Mercurial > hg > Gears > GearsAgda
comparison hoareBinaryTree.agda @ 624:bf27e2c7c6c5
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 08 Nov 2021 21:36:28 +0900 |
parents | 753353a41da5 |
children | 074fb29ebf57 |
comparison
equal
deleted
inserted
replaced
623:753353a41da5 | 624:bf27e2c7c6c5 |
---|---|
198 si : stackInvariant tree tree0 stack | 198 si : stackInvariant tree tree0 stack |
199 ci : C tree stack | 199 ci : C tree stack |
200 | 200 |
201 findPP : {n m : Level} {A : Set n} {t : Set m} | 201 findPP : {n m : Level} {A : Set n} {t : Set m} |
202 → (key : ℕ) → (tree : bt A ) → (stack : List (bt A)) | 202 → (key : ℕ) → (tree : bt A ) → (stack : List (bt A)) |
203 → (C : bt A → List (bt A) → Set n ) (Pre : findPR tree stack {!!} ) | 203 → (Pre : findPR tree stack (λ t s → Lift n ⊤)) |
204 → (next : (tree1 : bt A) → (stack1 : List (bt A)) → findPR tree1 stack1 {!!} → bt-depth tree1 < bt-depth tree → t ) | 204 → (next : (tree1 : bt A) → (stack1 : List (bt A)) → findPR tree1 stack1 (λ t s → Lift n ⊤) → bt-depth tree1 < bt-depth tree → t ) |
205 → (exit : (tree1 : bt A) → (stack1 : List (bt A)) → findPR tree1 stack1 {!!} → t) → t | 205 → (exit : (tree1 : bt A) → (stack1 : List (bt A)) → findPR tree1 stack1 (λ t s → Lift n ⊤) → t) → t |
206 findPP key leaf st C Pre next exit = exit leaf st Pre | 206 findPP key leaf st Pre next exit = exit leaf st Pre |
207 findPP key (node key₁ v tree tree₁) st C Pre next exit with <-cmp key key₁ | 207 findPP key (node key₁ v tree tree₁) st Pre next exit with <-cmp key key₁ |
208 findPP key n st C P next exit | tri≈ ¬a b ¬c = exit n st P | 208 findPP key n st P next exit | tri≈ ¬a b ¬c = exit n st P |
209 findPP {_} {_} {A} key n@(node key₁ v tree tree₁) st C Pre next exit | tri< a ¬b ¬c = | 209 findPP {_} {_} {A} key n@(node key₁ v tree tree₁) st Pre next exit | tri< a ¬b ¬c = |
210 next tree (n ∷ st) (record {ti = findPR.ti Pre ; si = findPP2 st (findPR.si Pre) ; ci = ?} ) findPP1 where | 210 next tree (n ∷ st) (record {ti = findPR.ti Pre ; si = findPP2 st (findPR.si Pre) ; ci = lift tt} ) findPP1 where |
211 tree0 = findPR.tree0 Pre | 211 tree0 = findPR.tree0 Pre |
212 findPP2 : (st : List (bt A)) → stackInvariant {!!} tree0 st → stackInvariant {!!} tree0 (node key₁ v tree tree₁ ∷ st) | 212 findPP2 : (st : List (bt A)) → stackInvariant {!!} tree0 st → stackInvariant {!!} tree0 (node key₁ v tree tree₁ ∷ st) |
213 findPP2 = {!!} | 213 findPP2 = {!!} |
214 findPP1 : suc ( bt-depth tree ) ≤ suc (bt-depth tree Data.Nat.⊔ bt-depth tree₁) | 214 findPP1 : suc ( bt-depth tree ) ≤ suc (bt-depth tree Data.Nat.⊔ bt-depth tree₁) |
215 findPP1 = {!!} | 215 findPP1 = {!!} |
216 findPP key n@(node key₁ v tree tree₁) st C Pre next exit | tri> ¬a ¬b c = next tree₁ (n ∷ st) {!!} findPP2 where -- Cond n st → Cond tree₁ (n ∷ st) | 216 findPP key n@(node key₁ v tree tree₁) st Pre next exit | tri> ¬a ¬b c = next tree₁ (n ∷ st) {!!} findPP2 where -- Cond n st → Cond tree₁ (n ∷ st) |
217 findPP2 : suc (bt-depth tree₁) ≤ suc (bt-depth tree Data.Nat.⊔ bt-depth tree₁) | 217 findPP2 : suc (bt-depth tree₁) ≤ suc (bt-depth tree Data.Nat.⊔ bt-depth tree₁) |
218 findPP2 = {!!} | 218 findPP2 = {!!} |
219 | 219 |
220 insertTreePP : {n m : Level} {A : Set n} {t : Set m} → (tree : bt A) → (key : ℕ) → (value : A) → treeInvariant tree | 220 insertTreePP : {n m : Level} {A : Set n} {t : Set m} → (tree : bt A) → (key : ℕ) → (value : A) → treeInvariant tree |
221 → (exit : (tree repl : bt A) → treeInvariant tree ∧ replacedTree key value tree repl → t ) → t | 221 → (exit : (tree repl : bt A) → treeInvariant tree ∧ replacedTree key value tree repl → t ) → t |
222 insertTreePP {n} {m} {A} {t} tree key value P exit = | 222 insertTreePP {n} {m} {A} {t} tree key value P exit = |
223 TerminatingLoopS (bt A ∧ List (bt A) ) {λ p → findPR (proj1 p) (proj2 p) {!!} } (λ p → bt-depth (proj1 p)) ⟪ tree , [] ⟫ {!!} | 223 TerminatingLoopS (bt A ∧ List (bt A) ) {λ p → findPR (proj1 p) (proj2 p) (λ t s → Lift n ⊤) } (λ p → bt-depth (proj1 p)) ⟪ tree , [] ⟫ {!!} |
224 $ λ p P loop → findPP key (proj1 p) (proj2 p) {!!} (λ t s P1 lt → loop ⟪ t , s ⟫ {!!} lt ) | 224 $ λ p P loop → findPP key (proj1 p) (proj2 p) {!!} (λ t s P1 lt → loop ⟪ t , s ⟫ {!!} lt ) |
225 $ λ t s P → replaceNodeP key value t {!!} | 225 $ λ t s P → replaceNodeP key value t {!!} |
226 $ λ t1 P1 R → TerminatingLoopS (List (bt A) ∧ (bt A ∧ bt A )) | 226 $ λ t1 P1 R → TerminatingLoopS (List (bt A) ∧ (bt A ∧ bt A )) |
227 {λ p → treeInvariant (proj1 (proj2 p)) ∧ stackInvariant (proj1 (proj2 p)) tree (proj1 p) ∧ replacedTree key value (proj1 (proj2 p)) (proj2 (proj2 p)) } | 227 {λ p → treeInvariant (proj1 (proj2 p)) ∧ stackInvariant (proj1 (proj2 p)) tree (proj1 p) ∧ replacedTree key value (proj1 (proj2 p)) (proj2 (proj2 p)) } |
228 (λ p → bt-depth (proj1 (proj2 p))) ⟪ s , ⟪ t , t1 ⟫ ⟫ ⟪ {!!} , ⟪ {!!} , R ⟫ ⟫ | 228 (λ p → bt-depth (proj1 (proj2 p))) ⟪ s , ⟪ t , t1 ⟫ ⟫ ⟪ {!!} , ⟪ {!!} , R ⟫ ⟫ |
236 key1 : ℕ | 236 key1 : ℕ |
237 value1 : A | 237 value1 : A |
238 tree1 : bt A | 238 tree1 : bt A |
239 ci : replacedTree key1 value1 tree tree1 | 239 ci : replacedTree key1 value1 tree tree1 |
240 | 240 |
241 findPPC : {n m : Level} {A : Set n} {t : Set m} | |
242 → (key : ℕ) → (tree : bt A ) → (stack : List (bt A)) | |
243 → (Pre : findPR tree stack findP-contains) | |
244 → (next : (tree1 : bt A) → (stack1 : List (bt A)) → findPR tree1 stack1 findP-contains → bt-depth tree1 < bt-depth tree → t ) | |
245 → (exit : (tree1 : bt A) → (stack1 : List (bt A)) → findPR tree1 stack1 findP-contains → t) → t | |
246 findPPC = {!!} | |
247 | |
241 containsTree : {n m : Level} {A : Set n} {t : Set m} → (tree tree1 : bt A) → (key : ℕ) → (value : A) → treeInvariant tree1 → replacedTree key value tree1 tree → ⊤ | 248 containsTree : {n m : Level} {A : Set n} {t : Set m} → (tree tree1 : bt A) → (key : ℕ) → (value : A) → treeInvariant tree1 → replacedTree key value tree1 tree → ⊤ |
242 containsTree {n} {m} {A} {t} tree tree1 key value P RT = | 249 containsTree {n} {m} {A} {t} tree tree1 key value P RT = |
243 TerminatingLoopS (bt A ∧ List (bt A) ) | 250 TerminatingLoopS (bt A ∧ List (bt A) ) |
244 {λ p → findPR (proj1 p) (proj2 p) {!!} ∧ findP-contains (proj1 p) (proj2 p)} (λ p → bt-depth (proj1 p)) | 251 {λ p → findPR (proj1 p) (proj2 p) findP-contains } (λ p → bt-depth (proj1 p)) |
245 ⟪ tree1 , [] ⟫ ⟪ {!!} , record { key1 = key ; value1 = value ; tree1 = tree ; ci = RT ; R = record { tree0 = {!!} ; ti = P ; si = lift tt } } ⟫ | 252 ⟪ tree1 , [] ⟫ {!!} |
246 $ λ p P loop → findPP key (proj1 p) (proj2 p) (proj1 P) (λ t s P1 lt → loop ⟪ t , s ⟫ ⟪ P1 , {!!} ⟫ lt ) | 253 $ λ p P loop → findPPC key (proj1 p) (proj2 p) {!!} (λ t s P1 lt → loop ⟪ t , s ⟫ {!!} lt ) |
247 $ λ t1 s1 P2 → insertTreeSpec0 t1 value {!!} | 254 $ λ t1 s1 P2 → insertTreeSpec0 t1 value {!!} |
248 | 255 |