diff hoareBinaryTree1.agda @ 747:70ed4cbeaafb

...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Tue, 25 Apr 2023 09:05:03 +0900
parents 4edec19e8356
children 1d7803a2c4c0
line wrap: on
line diff
--- a/hoareBinaryTree1.agda	Tue Apr 25 08:16:02 2023 +0900
+++ b/hoareBinaryTree1.agda	Tue Apr 25 09:05:03 2023 +0900
@@ -574,31 +574,12 @@
 -- data replacedRBTree  {n : Level} {A : Set n} (key : ℕ) (value : A)  : (before after : bt (Color ∧ A) ) → Set n where
 --    rb-leaf : replacedRBTree key value leaf (node key ⟪ Black , value ⟫ leaf leaf)
 
-data RBTree {n : Level} (A : Set n) : (key : ℕ) → Color → (b-depth : ℕ) → Set n where
-    rb-leaf     : (key : ℕ) → RBTree A key Black 0
-    rb-single   : (key : ℕ) → (value : A) → (c : Color) →  RBTree A key c 1
-    t-right-red : (key : ℕ) {key₁ : ℕ} → (value : A) → key < key₁ → {d : ℕ } → RBTree A key₁ Black d → RBTree A key Red d
-    t-right-black : (key : ℕ) {key₁ : ℕ} → (value : A) → key < key₁ → {c : Color} → {d : ℕ }→ RBTree A key₁ c d
-       → RBTree A key Black (suc d)
-    t-left-red  : (key₁ : ℕ) { key : ℕ} → (value : A) → key < key₁ → {d : ℕ} → RBTree A key Black d
-       → RBTree A key₁ Red d
-    t-left-black  : (key₁ : ℕ) {key : ℕ} → (value : A) → key < key₁  → {c : Color} → {d : ℕ}  → RBTree A key  c d
-       → RBTree A key₁ Black (suc d)
-    t-node-red  : (key₁ : ℕ) { key key₂ : ℕ} → (value : A) → key < key₁ → key₁ < key₂   →  {d : ℕ}
-       → RBTree A key Black d
-       → RBTree A key₂ Black d
-       → RBTree A key₁ Red d
-    t-node-black  : (key₁ : ℕ) {key key₂ : ℕ} → (value : A) → key < key₁ → key₁ < key₂  →  {c c1 : Color} {d : ℕ}
-       → RBTree A key c d
-       → RBTree A key₂ c1 d
-       → RBTree A key₁ Black (suc d)
+color : {n : Level} (A : Set n)  → (rb : bt (Color ∧ A)) → Color
+color {n} A rb = ?
 
-color : {n : Level} (A : Set n)  → (rb : bt (A ∧ Color)) → Color
-color {n} A {k} {d} {c} rb = ?
-
-RB→bt : {n : Level} (A : Set n)  → (rb : bt (A ∧ Color)) → bt A
+RB→bt : {n : Level} (A : Set n)  → (rb : bt (Color ∧ A)) → bt A
 RB→bt {n} A leaf = leaf
-RB→bt {n} A (node key ⟪ c , value ⟫ x x₁ rb rb₁) = node key value (RB→bt A rb) (RB→bt A rb₁) 
+RB→bt {n} A (node key ⟪ c , value ⟫ rb rb₁) = node key value (RB→bt A rb) (RB→bt A rb₁) 
 
 data ParentGrand {n : Level} {A : Set n} (self : bt A) : (parent grand : bt A) → Set n where
     s2-s1p2 : {kp kg : ℕ} {vp vg : A} → {n1 n2 : bt A} {parent grand : bt A } 
@@ -619,7 +600,7 @@
     rr-right : {ka kb : ℕ } {va vb : A} → {c c₁ d d₁ e e₁ : bt A}
           → ka < kb
           → rotatedTree d d₁ → rotatedTree e e₁ → rotatedTree c c₁
-          → rotatedTree (node ka va (node kb vb d e)  tc) (node kb vb d₁ (node ka va e₁ c₁) ) 
+          → rotatedTree (node ka va (node kb vb d e)  c) (node kb vb d₁ (node ka va e₁ c₁) ) 
     --     b                  a 
     --   d   a              b   c
     --     e   c          d   e
@@ -671,12 +652,12 @@
      → ParentGrand orig parent grand → ℕ
 rbsi-len {n} {A} {s} {p} {g} st = ?
 
-findRBP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) {key1 d d1 : ℕ} → {c c1 : Color} → (tree : RBTree A key c d ) (orig : RBTree A key1 c1 d1 ) 
-           →  (stack : List (bt A)) → stackInvariant key (RB→bt A tree) (RB→bt A orig) stack
-           → (next : {key0 d0 : ℕ} {c0 : Color} → (tree1 : RBTree A key0 c0 d0 ) → (stack : List (bt A)) → stackInvariant key (RB→bt A tree1) (RB→bt A orig) stack  → rbt-depth A tree1 < rbt-depth A tree   → t )
-           → (exit : {key0 d0 : ℕ} {c0 : Color} → (tree1 : RBTree A key0 c0 d0 ) → (stack : List (bt A)) → stackInvariant key (RB→bt A tree1) (RB→bt A orig) stack 
-                 → (rbt-depth A tree1 ≡ 0 ) ∨ ( rbt-key A tree1 ≡ just key )  → t ) → t
-findRBP {n} {m} {A} {t} key {key1} tree orig st si next exit = ?
+-- findRBP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) {key1 d d1 : ℕ} → {c c1 : Color} → (tree : RBTree A key c d ) (orig : RBTree A key1 c1 d1 ) 
+--           →  (stack : List (bt A)) → stackInvariant key (RB→bt A tree) (RB→bt A orig) stack
+--           → (next : {key0 d0 : ℕ} {c0 : Color} → (tree1 : RBTree A key0 c0 d0 ) → (stack : List (bt A)) → stackInvariant key (RB→bt A tree1) (RB→bt A orig) stack  → rbt-depth A tree1 < rbt-depth A tree   → t )
+--           → (exit : {key0 d0 : ℕ} {c0 : Color} → (tree1 : RBTree A key0 c0 d0 ) → (stack : List (bt A)) → stackInvariant key (RB→bt A tree1) (RB→bt A orig) stack 
+--                 → (rbt-depth A tree1 ≡ 0 ) ∨ ( rbt-key A tree1 ≡ just key )  → t ) → t
+--findRBP {n} {m} {A} {t} key {key1} tree orig st si next exit = ?
 
 rotateRight : ?
 rotateRight = ?
@@ -686,14 +667,14 @@
 
 insertCase5 : {n m : Level} {A : Set n} {t : Set m}
      → (key : ℕ) → (value : A) → {key0 key1 key2 d0 d1 d2 : ℕ} {c0 c1 c2 : Color}  
-     → (orig : RBTree A key1 c1 d1 ) → (tree : RBTree A key1 c1 d1 ) ( repl : RBTree A key2 c2 d2 )
+     → (orig tree repl : bt (Color ∧ A)  )
      → (si : ParentGrand ? ? ?)
      → (ri : rotatedTree (RB→bt A tree) (RB→bt A repl))
-     → (next : ℕ → A → {k1 k2 d1 d2 : ℕ} {c1 c2 : Color} → (tree1 : RBTree A k1 c1 d1 ) (repl1 : RBTree A k2 c2 d2 ) 
+     → (next : ℕ → A → {k1 k2 d1 d2 : ℕ} {c1 c2 : Color} → (tree1 repl1 : bt (Color ∧ A))
          → (si1 : ParentGrand ? ? ?)
          → (ri : rotatedTree (RB→bt A tree1) (RB→bt A repl1))
          → rbsi-len si1 < rbsi-len si → t )
-     → (exit : {k1 k2 d1 d2 : ℕ} {c1 c2 : Color} (tree1 : RBTree A k1 c1 d1 ) → (repl1 : RBTree A k2 c2 d2 ) 
+     → (exit : {k1 k2 d1 d2 : ℕ} {c1 c2 : Color} (tree1 repl1 : bt (Color ∧ A)) 
          → (ri : rotatedTree (RB→bt A orig) (RB→bt A repl1))
          → t ) → t
 insertCase5 {n} {m} {A} {t} key value orig tree repl si ri next exit = ? where
@@ -702,25 +683,24 @@
 
 replaceRBP : {n m : Level} {A : Set n} {t : Set m}
      → (key : ℕ) → (value : A) → {key0 key1 d0 d1 : ℕ} {c0 c1 : Color}  
-     → (orig : RBTree A key0 c0 d0 ) → (tree : RBTree A key1 c1 d1 ) 
-     → (stack : List (bt A)) → (si : stackInvariant key (RB→bt A tree) (RB→bt A orig) stack ) 
-     → (next : {key2 d2 : ℕ} {c2 : Color} → (tree2 : RBTree A key2 c2 d2 ) 
-        → {tr to : bt A} → RB→bt A tree2 ≡ tr → RB→bt A orig ≡ to
-        → (stack1 : List (bt A)) → stackInvariant key tr to stack1 
+     → (orig tree : bt (Color ∧ A)) 
+     → (stack : List (bt (Color ∧ A))) → (si : stackInvariant key tree orig stack ) 
+     → (next : {key2 d2 : ℕ} {c2 : Color}  
+        → (to tr : bt (Color ∧ A)) 
+        → (stack1 : List (bt (Color ∧ A))) → stackInvariant key tr to stack1 
         → length stack1 < length stack  → t )
-     → (exit : {k1 d1 : ℕ} {c1 : Color} → (repl1 : RBTree A k1 c1 d1 ) → (rot : bt A )
-         → (ri : rotatedTree (RB→bt A orig) rot ) → replacedTree key value rot (RB→bt A repl1) → t ) → t
-replaceRBP {n} {m} {A} {t} key value {_} {key1} orig tree stack si next exit = insertCase1 stack _ _ refl refl si where
-    insertCase2 : {k0 k1 d0 d1 d2 : ℕ} {c0 c1 c2 : Color} → (tree : RBTree A k0 c0 d0) 
-      → (parent : RBTree A k1 c1 d1) → (grand : RBTree A key1 c2 d2) 
-      → (stack : List (bt A)) → (tr to pt gt : bt A) → RB→bt A tree ≡ tr → RB→bt A parent ≡ pt → RB→bt A grand ≡ gt →  RB→bt A orig ≡ to → (si : stackInvariant key tr to stack ) 
-      → (pg : ParentGrand tr pt gt ) → t
-    insertCase2 tree parent grand stack tr to treq toeq si pg = ?
-    insertCase1 : (stack : List (bt A)) → (tr to : bt A) → RB→bt A tree ≡ tr →  RB→bt A orig ≡ to → (si : stackInvariant key tr to stack ) → t
-    insertCase1 stack tr to eqt eqo si with stackToPG tr to stack si
+     → (exit : {k1 d1 : ℕ} {c1 : Color} → (rot repl : bt (Color ∧ A) )
+         → (ri : rotatedTree (RB→bt A orig) (RB→bt A rot) ) → replacedTree key value (RB→bt A rot) (RB→bt A repl) → t ) → t
+replaceRBP {n} {m} {A} {t} key value {_} {key1} orig tree stack si next exit = ? where
+    insertCase2 : {k0 k1 d0 d1 d2 : ℕ} {c0 c1 c2 : Color} → (tree parent grand : bt (Color ∧ A)) 
+      → (stack : List (bt (Color ∧ A))) → (tr to : bt (Color ∧ A)) → (si : stackInvariant key tr to stack ) 
+      → (pg : ParentGrand tree parent grand ) → t
+    insertCase2 tree parent grand stack tr to = ?
+    insertCase1 : (stack : List (bt (Color ∧ A))) → (to tr : bt (Color ∧ A)) → (si : stackInvariant key tr to stack ) → t
+    insertCase1 stack to tr si with stackToPG tr to stack si
     ... | case1 eq = ?
     ... | case2 (case1 eq ) = ?
-    ... | case2 (case2 pg) = insertCase2 ? ? ? ? ? ? ? ? ? ? ? ? ? (PG.pg pg) where
+    ... | case2 (case2 pg) = insertCase2 ? ? ? ? ? ? ? (PG.pg pg) where
           si00 : stackInvariant key ? ? ?
           si00 = ?