ v tree tree₁) st Pre next exit | tri< a ¬b ¬c = | 274 findPPC {_} {_} {A} key value n@(node key₁ v1 tree tree₁) st Pre next exit | tri< a ¬b ¬c = |
246 next tree (n ∷ st) (record {ti = findPR.ti Pre ; si = {!!} ; ci = {!!} } ) {!!} | 275 next tree (n ∷ st) (record {ti = findPR.ti Pre ; si = {!!} ; ci = {!!} } ) {!!} |
247 findPPC key value n st P next exit | tri> ¬a ¬b c = {!!} | 276 findPPC key value n st P next exit | tri> ¬a ¬b c = {!!} |
248 | 277 |
249 containsTree : {n m : Level} {A : Set n} {t : Set m} → (tree tree1 : bt A) → (key : ℕ) → (value : A) → treeInvariant tree1 → replacedTree key value tree1 tree → ⊤ | 278 containsTree : {n m : Level} {A : Set n} {t : Set m} → (tree tree1 : bt A) → (key : ℕ) → (value : A) → treeInvariant tree1 → replacedTree key value tree1 tree → ⊤ |
250 containsTree {n} {m} {A} {t} tree tree1 key value P RT = | 279 containsTree {n} {m} {A} {t} tree tree1 key value P RT = |