view hoareBinaryTree.agda @ 793:08e04ed15468

...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sat, 21 Oct 2023 18:51:25 +0900
parents 0b791ae19543
children f2a3f5707075
line wrap: on
line source

module hoareBinaryTree where

open import Level renaming (zero to Z ; suc to succ)

open import Data.Nat hiding (compare)
open import Data.Nat.Properties as NatProp
open import Data.Maybe
-- open import Data.Maybe.Properties
open import Data.Empty
open import Data.List
open import Data.Product

open import Function as F hiding (const)

open import Relation.Binary
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary
open import logic


_iso_ : {n : Level} {a : Set n} → ℕ → ℕ → Set
d iso d' = (¬ (suc d ≤ d')) ∧ (¬ (suc d' ≤ d))

iso-intro : {n : Level} {a : Set n} {x y : ℕ} → ¬ (suc x ≤ y) → ¬ (suc y ≤ x) → _iso_ {n} {a} x y
iso-intro = λ z z₁ → record { proj1 = z ; proj2 = z₁ }

--
--
--  no children , having left node , having right node , having both
--
data bt {n : Level} (A : Set n) : Set n where
  leaf : bt A
  node :  (key : ℕ) → (value : A) →
    (left : bt A ) → (right : bt A ) → bt A

node-key : {n : Level} {A : Set n} → bt A → Maybe ℕ
node-key (node key _ _ _) = just key
node-key _ = nothing

node-value : {n : Level} {A : Set n} → bt A → Maybe A
node-value (node _ value _ _) = just value
node-value _ = nothing

bt-depth : {n : Level} {A : Set n} → (tree : bt A ) → ℕ
bt-depth leaf = 0
bt-depth (node key value t t₁) = suc (Data.Nat._⊔_ (bt-depth t ) (bt-depth t₁ ))

find' : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree : bt A ) → List (bt A)
           → (next : bt A → List (bt A) → t ) → (exit : bt A → List (bt A) → t ) → t
find' key leaf st _ exit = exit leaf st
find' key (node key₁ v1 tree tree₁) st next exit with <-cmp key key₁
find' key n st _ exit | tri≈ ¬a b ¬c = exit n st
find' key n@(node key₁ v1 tree tree₁) st next _ | tri< a ¬b ¬c = next tree (n ∷ st)
find' key n@(node key₁ v1 tree tree₁) st next _ | tri> ¬a ¬b c = next tree₁ (n ∷ st)

find : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree : bt A ) → (stack : List (bt A))
           → (next : (tree1 : bt A) → (stack : List (bt A)) → t)
           → (exit : (tree1 : bt A) → (stack : List (bt A)) → t) → t
find key leaf st _ exit = exit leaf st 
find key (node key₁ v1 tree tree₁) st next exit with <-cmp key key₁
find key n st _ exit | tri≈ ¬a refl ¬c = exit n st 
find {n} {_} {A} key (node key₁ v1 tree tree₁) st  next _ | tri< a ¬b ¬c = next tree (tree ∷ st) 
find key n@(node key₁ v1 tree tree₁) st next _ | tri> ¬a ¬b c = next tree₁ (tree₁ ∷ st) 

{-# TERMINATING #-}
find-loop : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → bt A → List (bt A)  → (exit : bt A → List (bt A) → t) → t
find-loop {n} {m} {A} {t} key tree st exit = find-loop1 tree st where
    find-loop1 : bt A → List (bt A) → t
    find-loop1 tree st = find key tree st find-loop1 exit

replaceNode : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → bt A → (bt A → t) → t
replaceNode k v1 leaf next = next (node k v1 leaf leaf)
replaceNode k v1 (node key value t t₁) next = next (node k v1 t t₁)

replace : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → bt A → List (bt A) → (next : ℕ → A → bt A → List (bt A) → t ) → (exit : bt A → t) → t
replace key value repl [] next exit = exit repl    -- can't happen
replace key value repl (leaf ∷ []) next exit = exit repl    
replace key value repl (node key₁ value₁ left right ∷ []) next exit with <-cmp key key₁
... | tri< a ¬b ¬c = exit (node key₁ value₁ repl right ) 
... | tri≈ ¬a b ¬c = exit (node key₁ value  left right ) 
... | tri> ¬a ¬b c = exit (node key₁ value₁ left repl ) 
replace key value repl (leaf ∷ st) next exit = next key value repl st
replace key value repl (node key₁ value₁ left right ∷ st) next exit with <-cmp key key₁
... | tri< a ¬b ¬c = next key value (node key₁ value₁ repl right ) st
... | tri≈ ¬a b ¬c = next key value (node key₁ value  left right ) st
... | tri> ¬a ¬b c = next key value (node key₁ value₁ left repl ) st

{-# TERMINATING #-}
replace-loop : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → bt A → List (bt A)  → (exit : bt A → t) → t
replace-loop {_} {_} {A} {t} key value tree st exit = replace-loop1 key value tree st where
    replace-loop1 : (key : ℕ) → (value : A) → bt A → List (bt A) → t
    replace-loop1 key value tree st = replace key value tree st replace-loop1  exit

insertTree : {n m : Level} {A : Set n} {t : Set m} → (tree : bt A) → (key : ℕ) → (value : A) → (next : bt A → t ) → t
insertTree tree key value exit = find-loop key tree ( tree ∷ [] ) $ λ t st → replaceNode key value t $ λ t1 → replace-loop key value t1 st exit 

insertTest1 = insertTree leaf 1 1 (λ x → x )
insertTest2 = insertTree insertTest1 2 1 (λ x → x )
insertTest3 = insertTree insertTest2 3 3 (λ x → x )
insertTest4 = insertTree insertTest3 1 4 (λ x → x ) -- this is wrong

updateTree : {n m : Level} {A : Set n} {t : Set m} → (tree : bt A) → (key : ℕ) → (value : A) → (empty : bt A → t ) → (next : A → bt A  → t ) → t
updateTree {_} {_} {A} {t} tree key value empty next = find-loop key tree ( tree ∷ [] )
        $ λ t st → replaceNode key value t $ λ t1 → replace-loop key value t1 st (found? st) where
    found? :  List (bt A) → bt A → t
    found? [] tree = empty tree   -- can't happen
    found? (leaf ∷ st) tree = empty tree
    found? (node key value x x₁ ∷ st) tree = next value tree

open import Data.Unit hiding ( _≟_ ;  _≤?_ ; _≤_)

data treeInvariant {n : Level} {A : Set n} : (tree : bt A) → Set n where
    t-leaf : treeInvariant leaf 
    t-single : (key : ℕ) → (value : A) →  treeInvariant (node key value leaf leaf) 
    t-right : {key key₁ : ℕ} → {value value₁ : A} → {t₁ t₂ : bt A} → (key < key₁) → treeInvariant (node key₁ value₁ t₁ t₂)
       → treeInvariant (node key value leaf (node key₁ value₁ t₁ t₂)) 
    t-left  : {key key₁ : ℕ} → {value value₁ : A} → {t₁ t₂ : bt A} → (key < key₁) → treeInvariant (node key value t₁ t₂)
       → treeInvariant (node key₁ value₁ (node key value t₁ t₂) leaf ) 
    t-node  : {key key₁ key₂ : ℕ} → {value value₁ value₂ : A} → {t₁ t₂ t₃ t₄ : bt A} → (key < key₁) → (key₁ < key₂)
       → treeInvariant (node key value t₁ t₂) 
       → treeInvariant (node key₂ value₂ t₃ t₄)
       → treeInvariant (node key₁ value₁ (node key value t₁ t₂) (node key₂ value₂ t₃ t₄)) 

--
--  stack always contains original top at end
--
data stackInvariant {n : Level} {A : Set n}  (key : ℕ) : (top orig : bt A) → (stack  : List (bt A)) → Set n where
    s-single :  {tree0 : bt A} → stackInvariant key tree0 tree0 (tree0 ∷ [])
    s-right :  {tree tree0 tree₁ : bt A} → {key₁ : ℕ } → {v1 : A } → {st : List (bt A)} 
        → key₁ < key  →  stackInvariant key (node key₁ v1 tree₁ tree) tree0 st → stackInvariant key tree tree0 (tree ∷ st)
    s-left :  {tree₁ tree0 tree : bt A} → {key₁ : ℕ } → {v1 : A } → {st : List (bt A)} 
        → key  < key₁ →  stackInvariant key (node key₁ v1 tree₁ tree) tree0 st → stackInvariant key tree₁ tree0 (tree₁ ∷ st)

data replacedTree  {n : Level} {A : Set n} (key : ℕ) (value : A)  : (before after : bt A ) → Set n where
    r-leaf : replacedTree key value leaf (node key value leaf leaf)
    r-node : {value₁ : A} → {t t₁ : bt A} → replacedTree key value (node key value₁ t t₁) (node key value t t₁) 
    r-right : {k : ℕ } {v1 : A} → {t t1 t2 : bt A}
          → k < key →  replacedTree key value t2 t →  replacedTree key value (node k v1 t1 t2) (node k v1 t1 t) 
    r-left : {k : ℕ } {v1 : A} → {t t1 t2 : bt A}
          → key < k →  replacedTree key value t1 t →  replacedTree key value (node k v1 t1 t2) (node k v1 t t2) 

add< : { i : ℕ } (j : ℕ ) → i < suc i + j
add<  {i} j = begin
        suc i ≤⟨ m≤m+n (suc i) j ⟩
        suc i + j ∎  where open ≤-Reasoning

treeTest1  : bt ℕ
treeTest1  =  node 0 0 leaf (node 3 1 (node 2 5 (node 1 7 leaf leaf ) leaf) (node 5 5 leaf leaf))
treeTest2  : bt ℕ
treeTest2  =  node 3 1 (node 2 5 (node 1 7 leaf leaf ) leaf) (node 5 5 leaf leaf)

treeInvariantTest1  : treeInvariant treeTest1
treeInvariantTest1  = t-right (m≤m+n _ 2) (t-node (add< 0) (add< 1) (t-left (add< 0) (t-single 1 7)) (t-single 5 5) )

stack-top :  {n : Level} {A : Set n} (stack  : List (bt A)) → Maybe (bt A)
stack-top [] = nothing
stack-top (x ∷ s) = just x

stack-last :  {n : Level} {A : Set n} (stack  : List (bt A)) → Maybe (bt A)
stack-last [] = nothing
stack-last (x ∷ []) = just x
stack-last (x ∷ s) = stack-last s

stackInvariantTest1 : stackInvariant 4 treeTest2 treeTest1 ( treeTest2 ∷ treeTest1 ∷ [] )
stackInvariantTest1 = s-right (add< 3) (s-single  )

si-property0 :  {n : Level} {A : Set n} {key : ℕ} {tree tree0 : bt A} → {stack  : List (bt A)} →  stackInvariant key tree tree0 stack → ¬ ( stack ≡ [] )
si-property0  (s-single  ) ()
si-property0  (s-right x si) ()
si-property0  (s-left x si) ()

si-property1 :  {n : Level} {A : Set n} {key : ℕ} {tree tree0 tree1 : bt A} → {stack  : List (bt A)} →  stackInvariant key tree tree0 (tree1 ∷ stack)
   → tree1 ≡ tree
si-property1 (s-single   ) = refl
si-property1 (s-right _  si) = refl
si-property1 (s-left _  si) = refl

si-property-last :  {n : Level} {A : Set n}  (key : ℕ) (tree tree0 : bt A) → (stack  : List (bt A)) →  stackInvariant key tree tree0 stack
   → stack-last stack ≡ just tree0
si-property-last key t t0 (t ∷ [])  (s-single )  = refl
si-property-last key t t0 (.t ∷ x ∷ st) (s-right _ si ) with  si-property1 si
... | refl = si-property-last key x t0 (x ∷ st)   si
si-property-last key t t0 (.t ∷ x ∷ st) (s-left _ si ) with  si-property1  si
... | refl = si-property-last key x t0 (x ∷ st)   si

ti-right : {n  : Level} {A : Set n} {tree₁ repl : bt A} → {key₁ : ℕ} → {v1 : A} →  treeInvariant  (node key₁ v1 tree₁ repl) → treeInvariant repl
ti-right {_} {_} {.leaf} {_} {key₁} {v1} (t-single .key₁ .v1) = t-leaf
ti-right {_} {_} {.leaf} {_} {key₁} {v1} (t-right x ti) = ti
ti-right {_} {_} {.(node _ _ _ _)} {_} {key₁} {v1} (t-left x ti) = t-leaf
ti-right {_} {_} {.(node _ _ _ _)} {_} {key₁} {v1} (t-node x x₁ ti ti₁) = ti₁

ti-left : {n  : Level} {A : Set n} {tree₁ repl : bt A} → {key₁ : ℕ} → {v1 : A} →  treeInvariant  (node key₁ v1 repl tree₁ ) → treeInvariant repl
ti-left {_} {_} {.leaf} {_} {key₁} {v1} (t-single .key₁ .v1) = t-leaf
ti-left {_} {_} {_} {_} {key₁} {v1} (t-right x ti) = t-leaf
ti-left {_} {_} {_} {_} {key₁} {v1} (t-left x ti) = ti
ti-left {_} {_} {.(node _ _ _ _)} {_} {key₁} {v1} (t-node x x₁ ti ti₁) = ti

stackTreeInvariant : {n  : Level} {A : Set n} (key : ℕ) (sub tree : bt A) → (stack : List (bt A))
   →  treeInvariant tree → stackInvariant key sub tree stack  → treeInvariant sub
stackTreeInvariant {_} {A} key sub tree (sub ∷ []) ti (s-single  ) = ti
stackTreeInvariant {_} {A} key sub tree (sub ∷ st) ti (s-right _ si ) = ti-right (si1 si) where
   si1 : {tree₁ : bt A} → {key₁ : ℕ} → {v1 : A} →  stackInvariant key (node key₁ v1 tree₁ sub ) tree st → treeInvariant  (node key₁ v1 tree₁ sub )
   si1 {tree₁ }  {key₁ }  {v1 }  si = stackTreeInvariant  key (node key₁ v1 tree₁ sub ) tree st ti si
stackTreeInvariant {_} {A} key sub tree (sub ∷ st) ti (s-left _ si ) = ti-left ( si2 si) where
   si2 : {tree₁ : bt A} → {key₁ : ℕ} → {v1 : A} →  stackInvariant key (node key₁ v1 sub tree₁ ) tree st → treeInvariant  (node key₁ v1 sub tree₁ )
   si2 {tree₁ }  {key₁ }  {v1 }  si = stackTreeInvariant  key (node key₁ v1 sub tree₁ ) tree st ti si

rt-property1 :  {n : Level} {A : Set n} (key : ℕ) (value : A) (tree tree1 : bt A ) → replacedTree key value tree tree1 → ¬ ( tree1 ≡ leaf )
rt-property1 {n} {A} key value .leaf .(node key value leaf leaf) r-leaf ()
rt-property1 {n} {A} key value .(node key _ _ _) .(node key value _ _) r-node ()
rt-property1 {n} {A} key value .(node _ _ _ _) _ (r-right x rt) = λ ()
rt-property1 {n} {A} key value .(node _ _ _ _) _ (r-left x rt) = λ ()

rt-property-leaf : {n : Level} {A : Set n} {key : ℕ} {value : A} {repl : bt A} → replacedTree key value leaf repl → repl ≡ node key value leaf leaf
rt-property-leaf r-leaf = refl

rt-property-¬leaf : {n : Level} {A : Set n} {key : ℕ} {value : A} {tree : bt A} → ¬ replacedTree key value tree leaf 
rt-property-¬leaf ()

rt-property-key : {n : Level} {A : Set n} {key key₂ key₃ : ℕ} {value value₂ value₃ : A} {left left₁ right₂ right₃ : bt A}
    →  replacedTree key value (node key₂ value₂ left right₂) (node key₃ value₃ left₁ right₃) → key₂ ≡ key₃
rt-property-key r-node = refl
rt-property-key (r-right x ri) = refl
rt-property-key (r-left x ri) = refl

nat-≤> : { x y : ℕ } → x ≤ y → y < x → ⊥
nat-≤>  (s≤s x<y) (s≤s y<x) = nat-≤> x<y y<x
nat-<> : { x y : ℕ } → x < y → y < x → ⊥
nat-<>  (s≤s x<y) (s≤s y<x) = nat-<> x<y y<x

open _∧_


depth-1< : {i j : ℕ} →   suc i ≤ suc (i Data.Nat.⊔ j )
depth-1< {i} {j} = s≤s (m≤m⊔n _ j)

depth-2< : {i j : ℕ} →   suc i ≤ suc (j Data.Nat.⊔ i )
depth-2< {i} {j} = s≤s {!   !}

depth-3< : {i : ℕ } → suc i ≤ suc (suc i)
depth-3< {zero} = s≤s ( z≤n )
depth-3< {suc i} = s≤s (depth-3< {i} )


treeLeftDown  : {n : Level} {A : Set n} {k : ℕ} {v1 : A}  → (tree tree₁ : bt A )
      → treeInvariant (node k v1 tree tree₁)
      →      treeInvariant tree 
treeLeftDown {n} {A} {_} {v1} leaf leaf (t-single k1 v1) = t-leaf
treeLeftDown {n} {A} {_} {v1} .leaf .(node _ _ _ _) (t-right x ti) = t-leaf
treeLeftDown {n} {A} {_} {v1} .(node _ _ _ _) .leaf (t-left x ti) = ti 
treeLeftDown {n} {A} {_} {v1} .(node _ _ _ _) .(node _ _ _ _) (t-node x x₁ ti ti₁) = ti

treeRightDown  : {n : Level} {A : Set n} {k : ℕ} {v1 : A}  → (tree tree₁ : bt A )
      → treeInvariant (node k v1 tree tree₁)
      →      treeInvariant tree₁ 
treeRightDown {n} {A} {_} {v1} .leaf .leaf (t-single _ .v1) = t-leaf
treeRightDown {n} {A} {_} {v1} .leaf .(node _ _ _ _) (t-right x ti) = ti
treeRightDown {n} {A} {_} {v1} .(node _ _ _ _) .leaf (t-left x ti) = t-leaf
treeRightDown {n} {A} {_} {v1} .(node _ _ _ _) .(node _ _ _ _) (t-node x x₁ ti ti₁) = ti₁


-- record FindCond {n  : Level} {A : Set n} (C : ℕ → bt A → Set n)   : Set (Level.suc n) where
--    field
--       c1 : {key key₁ : ℕ}  {v1 : A } { tree tree₁ : bt A } → C key (node key₁ v1 tree tree₁) → key < key₁  → C key tree
--       c2 : {key key₁ : ℕ}  {v1 : A } { tree tree₁ : bt A } → C key (node key₁ v1 tree tree₁) → key > key₁  → C key tree₁
-- 
-- 
-- findP0 : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree : bt A ) → (stack : List (bt A))
--            →  {C : ℕ → bt A → Set n} → C key tree → FindCond C
--            → (next : (tree1 : bt A) → (stack : List (bt A)) → C key tree1 → bt-depth tree1 < bt-depth tree   → t )
--            → (exit : (tree1 : bt A) → (stack : List (bt A)) → C key tree1 
--                  → (tree1 ≡ leaf ) ∨ ( node-key tree1 ≡ just key )  → t ) → t
-- findP0 key leaf st Pre _ _ exit = exit leaf st Pre (case1 refl)
-- findP0 key (node key₁ v1 tree tree₁) st Pre _ next exit with <-cmp key key₁
-- findP0 key n st Pre e _ exit | tri≈ ¬a refl ¬c = exit n st Pre (case2 refl)
-- findP0 {n} {_} {A} key (node key₁ v1 tree tree₁) st  Pre e next _ | tri< a ¬b ¬c = next tree (tree ∷ st) (FindCond.c1 e Pre a) depth-1< 
-- findP0 key n@(node key₁ v1 tree tree₁) st Pre e next _ | tri> ¬a ¬b c = next tree₁ (tree₁ ∷ st) (FindCond.c2 e Pre c) depth-2<

findP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree tree0 : bt A ) → (stack : List (bt A))
           →  treeInvariant tree ∧ stackInvariant key tree tree0 stack  
           → (next : (tree1 : bt A) → (stack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant key tree1 tree0 stack → bt-depth tree1 < bt-depth tree   → t )
           → (exit : (tree1 : bt A) → (stack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant key tree1 tree0 stack
                 → (tree1 ≡ leaf ) ∨ ( node-key tree1 ≡ just key )  → t ) → t
findP key leaf tree0 st Pre _ exit = exit leaf st Pre (case1 refl)
findP key (node key₁ v1 tree tree₁) tree0 st Pre next exit with <-cmp key key₁
findP key n tree0 st Pre _ exit | tri≈ ¬a refl ¬c = exit n st Pre (case2 refl)
findP {n} {_} {A} key (node key₁ v1 tree tree₁) tree0 st  Pre next _ | tri< a ¬b ¬c = next tree (tree ∷ st)
       ⟪ treeLeftDown tree tree₁ (proj1 Pre)  , findP1 a st (proj2 Pre) ⟫ depth-1< where
   findP1 : key < key₁ → (st : List (bt A)) →  stackInvariant key (node key₁ v1 tree tree₁) tree0 st → stackInvariant key tree tree0 (tree ∷ st)
   findP1 a (x ∷ st) si = s-left a si
findP key n@(node key₁ v1 tree tree₁) tree0 st Pre next _ | tri> ¬a ¬b c = next tree₁ (tree₁ ∷ st) ⟪ treeRightDown tree tree₁ (proj1 Pre) , s-right c (proj2 Pre) ⟫ depth-2<

replaceTree1 : {n  : Level} {A : Set n} {t t₁ : bt A } → ( k : ℕ ) → (v1 value : A ) →  treeInvariant (node k v1 t t₁) → treeInvariant (node k value t t₁)
replaceTree1 k v1 value (t-single .k .v1) = t-single k value
replaceTree1 k v1 value (t-right x t) = t-right x t
replaceTree1 k v1 value (t-left x t) = t-left x t
replaceTree1 k v1 value (t-node x x₁ t t₁) = t-node x x₁ t t₁

open import Relation.Binary.Definitions

lemma3 : {i j : ℕ} → 0 ≡ i → j < i → ⊥
lemma3 refl ()
lemma5 : {i j : ℕ} → i < 1 → j < i → ⊥
lemma5 (s≤s z≤n) ()
¬x<x : {x : ℕ} → ¬ (x < x)
¬x<x (s≤s lt) = ¬x<x lt

child-replaced :  {n : Level} {A : Set n} (key : ℕ)   (tree : bt A) → bt A
child-replaced key leaf = leaf
child-replaced key (node key₁ value left right) with <-cmp key key₁
... | tri< a ¬b ¬c = left
... | tri≈ ¬a b ¬c = node key₁ value left right
... | tri> ¬a ¬b c = right

record replacePR {n : Level} {A : Set n} (key : ℕ) (value : A) (tree repl : bt A ) (stack : List (bt A)) (C : bt A → bt A → List (bt A) → Set n) : Set n where
   field
     tree0 : bt A
     ti : treeInvariant tree0
     si : stackInvariant key tree tree0 stack
     ri : replacedTree key value (child-replaced key tree ) repl
     ci : C tree repl stack     -- data continuation
   
replaceNodeP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → (tree : bt A)
    → (tree ≡ leaf ) ∨ ( node-key tree ≡ just key )
    → (treeInvariant tree ) → ((tree1 : bt A) → treeInvariant tree1 →  replacedTree key value (child-replaced key tree) tree1 → t) → t
replaceNodeP k v1 leaf C P next = next (node k v1 leaf leaf) (t-single k v1 ) r-leaf
replaceNodeP k v1 (node .k value t t₁) (case2 refl) P next = next (node k v1 t t₁) (replaceTree1 k value v1 P)
     (subst (λ j → replacedTree k v1 j  (node k v1 t t₁) ) repl00 r-node) where 
         repl00 : node k value t t₁ ≡ child-replaced k (node k value t t₁)
         repl00 with <-cmp k k
         ... | tri< a ¬b ¬c = ⊥-elim (¬b refl)
         ... | tri≈ ¬a b ¬c = refl
         ... | tri> ¬a ¬b c = ⊥-elim (¬b refl)

replaceP : {n m : Level} {A : Set n} {t : Set m}
     → (key : ℕ) → (value : A) → {tree : bt A} ( repl : bt A)
     → (stack : List (bt A)) → replacePR key value tree repl stack (λ _ _ _ → Lift n ⊤) 
     → (next : ℕ → A → {tree1 : bt A } (repl : bt A) → (stack1 : List (bt A))
         → replacePR key value tree1 repl stack1 (λ _ _ _ → Lift n ⊤) → length stack1 < length stack → t)
     → (exit : (tree1 repl : bt A) → treeInvariant tree1 ∧ replacedTree key value tree1 repl → t) → t
replaceP key value {tree}  repl [] Pre next exit = ⊥-elim ( si-property0 (replacePR.si Pre) refl ) -- can't happen
replaceP key value {tree}  repl (leaf ∷ []) Pre next exit with  si-property-last  _ _ _ _  (replacePR.si Pre)-- tree0 ≡ leaf
... | refl  =  exit (replacePR.tree0 Pre) (node key value leaf leaf) ⟪ replacePR.ti Pre ,  r-leaf ⟫
replaceP key value {tree}  repl (node key₁ value₁ left right ∷ []) Pre next exit with <-cmp key key₁
... | tri< a ¬b ¬c = exit (replacePR.tree0 Pre) (node key₁ value₁ repl right ) ⟪ replacePR.ti Pre , repl01 ⟫ where
    repl01 : replacedTree key value (replacePR.tree0 Pre) (node key₁ value₁ repl right )
    repl01 with si-property1 (replacePR.si Pre) | si-property-last  _ _ _ _  (replacePR.si Pre)   
    repl01 | refl | refl = subst (λ k → replacedTree key value  (node key₁ value₁ k right ) (node key₁ value₁ repl right )) repl02 (r-left a repl03) where
        repl03 : replacedTree key value ( child-replaced key (node key₁ value₁ left right)) repl
        repl03 = replacePR.ri Pre
        repl02 : child-replaced key (node key₁ value₁ left right) ≡ left
        repl02 with <-cmp key key₁
        ... | tri< a ¬b ¬c = refl 
        ... | tri≈ ¬a b ¬c = ⊥-elim ( ¬a a)
        ... | tri> ¬a ¬b c = ⊥-elim ( ¬a a)
... | tri≈ ¬a b ¬c = exit (replacePR.tree0 Pre) repl ⟪ replacePR.ti Pre , repl01 ⟫ where
    repl01 : replacedTree key value (replacePR.tree0 Pre) repl  
    repl01 with si-property1 (replacePR.si Pre) | si-property-last  _ _ _ _  (replacePR.si Pre)   
    repl01 | refl | refl = subst (λ k → replacedTree key value k repl) repl02 (replacePR.ri Pre) where
        repl02 : child-replaced key (node key₁ value₁ left right) ≡ node key₁ value₁ left right
        repl02 with <-cmp key key₁
        ... | tri< a ¬b ¬c = ⊥-elim ( ¬b b)
        ... | tri≈ ¬a b ¬c = refl
        ... | tri> ¬a ¬b c = ⊥-elim ( ¬b b)
... | tri> ¬a ¬b c = exit (replacePR.tree0 Pre) (node key₁ value₁ left repl  ) ⟪ replacePR.ti Pre , repl01 ⟫ where
    repl01 : replacedTree key value (replacePR.tree0 Pre) (node key₁ value₁ left repl )
    repl01 with si-property1 (replacePR.si Pre) | si-property-last  _ _ _ _  (replacePR.si Pre)   
    repl01 | refl | refl = subst (λ k → replacedTree key value  (node key₁ value₁ left k ) (node key₁ value₁ left repl )) repl02 (r-right c repl03) where
        repl03 : replacedTree key value ( child-replaced key (node key₁ value₁ left right)) repl
        repl03 = replacePR.ri Pre
        repl02 : child-replaced key (node key₁ value₁ left right) ≡ right
        repl02 with <-cmp key key₁
        ... | tri< a ¬b ¬c = ⊥-elim ( ¬c c)
        ... | tri≈ ¬a b ¬c = ⊥-elim ( ¬c c)
        ... | tri> ¬a ¬b c = refl 
replaceP {n} {_} {A} key value  {tree}  repl (leaf ∷ st@(tree1 ∷ st1)) Pre next exit = next key value repl st Post ≤-refl where
    Post :  replacePR key value tree1 repl (tree1 ∷ st1) (λ _ _ _ → Lift n ⊤)
    Post with replacePR.si Pre 
    ... | s-right  {_} {_} {tree₁} {key₂} {v1} x si = record { tree0 = replacePR.tree0 Pre ; ti = replacePR.ti Pre ; si = repl10 ; ri = repl12 ; ci = lift tt } where
        repl09 : tree1 ≡ node key₂ v1 tree₁ leaf
        repl09 = si-property1 si
        repl10 : stackInvariant key tree1 (replacePR.tree0 Pre) (tree1 ∷ st1)
        repl10 with si-property1 si
        ... | refl = si
        repl07 : child-replaced key (node key₂ v1 tree₁ leaf) ≡ leaf
        repl07 with <-cmp key key₂ 
        ... |  tri< a ¬b ¬c = ⊥-elim (¬c x)
        ... |  tri≈ ¬a b ¬c = ⊥-elim (¬c x)
        ... |  tri> ¬a ¬b c = refl
        repl12 : replacedTree key value (child-replaced key  tree1  ) repl
        repl12 = subst₂ (λ j k → replacedTree key value j k ) (sym (subst (λ k → child-replaced key k ≡ leaf) (sym repl09) repl07 ) ) (sym (rt-property-leaf (replacePR.ri Pre))) r-leaf
    ... | s-left  {_} {_} {tree₁} {key₂} {v1} x si = record { tree0 = replacePR.tree0 Pre ; ti = replacePR.ti Pre ; si = repl10 ; ri = repl12 ; ci = lift tt } where
        repl09 : tree1 ≡ node key₂ v1 leaf tree₁ 
        repl09 = si-property1 si
        repl10 : stackInvariant key tree1 (replacePR.tree0 Pre) (tree1 ∷ st1)
        repl10 with si-property1 si
        ... | refl = si
        repl07 : child-replaced key (node key₂ v1 leaf tree₁ ) ≡ leaf
        repl07 with <-cmp key key₂ 
        ... |  tri< a ¬b ¬c = refl
        ... |  tri≈ ¬a b ¬c = ⊥-elim (¬a x)
        ... |  tri> ¬a ¬b c = ⊥-elim (¬a x)
        repl12 : replacedTree key value (child-replaced key  tree1  ) repl
        repl12 = subst₂ (λ j k → replacedTree key value j k ) (sym (subst (λ k → child-replaced key k ≡ leaf) (sym repl09) repl07 ) ) (sym (rt-property-leaf (replacePR.ri Pre))) r-leaf
replaceP {n} {_} {A} key value {tree}  repl (node key₁ value₁ left right ∷ st@(tree1 ∷ st1)) Pre next exit  with <-cmp key key₁ 
... | tri< a ¬b ¬c = next key value (node key₁ value₁ repl right ) st Post ≤-refl where
    Post : replacePR key value tree1 (node key₁ value₁ repl right ) st (λ _ _ _ → Lift n ⊤) 
    Post with replacePR.si Pre 
    ... | s-right {_} {_} {tree₁} {key₂} {v1} lt si = record { tree0 = replacePR.tree0 Pre ; ti = replacePR.ti Pre ; si = repl10 ; ri = repl12 ; ci = lift tt } where
        repl09 : tree1 ≡ node key₂ v1 tree₁ (node key₁ value₁ left right) 
        repl09 = si-property1 si
        repl10 : stackInvariant key tree1 (replacePR.tree0 Pre) (tree1 ∷ st1)
        repl10 with si-property1 si
        ... | refl = si
        repl03 : child-replaced key (node key₁ value₁ left right) ≡ left
        repl03 with <-cmp key key₁ 
        ... | tri< a1 ¬b ¬c = refl
        ... | tri≈ ¬a b ¬c = ⊥-elim (¬a a)
        ... | tri> ¬a ¬b c = ⊥-elim (¬a a)
        repl02 : child-replaced key (node key₂ v1 tree₁ (node key₁ value₁ left right) ) ≡ node key₁ value₁ left right
        repl02 with repl09 | <-cmp key key₂
        ... | refl | tri< a ¬b ¬c = ⊥-elim (¬c lt)
        ... | refl | tri≈ ¬a b ¬c = ⊥-elim (¬c lt)
        ... | refl | tri> ¬a ¬b c = refl
        repl04 : node key₁ value₁ (child-replaced key (node key₁ value₁ left right)) right ≡ child-replaced key tree1
        repl04  = begin
            node key₁ value₁ (child-replaced key (node key₁ value₁ left right)) right ≡⟨ cong (λ k → node key₁ value₁ k right) repl03  ⟩
            node key₁ value₁ left right ≡⟨ sym repl02 ⟩
            child-replaced key  (node key₂ v1 tree₁ (node key₁ value₁ left right) ) ≡⟨ cong (λ k → child-replaced key k ) (sym repl09) ⟩
            child-replaced key tree1 ∎  where open ≡-Reasoning
        repl12 : replacedTree key value (child-replaced key  tree1  ) (node key₁ value₁ repl right)
        repl12 = subst (λ k → replacedTree key value k (node key₁ value₁ repl right) ) repl04  (r-left a (replacePR.ri Pre)) 
    ... | s-left {_} {_} {tree₁} {key₂} {v1} lt si = record { tree0 = replacePR.tree0 Pre ; ti = replacePR.ti Pre ; si = repl10 ; ri = repl12 ; ci = lift tt } where
        repl09 : tree1 ≡ node key₂ v1 (node key₁ value₁ left right) tree₁  
        repl09 = si-property1 si
        repl10 : stackInvariant key tree1 (replacePR.tree0 Pre) (tree1 ∷ st1)
        repl10 with si-property1 si
        ... | refl = si
        repl03 : child-replaced key (node key₁ value₁ left right) ≡ left
        repl03 with <-cmp key key₁ 
        ... | tri< a1 ¬b ¬c = refl
        ... | tri≈ ¬a b ¬c = ⊥-elim (¬a a)
        ... | tri> ¬a ¬b c = ⊥-elim (¬a a)
        repl02 : child-replaced key (node key₂ v1 (node key₁ value₁ left right) tree₁) ≡ node key₁ value₁ left right
        repl02 with repl09 | <-cmp key key₂
        ... | refl | tri< a ¬b ¬c = refl
        ... | refl | tri≈ ¬a b ¬c = ⊥-elim (¬a lt)
        ... | refl | tri> ¬a ¬b c = ⊥-elim (¬a lt)
        repl04 : node key₁ value₁ (child-replaced key (node key₁ value₁ left right)) right ≡ child-replaced key tree1
        repl04  = begin
            node key₁ value₁ (child-replaced key (node key₁ value₁ left right)) right ≡⟨ cong (λ k → node key₁ value₁ k right) repl03  ⟩
            node key₁ value₁ left right ≡⟨ sym repl02 ⟩
            child-replaced key  (node key₂ v1 (node key₁ value₁ left right) tree₁) ≡⟨ cong (λ k → child-replaced key k ) (sym repl09) ⟩
            child-replaced key tree1 ∎  where open ≡-Reasoning
        repl12 : replacedTree key value (child-replaced key  tree1  ) (node key₁ value₁ repl right)
        repl12 = subst (λ k → replacedTree key value k (node key₁ value₁ repl right) ) repl04  (r-left a (replacePR.ri Pre)) 
... | tri≈ ¬a b ¬c = next key value (node key₁ value  left right ) st Post ≤-refl where 
    Post :  replacePR key value tree1 (node key₁ value left right ) (tree1 ∷ st1) (λ _ _ _ → Lift n ⊤)
    Post with replacePR.si Pre 
    ... | s-right  {_} {_} {tree₁} {key₂} {v1} x si = record { tree0 = replacePR.tree0 Pre ; ti = replacePR.ti Pre ; si = repl10 ; ri = repl12 b ; ci = lift tt } where
        repl09 : tree1 ≡ node key₂ v1 tree₁ tree -- (node key₁ value₁  left right)
        repl09 = si-property1 si
        repl10 : stackInvariant key tree1 (replacePR.tree0 Pre) (tree1 ∷ st1)
        repl10 with si-property1 si
        ... | refl = si
        repl07 : child-replaced key (node key₂ v1 tree₁ tree) ≡ tree
        repl07 with <-cmp key key₂ 
        ... |  tri< a ¬b ¬c = ⊥-elim (¬c x)
        ... |  tri≈ ¬a b ¬c = ⊥-elim (¬c x)
        ... |  tri> ¬a ¬b c = refl
        repl12 : (key ≡ key₁) → replacedTree key value (child-replaced key  tree1  ) (node key₁ value left right )
        repl12 refl with repl09 
        ... | refl = subst (λ k → replacedTree key value k (node key₁ value left right )) (sym repl07) r-node
    ... | s-left  {_} {_} {tree₁} {key₂} {v1} x si = record { tree0 = replacePR.tree0 Pre ; ti = replacePR.ti Pre ; si = repl10 ; ri = repl12 b ; ci = lift tt } where
        repl09 : tree1 ≡ node key₂ v1 tree tree₁ 
        repl09 = si-property1 si
        repl10 : stackInvariant key tree1 (replacePR.tree0 Pre) (tree1 ∷ st1)
        repl10 with si-property1 si
        ... | refl = si
        repl07 : child-replaced key (node key₂ v1 tree tree₁ ) ≡ tree
        repl07 with <-cmp key key₂ 
        ... |  tri< a ¬b ¬c = refl
        ... |  tri≈ ¬a b ¬c = ⊥-elim (¬a x)
        ... |  tri> ¬a ¬b c = ⊥-elim (¬a x)
        repl12 : (key ≡ key₁) → replacedTree key value (child-replaced key  tree1  ) (node key₁ value left right )
        repl12 refl with repl09 
        ... | refl = subst (λ k → replacedTree key value k (node key₁ value left right )) (sym repl07) r-node
... | tri> ¬a ¬b c = next key value (node key₁ value₁ left repl ) st Post ≤-refl where
    Post : replacePR key value tree1 (node key₁ value₁ left repl ) st (λ _ _ _ → Lift n ⊤) 
    Post with replacePR.si Pre 
    ... | s-right {_} {_} {tree₁} {key₂} {v1} lt si = record { tree0 = replacePR.tree0 Pre ; ti = replacePR.ti Pre ; si = repl10 ; ri = repl12 ; ci = lift tt } where
        repl09 : tree1 ≡ node key₂ v1 tree₁ (node key₁ value₁ left right) 
        repl09 = si-property1 si
        repl10 : stackInvariant key tree1 (replacePR.tree0 Pre) (tree1 ∷ st1)
        repl10 with si-property1 si
        ... | refl = si
        repl03 : child-replaced key (node key₁ value₁ left right) ≡ right
        repl03 with <-cmp key key₁ 
        ... | tri< a1 ¬b ¬c = ⊥-elim (¬c c)
        ... | tri≈ ¬a b ¬c = ⊥-elim (¬c c)
        ... | tri> ¬a ¬b c = refl 
        repl02 : child-replaced key (node key₂ v1 tree₁ (node key₁ value₁ left right) ) ≡ node key₁ value₁ left right
        repl02 with repl09 | <-cmp key key₂
        ... | refl | tri< a ¬b ¬c = ⊥-elim (¬c lt)
        ... | refl | tri≈ ¬a b ¬c = ⊥-elim (¬c lt)
        ... | refl | tri> ¬a ¬b c = refl
        repl04 : node key₁ value₁ left (child-replaced key (node key₁ value₁ left right)) ≡ child-replaced key tree1
        repl04  = begin
            node key₁ value₁ left (child-replaced key (node key₁ value₁ left right)) ≡⟨ cong (λ k → node key₁ value₁ left k ) repl03 ⟩
            node key₁ value₁ left right ≡⟨ sym repl02 ⟩
            child-replaced key  (node key₂ v1 tree₁ (node key₁ value₁ left right) ) ≡⟨ cong (λ k → child-replaced key k ) (sym repl09) ⟩
            child-replaced key tree1 ∎  where open ≡-Reasoning
        repl12 : replacedTree key value (child-replaced key  tree1  ) (node key₁ value₁ left repl)
        repl12 = subst (λ k → replacedTree key value k (node key₁ value₁ left repl) ) repl04 (r-right c (replacePR.ri Pre)) 
    ... | s-left {_} {_} {tree₁} {key₂} {v1} lt si = record { tree0 = replacePR.tree0 Pre ; ti = replacePR.ti Pre ; si = repl10 ; ri = repl12 ; ci = lift tt } where
        repl09 : tree1 ≡ node key₂ v1 (node key₁ value₁ left right) tree₁  
        repl09 = si-property1 si
        repl10 : stackInvariant key tree1 (replacePR.tree0 Pre) (tree1 ∷ st1)
        repl10 with si-property1 si
        ... | refl = si
        repl03 : child-replaced key (node key₁ value₁ left right) ≡ right
        repl03 with <-cmp key key₁ 
        ... | tri< a1 ¬b ¬c = ⊥-elim (¬c c)
        ... | tri≈ ¬a b ¬c = ⊥-elim (¬c c)
        ... | tri> ¬a ¬b c = refl 
        repl02 : child-replaced key (node key₂ v1 (node key₁ value₁ left right) tree₁) ≡ node key₁ value₁ left right
        repl02 with repl09 | <-cmp key key₂
        ... | refl | tri< a ¬b ¬c = refl
        ... | refl | tri≈ ¬a b ¬c = ⊥-elim (¬a lt)
        ... | refl | tri> ¬a ¬b c = ⊥-elim (¬a lt)
        repl04 : node key₁ value₁ left (child-replaced key (node key₁ value₁ left right)) ≡ child-replaced key tree1
        repl04  = begin
            node key₁ value₁ left (child-replaced key (node key₁ value₁ left right)) ≡⟨ cong (λ k → node key₁ value₁ left k ) repl03 ⟩
            node key₁ value₁ left right ≡⟨ sym repl02 ⟩
            child-replaced key  (node key₂ v1 (node key₁ value₁ left right) tree₁) ≡⟨ cong (λ k → child-replaced key k ) (sym repl09) ⟩
            child-replaced key tree1 ∎  where open ≡-Reasoning
        repl12 : replacedTree key value (child-replaced key  tree1  ) (node key₁ value₁ left repl)
        repl12 = subst (λ k → replacedTree key value k (node key₁ value₁ left repl) ) repl04  (r-right c (replacePR.ri Pre)) 

TerminatingLoopS : {l m : Level} {t : Set l} (Index : Set m ) → {Invraiant : Index → Set m } → ( reduce : Index → ℕ)
   → (r : Index) → (p : Invraiant r)  
   → (loop : (r : Index)  → Invraiant r → (next : (r1 : Index)  → Invraiant r1 → reduce r1 < reduce r  → t ) → t) → t
TerminatingLoopS {_} {_} {t} Index {Invraiant} reduce r p loop with <-cmp 0 (reduce r)
... | tri≈ ¬a b ¬c = loop r p (λ r1 p1 lt → ⊥-elim (lemma3 b lt) ) 
... | tri< a ¬b ¬c = loop r p (λ r1 p1 lt1 → TerminatingLoop1 (reduce r) r r1 (≤-step lt1) p1 lt1 ) where 
    TerminatingLoop1 : (j : ℕ) → (r r1 : Index) → reduce r1 < suc j  → Invraiant r1 →  reduce r1 < reduce r → t
    TerminatingLoop1 zero r r1 n≤j p1 lt = loop r1 p1 (λ r2 p1 lt1 → ⊥-elim (lemma5 n≤j lt1)) 
    TerminatingLoop1 (suc j) r r1  n≤j p1 lt with <-cmp (reduce r1) (suc j)
    ... | tri< a ¬b ¬c = TerminatingLoop1 j r r1 a p1 lt 
    ... | tri≈ ¬a b ¬c = loop r1 p1 (λ r2 p2 lt1 → TerminatingLoop1 j r1 r2 (subst (λ k → reduce r2 < k ) b lt1 ) p2 lt1 )
    ... | tri> ¬a ¬b c =  ⊥-elim ( nat-≤> c n≤j )   

record LoopTermination {n : Level} {Index : Set n } { reduce : Index → ℕ }
       (r : Index ) (C : Set n) : Set (Level.suc n) where
   field
     rd :  (r1 : Index) → reduce r1 < reduce r
     ci : C -- data continuation

-- TerminatingLoopC : {l n : Level} {t : Set l} (Index : Set n ) → {C : Set n } → ( reduce : Index → ℕ)
--    → (r : Index) → (P : LoopTermination r C )  
--    → (loop : (r : Index)  → LoopTermination {_} {_} {reduce} r C → (next : (r1 : Index)  → LoopTermination r1 C  → t ) → t) → t
-- TerminatingLoopC {_} {_} {t} Index {C} reduce r P loop with <-cmp 0 (reduce r)
-- ... | tri≈ ¬a b ¬c = loop r P (λ r1 p1 → ⊥-elim (lemma3 b (LoopTermination.rd P r1)))
-- ... | tri< a ¬b ¬c = loop r P (λ r1 p1 → TerminatingLoop1 (reduce r) r r1 (≤-step (LoopTermination.rd P r1)) p1 (LoopTermination.rd P r1)) where 
--     TerminatingLoop1 : (j : ℕ) → (r r1 : Index) → reduce r1 < suc j  → {!!} →  reduce r1 < reduce r → t
--     TerminatingLoop1 zero r r1 n≤j p1 lt = loop r1 {!!} (λ r2 P1 → ⊥-elim (lemma5 n≤j (LoopTermination.rd P1 r2))) 
--     TerminatingLoop1 (suc j) r r1  n≤j p1 lt with <-cmp (reduce r1) (suc j)
--     ... | tri< a ¬b ¬c = TerminatingLoop1 j r r1 a p1 lt 
--     ... | tri≈ ¬a b ¬c = loop r1 {!!} (λ r2 p2 → TerminatingLoop1 j r1 r2 (subst (λ k → reduce r2 < k ) b {!!} ) p2 {!!} )
--     ... | tri> ¬a ¬b c =  ⊥-elim ( nat-≤> c n≤j )   
-- 
-- record ReplCond {n  : Level} {A : Set n} (C : ℕ → bt A → List (bt A) → Set n)   : Set (Level.suc n) where
--    field
--       c1 : (key : ℕ) → (repl : bt A) → (stack : List (bt A)) → C key repl stack
-- 
-- replaceP0 : {n m : Level} {A : Set n} {t : Set m}
--      → (key : ℕ) → (value : A) →  ( repl : bt A)
--      → (stack : List (bt A)) 
--      →  {C : ℕ → (repl : bt A ) → List (bt A) → Set n} → C key repl stack → ReplCond C
--      → (next : ℕ → A → (repl : bt A) → (stack1 : List (bt A))
--          → C key repl stack → length stack1 < length stack → t)
--      → (exit : (repl : bt A) → C key repl [] → t) → t
-- replaceP0 key value repl [] Pre _ next exit = exit repl {!!}
-- replaceP0 key value repl (leaf ∷ []) Pre _ next exit = exit  (node key value leaf leaf) {!!}
-- replaceP0 key value repl (node key₁ value₁ left right ∷ []) Pre e next exit with <-cmp key key₁
-- ... | tri< a ¬b ¬c = exit  (node key₁ value₁ repl right ) {!!}
-- ... | tri≈ ¬a b ¬c = exit  repl {!!} 
-- ... | tri> ¬a ¬b c = exit  (node key₁ value₁ left repl  ) {!!} 
-- replaceP0 {n} {_} {A} key value  repl (leaf ∷ st@(tree1 ∷ st1)) Pre e next exit = next key value repl st {!!}  ≤-refl
-- replaceP0 {n} {_} {A} key value  repl (node key₁ value₁ left right ∷ st@(tree1 ∷ st1)) Pre e next exit  with <-cmp key key₁ 
-- ... | tri< a ¬b ¬c = next key value (node key₁ value₁ repl right ) st {!!}  ≤-refl
-- ... | tri≈ ¬a b ¬c = next key value (node key₁ value  left right ) st {!!}  ≤-refl
-- ... | tri> ¬a ¬b c = next key value (node key₁ value₁ left repl ) st {!!}  ≤-refl
-- 
-- 
open _∧_

RTtoTI0  : {n : Level} {A : Set n}  → (tree repl : bt A) → (key : ℕ) → (value : A) → treeInvariant tree
     → replacedTree key value tree repl → treeInvariant repl
RTtoTI0 .leaf .(node key value leaf leaf) key value ti r-leaf = t-single key value
RTtoTI0 .(node key _ leaf leaf) .(node key value leaf leaf) key value (t-single .key _) r-node = t-single key value
RTtoTI0 .(node key _ leaf (node _ _ _ _)) .(node key value leaf (node _ _ _ _)) key value (t-right x ti) r-node = t-right x ti 
RTtoTI0 .(node key _ (node _ _ _ _) leaf) .(node key value (node _ _ _ _) leaf) key value (t-left x ti) r-node = t-left x ti 
RTtoTI0 .(node key _ (node _ _ _ _) (node _ _ _ _)) .(node key value (node _ _ _ _) (node _ _ _ _)) key value (t-node x x₁ ti ti₁) r-node = t-node x x₁ ti ti₁
-- r-right case
RTtoTI0 (node _ _ leaf leaf) (node _ _ leaf .(node key value leaf leaf)) key value (t-single _ _) (r-right x r-leaf) = t-right x (t-single key value)
RTtoTI0 (node _ _ leaf right@(node _ _ _ _)) (node key₁ value₁ leaf leaf) key value (t-right x₁ ti) (r-right x ri) = t-single key₁ value₁
RTtoTI0 (node key₁ _ leaf right@(node key₂ _ _ _)) (node key₁ value₁ leaf right₁@(node key₃ _ _ _)) key value (t-right x₁ ti) (r-right x ri) = 
      t-right (subst (λ k → key₁ < k ) (rt-property-key ri) x₁) (RTtoTI0 _ _ key value ti ri)
RTtoTI0 (node key₁ _ (node _ _ _ _) leaf) (node key₁ _ (node key₃ value left right) leaf) key value₁ (t-left x₁ ti) (r-right x ())
RTtoTI0 (node key₁ _ (node key₃ _ _ _) leaf) (node key₁ _ (node key₃ value₃ _ _) (node key value leaf leaf)) key value (t-left x₁ ti) (r-right x r-leaf) =
      t-node x₁ x ti (t-single key value) 
RTtoTI0 (node key₁ _ (node _ _ _ _) (node key₂ _ _ _)) (node key₁ _ (node _ _ _ _) (node key₃ _ _ _)) key value (t-node x₁ x₂ ti ti₁) (r-right x ri) =
      t-node x₁ (subst (λ k → key₁ < k) (rt-property-key ri) x₂) ti (RTtoTI0 _ _ key value ti₁ ri)
-- r-left case
RTtoTI0 .(node _ _ leaf leaf) .(node _ _ (node key value leaf leaf) leaf) key value (t-single _ _) (r-left x r-leaf) = t-left x (t-single _ _ )
RTtoTI0 .(node _ _ leaf (node _ _ _ _)) (node key₁ value₁ (node key value leaf leaf) (node _ _ _ _)) key value (t-right x₁ ti) (r-left x r-leaf) = t-node x x₁ (t-single key value) ti
RTtoTI0 (node key₃ _ (node key₂ _ _ _) leaf) (node key₃ _ (node key₁ value₁ left left₁) leaf) key value (t-left x₁ ti) (r-left x ri) =
      t-left (subst (λ k → k < key₃ ) (rt-property-key ri) x₁) (RTtoTI0 _ _ key value ti ri) -- key₁ < key₃
RTtoTI0 (node key₁ _ (node key₂ _ _ _) (node _ _ _ _)) (node key₁ _ (node key₃ _ _ _) (node _ _ _ _)) key value (t-node x₁ x₂ ti ti₁) (r-left x ri) = t-node (subst (λ k → k < key₁ ) (rt-property-key ri) x₁) x₂  (RTtoTI0 _ _ key value ti ri) ti₁

RTtoTI1  : {n : Level} {A : Set n}  → (tree repl : bt A) → (key : ℕ) → (value : A) → treeInvariant repl
     → replacedTree key value tree repl → treeInvariant tree
RTtoTI1 .leaf .(node key value leaf leaf) key value ti r-leaf = t-leaf
RTtoTI1 (node key value₁ leaf leaf) .(node key value leaf leaf) key value (t-single .key .value) r-node = t-single key value₁
RTtoTI1 .(node key _ leaf (node _ _ _ _)) .(node key value leaf (node _ _ _ _)) key value (t-right x ti) r-node = t-right x ti
RTtoTI1 .(node key _ (node _ _ _ _) leaf) .(node key value (node _ _ _ _) leaf) key value (t-left x ti) r-node = t-left x ti
RTtoTI1 .(node key _ (node _ _ _ _) (node _ _ _ _)) .(node key value (node _ _ _ _) (node _ _ _ _)) key value (t-node x x₁ ti ti₁) r-node = t-node x x₁ ti ti₁
-- r-right case
RTtoTI1 (node key₁ value₁ leaf leaf) (node key₁ _ leaf (node _ _ _ _)) key value (t-right x₁ ti) (r-right x r-leaf) = t-single key₁ value₁
RTtoTI1 (node key₁ value₁ leaf (node key₂ value₂ t2 t3)) (node key₁ _ leaf (node key₃ _ _ _)) key value (t-right x₁ ti) (r-right x ri) =
   t-right (subst (λ k → key₁ < k ) (sym (rt-property-key ri)) x₁)  (RTtoTI1 _ _ key value ti ri) -- key₁ < key₂
RTtoTI1 (node _ _ (node _ _ _ _) leaf) (node _ _ (node _ _ _ _) (node key value _ _)) key value (t-node x₁ x₂ ti ti₁) (r-right x r-leaf) =
    t-left x₁ ti
RTtoTI1 (node key₄ _ (node key₃ _ _ _) (node key₁ value₁ n n₁)) (node key₄ _ (node key₃ _ _ _) (node key₂ _ _ _)) key value (t-node x₁ x₂ ti ti₁) (r-right x ri) = t-node x₁ (subst (λ k → key₄ < k ) (sym (rt-property-key ri)) x₂) ti (RTtoTI1 _ _ key value ti₁ ri) -- key₄ < key₁
-- r-left case
RTtoTI1 (node key₁ value₁ leaf leaf) (node key₁ _ _ leaf) key value (t-left x₁ ti) (r-left x ri) = t-single key₁ value₁
RTtoTI1 (node key₁ _ (node key₂ value₁ n n₁) leaf) (node key₁ _ (node key₃ _ _ _) leaf) key value (t-left x₁ ti) (r-left x ri) = 
   t-left (subst (λ k → k < key₁ ) (sym (rt-property-key ri)) x₁) (RTtoTI1 _ _ key value ti ri) -- key₂ < key₁
RTtoTI1 (node key₁ value₁ leaf _) (node key₁ _ _ _) key value (t-node x₁ x₂ ti ti₁) (r-left x r-leaf) = t-right x₂ ti₁
RTtoTI1 (node key₁ value₁ (node key₂ value₂ n n₁) _) (node key₁ _ _ _) key value (t-node x₁ x₂ ti ti₁) (r-left x ri) = 
    t-node (subst (λ k → k < key₁ ) (sym (rt-property-key ri)) x₁) x₂ (RTtoTI1 _ _ key value ti ri) ti₁ -- key₂ < key₁

insertTreeP : {n m : Level} {A : Set n} {t : Set m} → (tree : bt A) → (key : ℕ) → (value : A) → treeInvariant tree
     → (exit : (tree repl : bt A) → treeInvariant repl ∧ replacedTree key value tree repl → t ) → t
insertTreeP {n} {m} {A} {t} tree key value P0 exit =
   TerminatingLoopS (bt A ∧ List (bt A) ) {λ p → treeInvariant (proj1 p) ∧ stackInvariant key (proj1 p) tree (proj2 p) } (λ p → bt-depth (proj1 p)) ⟪ tree , tree ∷ [] ⟫  ⟪ P0 , s-single ⟫
       $ λ p P loop → findP key (proj1 p)  tree (proj2 p) P (λ t s P1 lt → loop ⟪ t ,  s  ⟫ P1 lt ) 
       $ λ t s P C → replaceNodeP key value t C (proj1 P)
       $ λ t1 P1 R → TerminatingLoopS (List (bt A) ∧ bt A ∧ bt A )
            {λ p → replacePR key value  (proj1 (proj2 p)) (proj2 (proj2 p)) (proj1 p)  (λ _ _ _ → Lift n ⊤ ) }
               (λ p → length (proj1 p)) ⟪ s , ⟪ t , t1 ⟫ ⟫ record { tree0 = tree ; ti = P0 ; si = proj2 P ; ri = R ; ci = lift tt } 
       $  λ p P1 loop → replaceP key value  (proj2 (proj2 p)) (proj1 p) P1
            (λ key value {tree1} repl1 stack P2 lt → loop ⟪ stack , ⟪ tree1 , repl1  ⟫ ⟫ P2 lt )
       $ λ tree repl P →  exit tree repl ⟪ RTtoTI0 _ _ _ _ (proj1 P) (proj2 P) , proj2 P ⟫   

insertTestP1 = insertTreeP leaf 1 1 t-leaf
  $ λ _ x P → insertTreeP x 2 1 (proj1 P) 
  $ λ _ x P → insertTreeP x 3 2 (proj1 P)  
  $ λ _ x P → insertTreeP x 2 2 (proj1 P) (λ _ x _  → x )

top-value : {n : Level} {A : Set n} → (tree : bt A) →  Maybe A 
top-value leaf = nothing
top-value (node key value tree tree₁) = just value

record findPR {n : Level} {A : Set n} (key : ℕ) (tree : bt A ) (stack : List (bt A)) (C : ℕ → bt A → List (bt A) → Set n) : Set n where
   field
     tree0 : bt A
     ti0 : treeInvariant tree0
     ti : treeInvariant tree
     si : stackInvariant key tree tree0 stack
     ci : C key tree stack     -- data continuation

record findExt {n : Level} {A : Set n} (key : ℕ) (C : ℕ → bt A → List (bt A) → Set n) : Set (Level.suc n) where
   field
      c1 : {key₁ : ℕ} {tree tree₁ : bt A } {st : List (bt A)} {v1 : A}
        → findPR key (node key₁ v1 tree tree₁) st C → key < key₁  → C key tree (tree ∷ st)
      c2 : {key₁ : ℕ} {tree tree₁ : bt A } {st : List (bt A)} {v1 : A}
        → findPR key (node key₁ v1 tree tree₁) st C → key > key₁  → C key tree₁ (tree₁ ∷ st)
   
findPP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree : bt A ) → (stack : List (bt A))
           →  {C : ℕ → bt A → List (bt A) → Set n } → findPR key tree stack C  → findExt key C
           → (next : (tree1 : bt A) → (stack : List (bt A)) → findPR key tree1 stack C → bt-depth tree1 < bt-depth tree   → t )
           → (exit : (tree1 : bt A) → (stack : List (bt A)) → findPR key tree1 stack C
                 → (tree1 ≡ leaf ) ∨ ( node-key tree1 ≡ just key )  → t ) → t
findPP key leaf st Pre _ _ exit = exit leaf st Pre (case1 refl)
findPP key (node key₁ v1 tree tree₁) st Pre _ next exit with <-cmp key key₁
findPP key n st Pre _ _ exit | tri≈ ¬a refl ¬c = exit n st Pre (case2 refl)
findPP {n} {_} {A} key (node key₁ v1 tree tree₁) st  Pre e next _ | tri< a ¬b ¬c = next tree (tree ∷ st)
       record { tree0 = findPR.tree0 Pre ; ti0 = findPR.ti0 Pre ; ti = treeLeftDown tree tree₁ (findPR.ti Pre)  ; si =  findP1 a st (findPR.si Pre) ; ci = findExt.c1 e Pre a } depth-1< where 
   findP1 : key < key₁ → (st : List (bt A)) →  stackInvariant key (node key₁ v1 tree tree₁)
         (findPR.tree0 Pre) st → stackInvariant key tree (findPR.tree0 Pre) (tree ∷ st)
   findP1 a (x ∷ st) si = s-left a si
findPP key n@(node key₁ v1 tree tree₁) st Pre e next _ | tri> ¬a ¬b c = next tree₁ (tree₁ ∷ st)
       record { tree0 = findPR.tree0 Pre ; ti0 = findPR.ti0 Pre ; ti = treeRightDown tree tree₁ (findPR.ti Pre) ; si =  s-right c (findPR.si Pre) ; ci = findExt.c2 e Pre c }  depth-2<

insertTreePP : {n m : Level} {A : Set n} {t : Set m} → (tree : bt A) → (key : ℕ) → (value : A) → treeInvariant tree
     → (exit : (tree repl : bt A) → treeInvariant tree ∧ replacedTree key value tree repl → t ) → t
insertTreePP {n} {m} {A} {t} tree key value P0 exit =
   TerminatingLoopS (bt A ∧ List (bt A) ) {λ p → findPR key (proj1 p) (proj2 p) (λ _ _ _ → Lift n ⊤) } (λ p → bt-depth (proj1 p)) ⟪ tree , tree ∷ [] ⟫
           record { tree0 = tree ; ti = P0 ; ti0 = P0 ;si = s-single ; ci = lift tt }
       $ λ p P loop → findPP key (proj1 p)  (proj2 p) P record { c1 = λ _ _ → lift tt ; c2 =  λ _ _  → lift tt } (λ t s P1 lt → loop ⟪ t ,  s  ⟫ P1 lt ) 
       $ λ t s P C → replaceNodeP key value t C (findPR.ti P)
       $ λ t1 P1 R → TerminatingLoopS (List (bt A) ∧ bt A ∧ bt A )
            {λ p → replacePR key value  (proj1 (proj2 p)) (proj2 (proj2 p)) (proj1 p)  (λ _ _ _ → Lift n ⊤ ) }
               (λ p → length (proj1 p)) ⟪ s , ⟪ t , t1 ⟫ ⟫ record { tree0 = findPR.tree0 P ; ti = findPR.ti0 P ; si = findPR.si P ; ri = R ; ci = lift tt } 
       $  λ p P1 loop → replaceP key value  (proj2 (proj2 p)) (proj1 p) P1
            (λ key value {tree1} repl1 stack P2 lt → loop ⟪ stack , ⟪ tree1 , repl1  ⟫ ⟫ P2 lt )  exit 

record findPC {n : Level} {A : Set n} (value : A) (key1 : ℕ) (tree : bt A ) (stack : List (bt A)) : Set n where
   field
     tree1 : bt A
     ci : replacedTree key1 value tree1 tree
   
findPPC1 : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → (tree : bt A ) → (stack : List (bt A))
   →  findPR key tree stack (findPC value )
   → (next : (tree1 : bt A) → (stack : List (bt A)) → findPR key tree1 stack (findPC value ) → bt-depth tree1 < bt-depth tree   → t )
   → (exit : (tree1 : bt A) → (stack : List (bt A)) → findPR key tree1 stack (findPC value )
                 → (tree1 ≡ leaf ) ∨ ( node-key tree1 ≡ just key )  → t ) → t
findPPC1 {n} {_} {A} key value tree stack Pr next exit = findPP key tree stack Pr findext next exit where
   findext01 :  {key₂ : ℕ} {tree₁ : bt A} {tree₂ : bt A} {st : List (bt A)} {v1 : A}
      → (Pre : findPR key (node key₂ v1 tree₁ tree₂) st (findPC value) )
      → key < key₂ → findPC value key tree₁ (tree₁ ∷ st)
   findext01 Pre a with findPC.ci (findPR.ci Pre) | findPC.tree1 (findPR.ci Pre) | inspect  findPC.tree1 (findPR.ci Pre)
   ... | r-leaf | leaf | record { eq = refl } = ⊥-elim ( nat-≤> a  ≤-refl) 
   ... | r-node | node key value t1 t3 | record { eq = refl } = ⊥-elim ( nat-≤> a  ≤-refl ) 
   ... | r-right x t | t1 | t2 = ⊥-elim (nat-<> x a)
   ... | r-left x ri | node key value t1 t3 | record { eq = refl } = record { tree1 = t1 ; ci = ri }
   findext02 :  {key₂ : ℕ} {tree₁ : bt A} {tree₂ : bt A} {st : List (bt A)} {v1 : A}
      → (Pre : findPR key (node key₂ v1 tree₁ tree₂) st (findPC value) )
      → key > key₂ → findPC value key tree₂ (tree₂ ∷ st)
   findext02 Pre c with findPC.ci (findPR.ci Pre) | findPC.tree1 (findPR.ci Pre) | inspect  findPC.tree1 (findPR.ci Pre)
   ... | r-leaf | leaf | record { eq = refl } = ⊥-elim ( nat-≤> c  ≤-refl) 
   ... | r-node | node key value t1 t3 | record { eq = refl } = ⊥-elim ( nat-≤> c  ≤-refl ) 
   ... | r-left x t | t1 | t2 = ⊥-elim (nat-<> x c)
   ... | r-right x ri | node key value t1 t3 | record { eq = refl } = record { tree1 = t3 ; ci = ri }
   findext : findExt key (findPC value )
   findext = record { c1 = findext01 ; c2 = findext02 }

insertTreeSpec0 : {n : Level} {A : Set n} → (tree : bt A) → (value : A) → top-value tree ≡ just value → ⊤
insertTreeSpec0 _ _ _ = tt

containsTree : {n : Level} {A : Set n} → (tree tree1 : bt A) → (key : ℕ) → (value : A) → treeInvariant tree1 → replacedTree key value tree1 tree  → ⊤
containsTree {n}  {A}  tree tree1 key value P RT =
   TerminatingLoopS (bt A ∧ List (bt A) )
     {λ p → findPR key (proj1 p) (proj2 p) (findPC value ) } (λ p → bt-depth (proj1 p)) 
              ⟪ tree , tree ∷ []  ⟫ record { tree0 = tree ; ti0 = RTtoTI0 _ _ _ _ P RT ; ti = RTtoTI0 _ _ _ _ P RT ; si = s-single
                    ; ci = record { tree1 = tree1 ; ci = RT } }
       $ λ p P loop → findPPC1 key value (proj1 p) (proj2 p) P (λ t s P1 lt → loop ⟪ t , s ⟫ P1 lt )  
       $ λ t1 s1 P2 found? → insertTreeSpec0 t1 value (lemma6 t1 s1 found? P2) where
           lemma6 : (t1 : bt A) (s1 : List (bt A)) (found? : (t1 ≡ leaf) ∨ (node-key t1 ≡ just key)) (P2 : findPR key t1 s1 (findPC value )) → top-value t1 ≡ just value
           lemma6 t1 s1 found? P2 = lemma7 t1 s1 (findPR.tree0 P2) ( findPC.tree1  (findPR.ci P2)) (findPC.ci  (findPR.ci P2)) (findPR.si P2) found? where
              lemma8 : {tree1 t1 : bt A } → replacedTree key  value tree1 t1 → node-key t1 ≡ just key → top-value t1 ≡ just value
              lemma8 {.leaf} {node key value .leaf .leaf} r-leaf refl = refl
              lemma8 {.(node key _ t1 t2)} {node key value t1 t2} r-node refl = refl
              lemma8 {.(node key value t1 _)} {node key value t1 t2} (r-right x ri) refl = ⊥-elim (¬x<x x)
              lemma8 {.(node key value _ t2)} {node key value t1 t2} (r-left x ri) refl = ⊥-elim (¬x<x x)
              lemma7 :  (t1 : bt A) ( s1 : List (bt A) ) (tree0 tree1 : bt A)
                 → replacedTree key  value tree1 t1 → stackInvariant key t1 tree0 s1
                 → ( t1 ≡ leaf ) ∨ ( node-key t1 ≡ just key)  →   top-value t1 ≡ just value
              lemma7 .leaf (.leaf ∷ []) .leaf tree1 () s-single (case1 refl)
              lemma7 (node key value t1 t2) (.(node key value t1 t2) ∷ []) .(node key value t1 t2) tree1 ri s-single (case2 x) = lemma8 ri x
              lemma7 (node key value t1 t2) (.(node key value t1 t2) ∷ x₁ ∷ s1) tree0 tree1 ri (s-right x si) (case2 x₂) = lemma8 ri x₂
              lemma7 (node key value t1 t2) (.(node key value t1 t2) ∷ x₁ ∷ s1) tree0 tree1 ri (s-left x si) (case2 x₂) = lemma8 ri x₂


containsTree1 : {n : Level} {A : Set n}  → (tree : bt A) → (key : ℕ) → (value : A) → treeInvariant tree → ⊤
containsTree1 {n} {A} tree key value ti =
       insertTreeP tree key value ti
     $ λ tree0 tree1 P → containsTree tree1 tree0 key value (RTtoTI1 _ _ _ _ (proj1 P) (proj2 P) ) (proj2 P)