Mercurial > hg > Gears > GearsAgda
comparison hoareBinaryTree.agda @ 657:f7090788789b
s-left0
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 21 Nov 2021 14:40:55 +0900 |
parents | 30690aed1819 |
children | be2fd2884eef |
comparison
equal
deleted
inserted
replaced
656:30690aed1819 | 657:f7090788789b |
---|---|
103 → treeInvariant (node key₁ value₁ (node key value t₁ t₂) (node key₂ value₂ t₃ t₄)) | 103 → treeInvariant (node key₁ value₁ (node key value t₁ t₂) (node key₂ value₂ t₃ t₄)) |
104 | 104 |
105 data stackInvariant {n : Level} {A : Set n} (key : ℕ) : (top orig : bt A) → (stack : List (bt A)) → Set n where | 105 data stackInvariant {n : Level} {A : Set n} (key : ℕ) : (top orig : bt A) → (stack : List (bt A)) → Set n where |
106 s-nil : {tree : bt A} → stackInvariant key tree tree [] | 106 s-nil : {tree : bt A} → stackInvariant key tree tree [] |
107 s-right0 : {tree tree₁ : bt A} → {key₁ : ℕ } → {v1 : A } | 107 s-right0 : {tree tree₁ : bt A} → {key₁ : ℕ } → {v1 : A } |
108 → key₁ < key → stackInvariant key (node key₁ v1 tree₁ tree) (node key₁ v1 tree₁ tree) [] → stackInvariant key tree (node key₁ v1 tree₁ tree) (tree ∷ (node key₁ v1 tree₁ tree) ∷ []) | 108 → key₁ < key → stackInvariant key (node key₁ v1 tree₁ tree) (node key₁ v1 tree₁ tree) [] → stackInvariant key tree tree (tree ∷ []) |
109 s-left0 : {tree₁ tree : bt A} → {key₁ : ℕ } → {v1 : A } | 109 s-left0 : {tree₁ tree : bt A} → {key₁ : ℕ } → {v1 : A } |
110 → key < key₁ → stackInvariant key (node key₁ v1 tree₁ tree) (node key₁ v1 tree₁ tree) [] → stackInvariant key tree₁ (node key₁ v1 tree₁ tree) (tree₁ ∷ (node key₁ v1 tree₁ tree) ∷ []) | 110 → key < key₁ → stackInvariant key (node key₁ v1 tree₁ tree) (node key₁ v1 tree₁ tree) [] → stackInvariant key tree₁ tree₁ (tree₁ ∷ []) |
111 s-right : {tree tree0 tree₁ : bt A} → {key₁ : ℕ } → {v1 : A } → {st : List (bt A)} | 111 s-right : {tree tree0 tree₁ : bt A} → {key₁ : ℕ } → {v1 : A } → {st : List (bt A)} |
112 → key₁ < key → stackInvariant key (node key₁ v1 tree₁ tree) tree0 st → ¬ (st ≡ []) → stackInvariant key tree tree0 (tree ∷ st) | 112 → key₁ < key → stackInvariant key (node key₁ v1 tree₁ tree) tree0 st → ¬ (st ≡ []) → stackInvariant key tree tree0 (tree ∷ st) |
113 s-left : {tree₁ tree0 tree : bt A} → {key₁ : ℕ } → {v1 : A } → {st : List (bt A)} | 113 s-left : {tree₁ tree0 tree : bt A} → {key₁ : ℕ } → {v1 : A } → {st : List (bt A)} |
114 → key < key₁ → stackInvariant key (node key₁ v1 tree₁ tree) tree0 st → ¬ (st ≡ []) → stackInvariant key tree₁ tree0 (tree₁ ∷ st) | 114 → key < key₁ → stackInvariant key (node key₁ v1 tree₁ tree) tree0 st → ¬ (st ≡ []) → stackInvariant key tree₁ tree0 (tree₁ ∷ st) |
115 | 115 |
149 stack-last [] = nothing | 149 stack-last [] = nothing |
150 stack-last (x ∷ []) = just x | 150 stack-last (x ∷ []) = just x |
151 stack-last (x ∷ s) = stack-last s | 151 stack-last (x ∷ s) = stack-last s |
152 | 152 |
153 stackInvariantTest1 : stackInvariant 4 treeTest2 treeTest1 ( treeTest2 ∷ treeTest1 ∷ [] ) | 153 stackInvariantTest1 : stackInvariant 4 treeTest2 treeTest1 ( treeTest2 ∷ treeTest1 ∷ [] ) |
154 stackInvariantTest1 = s-right0 (add< 2) s-nil | 154 stackInvariantTest1 = s-right (add< 2) (s-right0 (add< 2) s-nil) (λ ()) |
155 | 155 |
156 si-nil : {n : Level} {A : Set n} {key : ℕ} {tree tree0 : bt A} → (si : stackInvariant key tree tree0 []) → tree ≡ tree0 | 156 si-nil : {n : Level} {A : Set n} {key : ℕ} {tree tree0 : bt A} → (si : stackInvariant key tree tree0 []) → tree ≡ tree0 |
157 si-nil s-nil = refl | 157 si-nil s-nil = refl |
158 | 158 |
159 si-property1 : {n : Level} {A : Set n} (key : ℕ) (tree tree0 : bt A) → (stack : List (bt A)) → ¬ (stack ≡ []) → stackInvariant key tree tree0 stack | 159 si-property1 : {n : Level} {A : Set n} (key : ℕ) (tree tree0 : bt A) → (stack : List (bt A)) → ¬ (stack ≡ []) → stackInvariant key tree tree0 stack |
160 → stack-top stack ≡ just tree | 160 → stack-top stack ≡ just tree |
161 si-property1 key t t0 [] ne (s-nil ) = ⊥-elim ( ne refl ) | 161 si-property1 key t t0 [] ne (s-nil ) = ⊥-elim ( ne refl ) |
162 si-property1 key t t0 (t ∷ _ ∷ []) ne (s-right0 _ _) = refl | 162 si-property1 key t t0 (t ∷ []) ne (s-right0 _ _) = refl |
163 si-property1 key t t0 (t ∷ _ ∷ []) ne (s-left0 _ _) = refl | 163 si-property1 key t t0 (t ∷ []) ne (s-left0 _ _) = refl |
164 si-property1 key t t0 (t ∷ st) _ (s-right _ _ si) = refl | 164 si-property1 key t t0 (t ∷ st) _ (s-right _ _ si) = refl |
165 si-property1 key t t0 (t ∷ st) _ (s-left _ _ si) = refl | 165 si-property1 key t t0 (t ∷ st) _ (s-left _ _ si) = refl |
166 | 166 |
167 si-property-last : {n : Level} {A : Set n} (key : ℕ) (tree tree0 : bt A) → (stack : List (bt A)) → ¬ (stack ≡ []) → stackInvariant key tree tree0 stack | 167 si-property-last : {n : Level} {A : Set n} (key : ℕ) (tree tree0 : bt A) → (stack : List (bt A)) → ¬ (stack ≡ []) → stackInvariant key tree tree0 stack |
168 → stack-last stack ≡ just tree0 | 168 → stack-last stack ≡ just tree0 |
169 si-property-last key t t0 [] ne s-nil = ⊥-elim ( ne refl ) | 169 si-property-last key t t0 [] ne s-nil = ⊥-elim ( ne refl ) |
170 si-property-last key t t0 (t ∷ _ ∷ []) _ (s-left0 _ _) = {!!} | 170 si-property-last key t t0 (t ∷ []) _ (s-left0 _ _) = {!!} |
171 si-property-last key t t0 (t ∷ _ ∷ []) _ (s-right0 _ _) = {!!} | 171 si-property-last key t t0 (t ∷ []) _ (s-right0 _ _) = {!!} |
172 si-property-last key t t0 (t ∷ []) _ (s-right _ _ ne) = ⊥-elim ( ne refl ) | 172 si-property-last key t t0 (t ∷ []) _ (s-right _ _ ne) = ⊥-elim ( ne refl ) |
173 si-property-last key t t0 (t ∷ []) _ (s-left _ _ ne) = ⊥-elim ( ne refl ) | 173 si-property-last key t t0 (t ∷ []) _ (s-left _ _ ne) = ⊥-elim ( ne refl ) |
174 si-property-last key t t0 (.t ∷ x ∷ st) ne (s-right _ si _) with si-property1 key _ _ (x ∷ st) (λ ()) si | 174 si-property-last key t t0 (.t ∷ x ∷ st) ne (s-right _ si _) with si-property1 key _ _ (x ∷ st) (λ ()) si |
175 ... | refl = si-property-last key x t0 (x ∷ st) (λ ()) si | 175 ... | refl = si-property-last key x t0 (x ∷ st) (λ ()) si |
176 si-property-last key t t0 (.t ∷ x ∷ st) ne (s-left _ si _) with si-property1 key _ _ (x ∷ st) (λ ()) si | 176 si-property-last key t t0 (.t ∷ x ∷ st) ne (s-left _ si _) with si-property1 key _ _ (x ∷ st) (λ ()) si |
189 ti-left {_} {_} {.(node _ _ _ _)} {_} {key₁} {v1} (t-node x x₁ ti ti₁) = ti | 189 ti-left {_} {_} {.(node _ _ _ _)} {_} {key₁} {v1} (t-node x x₁ ti ti₁) = ti |
190 | 190 |
191 stackTreeInvariant : {n : Level} {A : Set n} (key : ℕ) (sub tree : bt A) → (stack : List (bt A)) | 191 stackTreeInvariant : {n : Level} {A : Set n} (key : ℕ) (sub tree : bt A) → (stack : List (bt A)) |
192 → treeInvariant tree → stackInvariant key sub tree stack → treeInvariant sub | 192 → treeInvariant tree → stackInvariant key sub tree stack → treeInvariant sub |
193 stackTreeInvariant {_} {A} key sub tree [] ti s-nil = ti | 193 stackTreeInvariant {_} {A} key sub tree [] ti s-nil = ti |
194 stackTreeInvariant {_} {A} key sub tree (sub ∷ _ ∷ []) ti (s-left0 _ _) = {!!} | 194 stackTreeInvariant {_} {A} key sub tree (sub ∷ []) ti (s-left0 _ _) = {!!} |
195 stackTreeInvariant {_} {A} key sub tree (sub ∷ _ ∷ []) ti (s-right0 _ _) = {!!} | 195 stackTreeInvariant {_} {A} key sub tree (sub ∷ []) ti (s-right0 _ _) = {!!} |
196 stackTreeInvariant {_} {A} key sub tree (sub ∷ st) ti (s-right _ si _) = ti-right (si1 si) where | 196 stackTreeInvariant {_} {A} key sub tree (sub ∷ st) ti (s-right _ si _) = ti-right (si1 si) where |
197 si1 : {tree₁ : bt A} → {key₁ : ℕ} → {v1 : A} → stackInvariant key (node key₁ v1 tree₁ sub ) tree st → treeInvariant (node key₁ v1 tree₁ sub ) | 197 si1 : {tree₁ : bt A} → {key₁ : ℕ} → {v1 : A} → stackInvariant key (node key₁ v1 tree₁ sub ) tree st → treeInvariant (node key₁ v1 tree₁ sub ) |
198 si1 {tree₁ } {key₁ } {v1 } si = stackTreeInvariant key (node key₁ v1 tree₁ sub ) tree st ti si | 198 si1 {tree₁ } {key₁ } {v1 } si = stackTreeInvariant key (node key₁ v1 tree₁ sub ) tree st ti si |
199 stackTreeInvariant {_} {A} key sub tree (sub ∷ st) ti (s-left _ si _) = ti-left ( si2 si) where | 199 stackTreeInvariant {_} {A} key sub tree (sub ∷ st) ti (s-left _ si _) = ti-left ( si2 si) where |
200 si2 : {tree₁ : bt A} → {key₁ : ℕ} → {v1 : A} → stackInvariant key (node key₁ v1 sub tree₁ ) tree st → treeInvariant (node key₁ v1 sub tree₁ ) | 200 si2 : {tree₁ : bt A} → {key₁ : ℕ} → {v1 : A} → stackInvariant key (node key₁ v1 sub tree₁ ) tree st → treeInvariant (node key₁ v1 sub tree₁ ) |
246 findP key n tree0 st Pre _ exit | tri≈ ¬a refl ¬c = exit n tree0 st Pre (case2 refl) | 246 findP key n tree0 st Pre _ exit | tri≈ ¬a refl ¬c = exit n tree0 st Pre (case2 refl) |
247 findP {_} {_} {A} key n@(node key₁ v1 tree tree₁) tree0 st Pre next _ | tri< a ¬b ¬c = next tree tree0 (tree ∷ st) | 247 findP {_} {_} {A} key n@(node key₁ v1 tree tree₁) tree0 st Pre next _ | tri< a ¬b ¬c = next tree tree0 (tree ∷ st) |
248 ⟪ treeLeftDown tree tree₁ (proj1 Pre) , findP1 a st (proj2 Pre) ⟫ depth-1< where | 248 ⟪ treeLeftDown tree tree₁ (proj1 Pre) , findP1 a st (proj2 Pre) ⟫ depth-1< where |
249 findP1 : key < key₁ → (st : List (bt A)) → stackInvariant key (node key₁ v1 tree tree₁) tree0 st → stackInvariant key tree tree0 (tree ∷ st) | 249 findP1 : key < key₁ → (st : List (bt A)) → stackInvariant key (node key₁ v1 tree tree₁) tree0 st → stackInvariant key tree tree0 (tree ∷ st) |
250 findP1 a (x ∷ st) si = s-left a si (λ ()) | 250 findP1 a (x ∷ st) si = s-left a si (λ ()) |
251 findP1 a [] s-nil = {!!} | 251 findP1 a [] s-nil = ? -- s-left0 a s-nil |
252 findP key n@(node key₁ v1 tree tree₁) tree0 st Pre next _ | tri> ¬a ¬b c = next tree₁ tree0 (tree₁ ∷ st) ⟪ treeRightDown tree tree₁ (proj1 Pre) , s-right c (proj2 Pre) {!!} ⟫ depth-2< | 252 findP key n@(node key₁ v1 tree tree₁) tree0 st Pre next _ | tri> ¬a ¬b c = next tree₁ tree0 (tree₁ ∷ st) ⟪ treeRightDown tree tree₁ (proj1 Pre) , s-right c (proj2 Pre) {!!} ⟫ depth-2< |
253 | 253 |
254 replaceTree1 : {n : Level} {A : Set n} {t t₁ : bt A } → ( k : ℕ ) → (v1 value : A ) → treeInvariant (node k v1 t t₁) → treeInvariant (node k value t t₁) | 254 replaceTree1 : {n : Level} {A : Set n} {t t₁ : bt A } → ( k : ℕ ) → (v1 value : A ) → treeInvariant (node k v1 t t₁) → treeInvariant (node k value t t₁) |
255 replaceTree1 k v1 value (t-single .k .v1) = t-single k value | 255 replaceTree1 k v1 value (t-single .k .v1) = t-single k value |
256 replaceTree1 k v1 value (t-right x t) = t-right x t | 256 replaceTree1 k v1 value (t-right x t) = t-right x t |