Mercurial > hg > Gears > GearsAgda
comparison redBlackTreeTest.agda @ 566:d9ef8333ff79
use ⊥-elim (neq refl)
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 14 Apr 2018 16:33:16 +0900 |
parents | ba7c5f1c2937 |
children | 56a190d3c70a |
comparison
equal
deleted
inserted
replaced
565:ba7c5f1c2937 | 566:d9ef8333ff79 |
---|---|
257 ... | tri≈ _ _ _ = True | 257 ... | tri≈ _ _ _ = True |
258 ... | _ = False | 258 ... | _ = False |
259 | 259 |
260 checkEQ : {m : Level } ( x : ℕ ) -> ( n : Node ℕ ℕ ) -> (value n ) ≡ x -> checkT {m} (Just n) x ≡ True | 260 checkEQ : {m : Level } ( x : ℕ ) -> ( n : Node ℕ ℕ ) -> (value n ) ≡ x -> checkT {m} (Just n) x ≡ True |
261 checkEQ x n refl with compTri (value n) x | 261 checkEQ x n refl with compTri (value n) x |
262 ... | tri≈ _ _ _ = refl | 262 ... | tri≈ _ refl _ = refl |
263 ... | _ = {!!} | 263 ... | tri> _ neq gt = ⊥-elim (neq refl) |
264 | 264 ... | tri< lt neq _ = ⊥-elim (neq refl) |
265 checkT' : {m : Level } (n : Maybe (Node ℕ ℕ)) → ℕ → Bool {m} | 265 |
266 checkT' Nothing _ = False | 266 checkEQ' : {m : Level } ( x y : ℕ ) -> ( eq : x ≡ y ) -> ( x ≟ y ) ≡ yes eq |
267 checkT' (Just n) x with (value n) ≟ x | 267 checkEQ' x y refl with x ≟ y |
268 ... | yes _ = True | 268 ... | yes refl = refl |
269 ... | no _ = False | 269 ... | no neq = ⊥-elim ( neq refl ) |
270 | 270 |
271 putTest1 :{ m : Level } (n : Maybe (Node ℕ ℕ)) | 271 putTest1 :{ m : Level } (n : Maybe (Node ℕ ℕ)) |
272 → (k : ℕ) (x : ℕ) | 272 → (k : ℕ) (x : ℕ) |
273 → putTree1 {_} {_} {ℕ} {ℕ} (redBlackInSomeState {_} ℕ n {Set Level.zero}) k x | 273 → putTree1 {_} {_} {ℕ} {ℕ} (redBlackInSomeState {_} ℕ n {Set Level.zero}) k x |
274 (λ t → getRedBlackTree t k (λ t x1 → checkT x1 x ≡ True)) | 274 (λ t → getRedBlackTree t k (λ t x1 → checkT x1 x ≡ True)) |