Mercurial > hg > Gears > GearsAgda
view hoareRedBlackTree.agda @ 595:0927df986552
fix
author | ryokka |
---|---|
date | Thu, 16 Jan 2020 16:04:59 +0900 |
parents | 37f5826ca7d2 |
children |
line wrap: on
line source
module hoareRedBlackTree where open import Level renaming (zero to Z ; suc to succ) open import Data.Nat hiding (compare) open import Data.Nat.Properties as NatProp open import Data.Maybe -- open import Data.Maybe.Properties open import Data.Empty open import Data.List open import Data.Product open import Function as F hiding (const) open import Relation.Binary open import Relation.Binary.PropositionalEquality open import Relation.Nullary open import logic record TreeMethods {n m : Level } {a : Set n } {t : Set m } (treeImpl : Set n ) : Set (m Level.⊔ n) where field putImpl : treeImpl → a → (treeImpl → t) → t getImpl : treeImpl → (treeImpl → Maybe a → t) → t open TreeMethods record Tree {n m : Level } {a : Set n } {t : Set m } (treeImpl : Set n ) : Set (m Level.⊔ n) where field tree : treeImpl treeMethods : TreeMethods {n} {m} {a} {t} treeImpl putTree : a → (Tree treeImpl → t) → t putTree d next = putImpl (treeMethods ) tree d (\t1 → next (record {tree = t1 ; treeMethods = treeMethods} )) getTree : (Tree treeImpl → Maybe a → t) → t getTree next = getImpl (treeMethods ) tree (\t1 d → next (record {tree = t1 ; treeMethods = treeMethods} ) d ) open Tree SingleLinkedStack = List emptySingleLinkedStack : {n : Level } {Data : Set n} -> SingleLinkedStack Data emptySingleLinkedStack = [] clearSingleLinkedStack : {n m : Level } {Data : Set n} {t : Set m} -> SingleLinkedStack Data → ( SingleLinkedStack Data → t) → t clearSingleLinkedStack [] cg = cg [] clearSingleLinkedStack (x ∷ as) cg = cg [] pushSingleLinkedStack : {n m : Level } {t : Set m } {Data : Set n} -> List Data -> Data -> (Code : SingleLinkedStack Data -> t) -> t pushSingleLinkedStack stack datum next = next ( datum ∷ stack ) popSingleLinkedStack : {n m : Level } {t : Set m } {a : Set n} -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> t) -> t popSingleLinkedStack [] cs = cs [] nothing popSingleLinkedStack (data1 ∷ s) cs = cs s (just data1) data Color {n : Level } : Set n where Red : Color Black : Color record Node {n : Level } (a : Set n) : Set n where inductive field key : ℕ value : a right : Maybe (Node a ) left : Maybe (Node a ) color : Color {n} open Node record RedBlackTree {n : Level } (a : Set n) : Set n where field root : Maybe (Node a ) nodeStack : SingleLinkedStack (Node a ) open RedBlackTree -- record datum {n : Level} (a : Set n) : Set n where -- field -- key : ℕ -- val : a -- leaf nodes key is 0. -- -- data BTree {n : Level} (a : Set n) (lk nk rk : ℕ) : Set n where -- leaf : (l<n : lk < nk) → BTree a lk nk rk -- node : (left : BTree a lk nk rk) -- → (datum : ℕ) → (right : BTree a lk nk rk) -- → BTree a lk nk rk {-- tree に サイズ比較をつけたい(持ち運びたい)が leaf をどう扱うか問題(0にするとright についたときにおわる) 終わってほしくないので node のときだけにしたいがそれだと根本的に厳しい(BTree a の再帰構造なので) --} -- data BTree {n : Level} (a : Set n) : Set n where -- leaf : BTree a -- node : (left : BTree a ) -- → (datum : ℕ) -- → (right : BTree a ) -- → BTree a -- {a b c : ℕ} {a≤b : a ≤ b } {b≤c : b ≤ c} → -- trans≤ : {n : Level} {a : Set n} → Trans {_} {_} {_} {_} {_} {_} {ℕ} {ℕ} {ℕ} (λ x y → x < y) (λ y z → y < z) (λ x z → (x < z)) -- a≤b b≤c -- trans≤ {n} {a} {i} {j} {k} i<j j<k = ≤-trans i<j {!!} -- with i <? k -- trans≤ {n} {a} {i} {j} {k} i<j j<k | yes p = p -- trans≤ {n} {a} {i} {j} {k} i<j j<k | no ¬p = {!!} -- data BTree {n : Level} {a : Set n} (p q : ℕ) : ℕ → Set n where -- leaf : (p<q : p ≤ q ) → BTree p q 0 -- node : ∀ {hl hr h : ℕ} -- → (key : ℕ) -- → (left : BTree {n} {a} p key hl ) -- → (right : BTree {n} {a} key q hr ) -- → BTree p q (suc h) -- leaf-inj : {n : Level} {a : Set n} {p q : ℕ} {pp qq : p ≤ q} -- → (leaf {n} {a} pp) ≡ (leaf qq) → pp ≡ qq -- leaf-inj refl = refl -- node-inj : {n : Level} {a : Set n} -- {k1 k2 h : ℕ} {l1 r1 : BTree {n} {a} h} {l2 r2 : BTree {n} {a} h} -- → ((node {n} {a} {h} l1 k1 r1)) ≡ (node l2 k2 r2) → k1 ≡ k2 -- node-inj refl = refl -- node-inj1 : {n : Level} {a : Set n} -- {k1 k2 h hl1 hl2 hr1 hr2 p q : ℕ } -- {l1 : BTree {n} {a} p k1 hl1 } {l2 : BTree {n} {a} p k2 hl2} {l1 : BTree {n} {a} k1 q hr1} {r2 : BTree {n} {a} k2 q hr2} -- → (node {n} {a} {h} {?} {?} {?} {!!} {!!} ) ≡ (node {!!} {!!} {!!} ) → k1 ≡ k2 -- node-inj1 as = {!!} --- add relation find functions -- fTree is start codeGear. findT2 is loop codeGear. -- findT2 : {n m : Level } {a : Set n} {b lk rk kk1 kk2 : ℕ} {t : Set m} -- → (k1<k2 : kk1 ≤ kk2) → BTree {n} {a} b lk rk → (key : ℕ) -- → SingleLinkedStack (BTree {n} {a} b lk rk) -- → ( (lk ≤ rk) → BTree {n} {a} b lk rk → SingleLinkedStack (BTree {n} {a} b lk rk) → t) → t -- findT2 k1<k2 (leaf p<q) key stack cg = cg {!!} (leaf p<q) stack -- findT2 k1<k2 (node key1 tree₁ tree₂) key stack cg with <-cmp key1 key -- findT2 k1<k2 (node key1 tree₁ tree₂) key stack cg | tri≈ ¬a b ¬c = {!!} -- findT2 k1<k2 (node key1 tree₁ tree₂) key stack cg | tri< a ¬b ¬c = {!!} -- findT2 k1<k2 (node key1 tree₁ tree₂) key stack cg | tri> ¬a ¬b c = {!!} -- cg k1<k2 (leaf p<q) stack -- findT2 {n} {m} {a} {b} {kk1} {kk2} {t} k1<k2 (node rt key1 lt) key stack cg with <-cmp key1 key -- findT2 {n} {m} {a} {b} {kk1} {kk2} {t} k1<k2 tree@(node rt key1 lt) key stack cg | tri≈ ¬lt eq ¬gt = cg {!!} tree stack -- findT2 {n} {m} {a} {b} {kk1} {kk2} {t} k1<k2 (node rt key1 ltt) key stack cg | tri< lt ¬eq ¬gt = {!!} -- findT2 {n} {m} {a} {b} {kk1} {kk2} {t} k1<k2 (node rt key1 ltt) key stack cg | tri> ¬lt ¬eq gt = {!!} -- fTree : {n m : Level } {a : Set n} {b k1 k2 : ℕ} {t : Set m} -- → BTree {n} {a} b → (key : ℕ) -- → SingleLinkedStack (BTree {n} {a} b) → ( k1 < k2 → BTree {n} {a} b → SingleLinkedStack (BTree {n} {a} b) → t) → t -- fTree {n} {m} {a} {b} tree key stack cg = clearSingleLinkedStack stack (λ cstack → findT2 {n} {m} {a} {b} {0} {key} z≤n tree key cstack λ x x₁ x₂ → {!!}) {-- そもそも Tree は 高さを受け取るのではなく 関係だけを持つ leaf は関係を受け取って tran で (0 < n < m)をつくる --} {-- 思いつき Max Hight を持ち運んで必ず規定回数で止まるようにするのはあり…nきがする Tree を作ったあとに 左右の最大 hight を比較して Max にするのは良い 操作時はMaxが減る。 途中で終わった場合や、値が見つかった場合は 受け取って Max を減らすだけの関数で既定回数数を減らすだけ 関数に持たせる?データに持たせる? とりあえず関数(Data だと 再帰的な構造上定義が難しい) --} data BTree {n : Level} {a : Set n} : (hight : ℕ) → Set n where leaf : {p q h : ℕ } → (p<q : p ≤ q ) → BTree (suc h) node : { h : ℕ } → (left : BTree {n} {a} (suc h) ) → (key : ℕ) → (right : BTree {n} {a} (suc h) ) → BTree h maxHight : {n m : Level} {a : Set n} {t : Set m} {h : ℕ} → (searchHight : ℕ) → (BTree {n} {a} h) → ℕ maxHight {n} {m} {a} {t} zero (leaf p<q) = 0 -- root is leaf maxHight {n} {m} {a} {t} (suc hi) (leaf p<q) = (suc hi) -- max maxHight {n} {m} {a} {t} hi (node tree₁ key₁ tree₂) with (maxHight {n} {m} {a} {t} hi tree₁) | (maxHight {n} {m} {a} {t} hi tree₂) ... | lh | rh with <-cmp lh rh maxHight {n} {m} {a} {t} hi (node tree₁ key₁ tree₂) | lh | rh | tri< a₁ ¬b ¬c = rh maxHight {n} {m} {a} {t} hi (node tree₁ key₁ tree₂) | lh | rh | tri≈ ¬a b ¬c = lh maxHight {n} {m} {a} {t} hi (node tree₁ key₁ tree₂) | lh | rh | tri> ¬a ¬b c = lh -- maxHight {n} {m} {a} {t} hi (rnode tree₁ key₁ tree₂) = {!!} LastNodeIsLeaf : {n : Level} {a : Set n} → (h : ℕ) → (tree : BTree {n} {a} h) → (P : BTree {n} {a} (suc h) → ℕ → BTree {n} {a} (suc h) → Bool) → Bool LastNodeIsLeaf h (leaf p<q) P = true LastNodeIsLeaf h (node rt k1 lt) P = (P rt k1 lt) /\ LastNodeIsLeaf (suc h) lt (λ _ z _ → P lt z lt) /\ LastNodeIsLeaf (suc h) rt λ _ z _ → P lt z lt -- allnodes : {n : Level} {a : Set n} → (t : BTreeEx {n} {a}) → (P : BTreeEx {n} {a} → ℕ → BTreeEx {n} {a} → Bool) → Bool -- allnodes leafEx p = true -- allnodes (nodeEx lt k rt) p = (p lt k rt) /\ allnodes lt p /\ allnodes rt p -- MaxHightStop? : {n : Level} {a : Set n} → {h : ℕ} → (hight : ℕ) → (tree : BTree {n} {a} h) → (P : BTree {n} {a} (suc h) → ℕ → BTree {n} {a} (suc h) → Bool) → Bool -- MaxHightStop? {n} {a} {.(suc _)} zero (leaf p<q) P = true -- MaxHightStop? {n} {a} {.(suc _)} (suc allh) (leaf p<q) P = false -- MaxHightStop? {n} {a} {h} zero (node lt k rt) P = false -- MaxHightStop? {n} {a} {h} (suc allh) (node lt k rt) P = (P lt k lt) /\ (MaxHightStop? allh lt λ _ z _ → ) /\ (MaxHightStop? allh rt λ _ z _ → P rt z rt) SearchLeaf : {n : Level} {a : Set n} → (h : ℕ) → (t : BTree {n} {a} h) → Bool SearchLeaf h tree = LastNodeIsLeaf h tree (λ l k r → LastNodeIsLeaf (suc h) l (λ _ j _ → j <B? k) /\ LastNodeIsLeaf (suc h) r (λ _ n _ → k <B? n)) {-- whats leaf relation...? i think keys relation... "leaf relation" maybe 0<"parent node key" ??? --} test : {n : Level} {a : Set n} {h : ℕ} → BTree {n} {a} h test {n} {a} {h} = (node (leaf {n} {a} {0} {2} z≤n) 2 (node (leaf {n} {a} {0} {3} z≤n) 3 (leaf {n} {a} {0} {3} z≤n))) c : {n : Level} {a : Set n} → Bool c {n} {a} = SearchLeaf {n} {a} 3 test cm : {n : Level} {a : Set n} → ℕ cm {n} {a} = maxHight {n} {n} {a} {a} {zero} {!!} test lemma-all-leaf : {n : Level} {a : Set n} → (h : ℕ) → (tree : BTree {n} {a} h) → SearchLeaf h tree ≡ true lemma-all-leaf .(suc _) (leaf p<q) = refl lemma-all-leaf h tt@(node pltree k1 rtree) = {!!} -- lemma-all-leaf h tt -- lemma-all-leaf .0 tt@(rnode ltree k1 rtree) = lemma-all-leaf zero tt findT : {n m : Level } {a : Set n} {b left current : ℕ} {t : Set m} → (ta<tb : left ≤ current) → BTree {n} {a} b → (key : ℕ) → SingleLinkedStack (BTree {n} {a} b) → (BTree {n} {a} b → SingleLinkedStack (BTree {n} {a} b) → t) → t findT = {!!} -- findT {n} {m} {a} {b} {l} l<c (leaf p<q) key st cg = cg (leaf {n} {a} {b} {key} (z≤n)) st -- findT l<c (node tree₁ key1 tree₂) key st cg with <-cmp key key1 -- findT l<c (node tree₁ key1 tree₂) key st cg | tri< a ¬b ¬c = {!!} -- findT l<c (node tree₁ key1 tree₂) key st cg | tri≈ ¬a b ¬c = {!!} -- findT l<c (node tree₁ key1 tree₂) key st cg | tri> ¬a ¬b c = {!!} -- -- findT l<c tree@(node ltree key1 rtree) key st cg | tri≈ ¬lt eq ¬gt = cg tree st -- findT {n} {m} {a} {b} {l} {cu} {?} l<c tree@(node {b} ltree key1 rtree) key st cg | tri< lt ¬eq ¬gt = ? -- findT {n} {m} {a} {b} {l} {cu} l<c tree@(node ltree key1 rtree) key st cg | tri> ¬lt ¬eq gt = pushSingleLinkedStack st tree (λ st2 → findT {n} {m} {a} {b} {l} {cu} {!!} ({!!}) key st2 cg) -- findT の {!!} の部分は trans したやつが入ってほしい(型が合わない) --- nomal find -- findT : {n m : Level } {a : Set n} {b left current : ℕ} {t : Set m} -- → (ta<tb : left ≤ current) → BTree {n} {a} b → (key : ℕ) -- → SingleLinkedStack (BTree {n} {a} b) -- → (BTree {n} {a} b → SingleLinkedStack (BTree {n} {a} b) → t) → t -- findT {n} {m} {a} {b} {l} l<c (leaf p<q) key st cg = cg (leaf {n} {a} {b} {key} (z≤n)) st -- findT l<c (node tree₁ key1 tree₂) key st cg with <-cmp key key1 -- findT l<c tree@(node ltree key1 rtree) key st cg | tri≈ ¬lt eq ¬gt = cg tree st -- findT {n} {m} {a} {b} {l} {cu} l<c tree@(node (leaf p<q) key1 rtree) key st cg | tri< lt ¬eq ¬gt = pushSingleLinkedStack st tree (λ st2 → {!!}) -- findT {n} {m} {a} {b} ⦃ !! ⦄ ⦃ !! ⦄ {!!} (leaf {n} {a} ⦃ !! ⦄ {cu} {!!}) key st2 cg) -- findT {n} {m} {a} {b} {l} {cu} l<c tree@(node ltt@(node ltree key₁ ltree₁) key1 rtree) key st cg | tri< lt ¬eq ¬gt = pushSingleLinkedStack st tree (λ st2 → findT {n} {m} {a} {b} ⦃ !! ⦄ ⦃ !! ⦄ {!!} {!!} key st2 cg) -- findT {n} {m} {a} {b} {l} {cu} l<c tree@(node ltree key1 rtree) key st cg | tri> ¬lt ¬eq gt = pushSingleLinkedStack st tree (λ st2 → findT {n} {m} {a} {b} {key} {key1} {!!} (rtree) key st2 cg) -- findT l<c tree@(node {lh} {rh} {h} ltree key1 rtree) key st cg | tri≈ ¬lt eq ¬gt = cg tree st -- findT {n} {m} {a} {b} {l} l<c tree@(node {lh} {rh} {h} ltree key1 rtree) key st cg | tri< lt ¬eq ¬gt = {!!} -- pushSingleLinkedStack st tree (λ st2 → findT {n} {m} {a} {lh} {rh} {h} {!!} ({!!}) key {!!} λ x x₁ → {!!}) -- findT l<c (node tree₁ key1 tree₂) key st cg | tri> ¬lt ¬eq gt = {!!} -- findT (leaf p<q) key st cg = cg (leaf p<q ) st -- findT (node tree₁ key₁ tree₂) key st cg with <-cmp key key₁ -- findT tree@(node tree₁ key₁ tree₂) key st cg | tri≈ ¬a b ¬c = cg tree st -- findT tree@(node tree₁ key₁ tree₂) key st cg | tri< a ¬b ¬c = {!!} -- findT tree@(node tree₁ key₁ tree₂) key st cg | tri> ¬a ¬b c = {!!} data BTreeEx {n : Level} {a : Set n} : Set n where leafEx : BTreeEx nodeEx :(left : BTreeEx {n} {a} ) → (key : ℕ) → (right : BTreeEx {n} {a} ) → BTreeEx cmpMax : ℕ → ℕ → ℕ cmpMax lh rh with <-cmp lh rh cmpMax lh rh | tri< a ¬b ¬c = rh cmpMax lh rh | tri≈ ¬a b ¬c = lh cmpMax lh rh | tri> ¬a ¬b c₁ = lh max1 : {n m : Level} {a : Set n} {t : Set m} → ℕ → (BTreeEx {n} {a}) → (ℕ → t) → t max1 {n} {m} {a} {t} hi leafEx cg = cg hi max1 {n} {m} {a} {t} hi (nodeEx tree₁ key₁ tree₂) cg = (max1 {n} {m} {a} {t} (suc hi) tree₁ (λ lh → (max1 {n} {m} {a} {t} (suc hi) tree₂ (λ rh → cg (cmpMax lh rh))) )) max : {n m : Level} {a : Set n} {t : Set m} → (BTreeEx {n} {a}) → (ℕ → t) → t max {n} {m} {a} {t} tree = max1 zero tree maxI : {n m : Level} {a : Set n} {t : Set m} → (BTreeEx {n} {a}) → ℕ maxI {n} {m} {a} {t} tree = max tree (λ x → x) -- bad proof -- isStopMax? : {n m : Level} {a : Set n} {t : Set m} → ( tr : BTreeEx {n} {a}) → (max 0 tr (λ n → n ≡ n)) -- isStopMax? leafEx = refl -- isStopMax? (nodeEx tree₁ key₁ tree₂) = {!!} isStopMax? : {n m : Level} {a : Set n} {t : Set m} → ( tr : BTreeEx {n} {a}) → (max tr (λ eq → eq ≡ eq)) isStopMax? leafEx = refl isStopMax? (nodeEx tree₁ key₁ tree₂) = max (nodeEx tree₁ key₁ tree₂) (λ n₁ → {!!}) ltreeSearchLeaf : {n m : Level} {a : Set n} {t : Set m} → (BTreeEx {n} {a}) → ((BTreeEx {n} {a}) → t) → t ltreeSearchLeaf leafEx cg = cg leafEx ltreeSearchLeaf (nodeEx tree₁ key₁ tree₂) cg = ltreeSearchLeaf tree₁ cg ltreeStop? : {n m : Level} {a : Set n} {t : Set m} → (tree : BTreeEx {n} {a}) → ltreeSearchLeaf tree (λ tt → tt ≡ tt) ltreeStop? leafEx = refl ltreeStop? {n} {m} {a} {t} (nodeEx tree₁ key₁ tree₂) = ltreeStop? {n} {m} {a} {t} tree₁ ltreeSearchNode : {n m : Level} {a : Set n} {t : Set m} → (key : ℕ) → (BTreeEx {n} {a}) → ( (BTreeEx {n} {a}) → t) → t ltreeSearchNode key leafEx cg = cg leafEx ltreeSearchNode key (nodeEx tree₁ key₁ tree₂) cg with <-cmp key key₁ ltreeSearchNode key (nodeEx tree₁ key₁ tree₂) cg | tri< a ¬b ¬c = ltreeSearchNode key tree₁ cg ltreeSearchNode key tt@(nodeEx tree₁ key₁ tree₂) cg | tri≈ ¬a b ¬c = cg tt ltreeSearchNode key (nodeEx tree₁ key₁ tree₂) cg | tri> ¬a ¬b c₁ = cg tree₂ -- 何らかの集合のサイズが減っていれば良い…? ltreeStoplem : {n m : Level} {a : Set n} {t : Set m} → (key : ℕ) → (lt : BTreeEx {n} {a}) → (key1 : ℕ) → (rt : BTreeEx {n} {a}) → (p<q : key < key1 ) → (ℕ → BTreeEx {n} {a} → t ) → t ltreeNodeStop? : {n m : Level} {a : Set n} {t : Set m} → (key : ℕ) → (tree : BTreeEx {n} {a}) → ltreeSearchNode key tree (λ tt → tt ≡ tt) ltreeNodeStop? key leafEx = refl ltreeNodeStop? key (nodeEx tree₁ key₁ tree₂) with <-cmp key key₁ ltreeNodeStop? key (nodeEx tree₁ key₁ tree₂) | tri< a ¬b ¬c = {!!} -- ltreeNodeStop? {!!} {!!} {-- Failed to solve the following constraints: [720] ltreeSearchNode ?4 ?5 (λ tt → tt ≡ tt) =< ltreeSearchNode key tree₁ (λ tt → tt ≡ tt) : Set n --} ltreeNodeStop? key (nodeEx tree₁ key₁ tree₂) | tri≈ ¬a b ¬c = refl ltreeNodeStop? key (nodeEx tree₁ key₁ tree₂) | tri> ¬a ¬b c₁ = refl -- rtreeSearchNode : {n m : Level} {a : Set n} {t : Set m} → (key : ℕ) → (BTreeEx {n} {a}) → ( (BTreeEx {n} {a}) → t) → t -- rtreeSearchNode key leafEx cg = cg leafEx -- rtreeSearchNode key (nodeEx tree₁ key₁ tree₂) cg with <-cmp key key₁ -- rtreeSearchNode key (nodeEx tree₁ key₁ tree₂) cg | tri< a ¬b ¬c = cg tree₂ -- rtreeSearchNode key tt@(nodeEx tree₁ key₁ tree₂) cg | tri≈ ¬a b ¬c = cg tt -- rtreeSearchNode key (nodeEx tree₁ key₁ tree₂) cg | tri> ¬a ¬b c₁ = rtreeSearchNode key tree₁ cg -- rtreeNodeStop? : {n m : Level} {a : Set n} {t : Set m} → (key : ℕ) → (tree : BTreeEx {n} {a}) → rtreeSearchNode key tree (λ tt → tt ≡ tt) -- rtreeNodeStop? key leafEx = refl -- rtreeNodeStop? key (nodeEx tree₁ key₁ tree₂) with <-cmp key key₁ -- rtreeNodeStop? key (nodeEx tree₁ key₁ tree₂) | tri< a ¬b ¬c = refl -- rtreeNodeStop? key (nodeEx tree₁ key₁ tree₂) | tri≈ ¬a b ¬c = refl -- rtreeNodeStop? key (nodeEx tree₁ key₁ tree₂) | tri> ¬a ¬b c₁ = rtreeNodeStop? key {!!} ltreeStoplem key lt key1 rt p<q cg = cg key (nodeEx lt key1 rt) -- with (max {n} {m} {a} {t} (suc hi) tree₁ cg) | (max {n} {m} {a} {t} (suc hi) tree₂ cg) -- ... | lh | rh = {!!} -- max {n} {m} {a} {t} hi (nodeEx tree₁ key₁ tree₂) cg | lh | rh | tri< a₁ ¬b ¬c = cg rh -- max {n} {m} {a} {t} hi (nodeEx tree₁ key₁ tree₂) cg | lh | rh | tri≈ ¬a b ¬c = cg lh -- max {n} {m} {a} {t} hi (nodeEx tree₁ key₁ tree₂) cg | lh | rh | tri> ¬a ¬b c = cg lh -- findStop : {n m : Level } {a : Set n} {t : Set m} → BTreeEx {n} {a} → (key : ℕ) → SingleLinkedStack (BTreeEx) → (BTreeEx {n} → SingleLinkedStack (BTreeEx) → t) → t -- findStop = {!!} findTEx : {n m : Level } {a : Set n} {t : Set m} → BTreeEx {n} {a} → (key : ℕ) → SingleLinkedStack (BTreeEx) → (BTreeEx {n} → SingleLinkedStack (BTreeEx) → t) → t findTEx leafEx sd st next = next leafEx st findTEx (nodeEx ltree datum rtree) sd st next with <-cmp sd datum findTEx tree@(nodeEx ltree datum rtree) sd st next | tri≈ ¬a b ¬c = next tree st findTEx tree@(nodeEx ltree datum rtree) sd st next | tri< a ¬b ¬c = pushSingleLinkedStack st tree (λ st2 → findTEx ltree sd st2 next) findTEx tree@(nodeEx ltree datum rtree) sd st next | tri> ¬a ¬b c = pushSingleLinkedStack st tree (λ st2 → findTEx rtree sd st2 next) findL : {n m : Level } {a : Set n} {t : Set m} → BTreeEx {n} {a} → (key : ℕ) → SingleLinkedStack (BTreeEx) → (BTreeEx {n} → SingleLinkedStack (BTreeEx) → t) → t findL leafEx key stack cg = cg leafEx stack findL (nodeEx tree₁ key1 tree₂) key stack cg with (key1 ≤? key) findL (nodeEx tree₁ key1 tree₂) key stack cg | yes p with key1 ≟ key findL tree@(nodeEx tree₁ key1 tree₂) key stack cg | yes p | yes p₁ = cg tree stack findL tree@(nodeEx ltree key1 tree₂) key stack cg | yes p | no ¬p = pushSingleLinkedStack stack tree (λ stack1 → findL ltree key stack1 cg) findL (nodeEx tree₁ key1 tree₂) key stack cg | no ¬p = cg leafEx stack allnodes : {n : Level} {a : Set n} → (t : BTreeEx {n} {a}) → (P : BTreeEx {n} {a} → ℕ → BTreeEx {n} {a} → Bool) → Bool allnodes leafEx p = true allnodes (nodeEx lt k rt) p = (p lt k rt) /\ allnodes lt p /\ allnodes rt p find-leaf : {n : Level} {a : Set n} → (t : BTreeEx {n} {a}) → Bool find-leaf tree = allnodes tree (λ l k r → allnodes l (λ _ j _ → j <B? k) /\ allnodes r (λ _ n _ → k <B? n)) testTree : {n : Level} {a : Set n} → BTreeEx {n} {a} testTree {n} {a} = (nodeEx (nodeEx leafEx 1 leafEx) 2 (nodeEx leafEx 3 (nodeEx (nodeEx leafEx 4 leafEx) 5 (nodeEx leafEx 6 leafEx)))) badTree : {n : Level} {a : Set n} → BTreeEx {n} {a} badTree {n} {a} = (nodeEx (nodeEx leafEx 3 leafEx) 2 leafEx) lemm : {n : Level} {a : Set n} → find-leaf {n} {a} testTree ≡ true lemm = refl bool-⊥ : true ≡ false → ⊥ bool-⊥ () {-- badTree --} -- lemm1 : {n : level} {a : set n} → find-leaf {n} {a} badtree ≡ true -- lemm1 {n} {a} with badtree -- lemm1 {n} {a} | leafex = {!!} -- lemm1 {n} {a} | nodeex gda key₁ gda₁ = {!!} -- lemm-all : {n : Level} {a : Set n} (any-tree : BTreeEx {n} {a}) → find-leaf {n} {a} any-tree ≡ true -- lemm-all leafEx = refl -- lemm-all t@(nodeEx ltree k rtree) with (find-leaf t) ≟B true -- lemm-all (nodeEx ltree k rtree) | yes p = p -- lemm-all (nodeEx ltree k rtree) | no ¬p = {!!} -- findT : {n m : Level } {a : Set n} {t : Set m} → BTree {n} {a} → (key : ℕ) → SingleLinkedStack (BTree a) → (BTree {n} a → SingleLinkedStack (BTree a) → t) → t -- findT = ? -- {-- -- 一旦の方針は hight を使って書く, 大小関係 (片方だけ) を持って証明しながら降りてく -- --} -- hoge = findTEx testTree 44 [] (λ t s → s) -- {-- -- Tree に対して l < x < r の条件を足すときに気になるのは l or r が leaf の場合 -- leaf のときだけ例外的な証明を書く必要ありそう -- --} -- {-- AVL Tree メモ -- - $AGDA-HOME/Data/AVL.agda 関連を眺めた Tips -- AVL は特徴として すべての枝の長さの差が1以内に収まっている木。バランスもできる。 -- AVL Tree には key , value , left right の他にkeyの 上限、下限、高さを持ってるらしい -- (後ろに付いてるのは高さ+- 1 の関係をもってる) -- cast operation は木のサイズの log になる -- (cast operation は… わすれた) -- insert では 同じ key の値があったら Node を置き換え -- --} -- -- findT testTreeType 44 [] (λ t st → t) -- -- leaf -- -- findT testTree 44 [] (λ t st → st) -- -- node leaf 3 leaf ∷ node (node leaf 1 leaf) 2 (node leaf 3 leaf) ∷ [] -- -- findT testTreeType 3 [] (λ t st → t) -- -- node leaf 3 leaf -- -- findT testTreeType 3 [] (λ t st → st) -- -- node (node leaf 1 leaf) 2 (node leaf 3 leaf) ∷ [] -- replaceT : {n m : Level } {a : Set n} {t : Set m} → BTree {n} a → ℕ → SingleLinkedStack (BTree a) → (BTree {n} a → t) → t -- replaceT {n} {m} {a} {t} leaf n0 [] next = next (node leaf n0 leaf) -- replaceT {n} {m} {a} {t} tree@(node x datum x₁) n0 [] next = next tree -- replaceT {n} {m} {a} {t} leaf n0 (leaf ∷ rstack) next = replaceT (node leaf n0 leaf) n0 rstack next -- replaceT {n} {m} {a} {t} leaf n0 (node x datum x₁ ∷ rstack) next with <-cmp n0 datum -- replaceT {n} {m} {a} {t} leaf n0 (tree@(node x datum x₁) ∷ rstack) next | tri≈ ¬a b ¬c = replaceT tree n0 rstack next -- replaceT {n} {m} {a} {t} leaf n0 (node x datum x₁ ∷ rstack) next | tri< a₁ ¬b ¬c = replaceT (node (node leaf n0 leaf) datum x₁) n0 rstack next -- replaceT {n} {m} {a} {t} leaf n0 (node x datum x₁ ∷ rstack) next | tri> ¬a ¬b c = replaceT (node x datum (node leaf n0 leaf)) n0 rstack next -- replaceT {n} {m} {a} {t} tree@(node ltree datum rtree) n0 (leaf ∷ rstack) next = replaceT tree n0 rstack next -- -- bad some code -- replaceT {n} {m} {a} {t} tree@(node ltree datum rtree) n0 ((node x rdatum x₁) ∷ rstack) next with <-cmp datum rdatum -- replaceT {n} {m} {a} {t} (node ltree datum rtree) n0 (tree@(node x rdatum x₁) ∷ rstack) next -- | tri≈ ¬a b ¬c = replaceT tree n0 rstack next -- replaceT {n} {m} {a} {t} tree n0 (node x rdatum x₁ ∷ rstack) next -- | tri< a₁ ¬b ¬c = replaceT (node tree rdatum x₁) n0 rstack next -- replaceT {n} {m} {a} {t} tree n0 (node x rdatum x₁ ∷ rstack) next -- | tri> ¬a ¬b c = replaceT (node x rdatum tree) n0 rstack next -- insertT : {n m : Level } {a : Set n} {t : Set m} → BTree {n} a → ℕ → SingleLinkedStack (BTree a) → (BTree {n} a → t) → t -- insertT tree n0 st next = findT tree n0 st ( λ new st2 → replaceT new n0 st2 next ) -- c1 : {n : Level} {a : Set n} → BTree {n} a -- c1 = insertT leaf 1 [] (λ t → insertT t 3 [] (λ t → insertT t 5 [] (λ t → insertT t 7 [] (λ t → t)))) -- c2 : {n : Level} {a : Set n} → BTree {n} a -- c2 = insertT leaf 5 [] (λ t → insertT t 3 [] (λ t → insertT t 1 [] (λ t → insertT t 7 [] (λ t → t)))) -- -- -- 末 -- -- findDownEnd : {n m : Level} {a : Set n} {t : Set m} → (find : ℕ) → (any : BTree a) → findT any find [] (λ tt stack → {!!}) -- -- findDownEnd d tree = {!!} -- find-insert : {n m : Level } {a : Set n} {t : Set m} → (any : BTree {n} a) → (key : ℕ) → insertT any key [] (λ x → findT x key [] (λ return _ → (key ≡ {!!}))) -- find-insert leaf key with <-cmp key key -- find-insert leaf key | tri< a ¬b ¬c = ⊥-elim (¬c a ) -- find-insert leaf key | tri≈ ¬a b ¬c = {!!} -- find-insert leaf key | tri> ¬a ¬b c = ⊥-elim (¬a c ) -- find-insert tr@(node any₁ datum any₂) key with <-cmp key datum -- find-insert (node any₁ datum any₂) key | tri< a ¬b ¬c = {!!} -- find-insert (node any₁ datum any₂) key | tri> ¬a ¬b c = {!!} -- find-insert (node any₁ datum any₂) key | tri≈ ¬a b ¬c with <-cmp key datum -- find-insert (node any₁ datum any₂) key | tri≈ ¬a b ¬c | tri< a ¬b ¬c₁ = {!!} -- find-insert (node any₁ datum any₂) key | tri≈ ¬a b ¬c | tri> ¬a₁ ¬b c = {!!} -- find-insert (node any₁ datum any₂) key | tri≈ ¬a b ¬c | tri≈ ¬a₁ b₁ ¬c₁ = {!!} -- -- where -- find-lemma : {n m : Level} {a : Set n} {t : Set m} → BTree a → ℕ → SingleLinkedStack (BTree a) → (BTree a → SingleLinkedStack (BTree a) → t) → t -- find-lemma leaf ke st nt = nt leaf st -- find-lemma (node tr datum tr₁) ke st nt with <-cmp ke datum -- find-lemma tt@(node tr datum tr₁) ke st nt | tri< a ¬b ¬c = find-lemma tr ke (tt ∷ st) nt -- find-lemma tt@(node tr datum tr₁) ke st nt | tri≈ ¬a b ¬c = nt tt st -- find-lemma tt@(node tr datum tr₁) ke st nt | tri> ¬a ¬b c = find-lemma tr₁ ke (tt ∷ st) nt ---- -- find node potition to insert or to delete, the path will be in the stack -- {-# TERMINATING #-} findNode : {n m : Level } {a : Set n} {t : Set m} → RedBlackTree {n} a → (Node a ) → (RedBlackTree {n} a → t) → t findNode {n} {m} {a} {t} tree n0 next with root tree findNode {n} {m} {a} {t} tree n0 next | nothing = next tree findNode {n} {m} {a} {t} tree n0 next | just x with <-cmp (key x) (key n0) findNode {n} {m} {a} {t} tree n0 next | just x | tri≈ ¬a b ¬c = next tree findNode {n} {m} {a} {t} tree n0 next | just x | tri< a₁ ¬b ¬c = pushSingleLinkedStack (nodeStack tree) x (λ s → findNode (record {root = (left x) ; nodeStack = s}) n0 next) findNode {n} {m} {a} {t} tree n0 next | just x | tri> ¬a ¬b c = pushSingleLinkedStack (nodeStack tree) x (λ s → findNode (record {root = (right x) ; nodeStack = s}) n0 next) findNode1 : {n m : Level } {a : Set n} {t : Set m} → RedBlackTree {n} a → (Node a ) → (RedBlackTree {n} a → t) → t findNode1 {n} {m} {a} {t} tree n0 next = findNode2 (root tree) (nodeStack tree) module FindNode where findNode2 : (Maybe (Node a )) → SingleLinkedStack (Node a ) → t findNode2 nothing st = next record { root = nothing ; nodeStack = st } findNode2 (just x) st with <-cmp (key n0) (key x) ... | tri≈ ¬a b ¬c = next (record {root = just x ; nodeStack = st }) ... | tri< a ¬b ¬c = pushSingleLinkedStack st x (λ s1 → findNode2 (right x) s1) ... | tri> ¬a ¬b c = pushSingleLinkedStack st x (λ s1 → findNode2 (left x) s1) node001 : Node ℕ node001 = record { key = 2 ; value = 3 ; left = nothing ; right = nothing ; color = Black } node002 : Node ℕ node002 = record { key = 1 ; value = 3 ; left = just node001 ; right = nothing ; color = Black } node003 : Node ℕ node003 = record { key = 0 ; value = 3 ; left = just node002 ; right = nothing ; color = Black } tes0t01 = findNode1 {Level.zero} {Level.zero} {ℕ} {RedBlackTree ℕ} ( record { root = nothing ; nodeStack = emptySingleLinkedStack } ) node001 ( λ tree → tree ) test002 = findNode1 {Level.zero} {Level.zero} {ℕ} {RedBlackTree ℕ} ( record { root = just node001 ; nodeStack = emptySingleLinkedStack } ) node001 ( λ tree → tree ) test003 = findNode1 {Level.zero} {Level.zero} {ℕ} {RedBlackTree ℕ} ( record { root = just node003 ; nodeStack = emptySingleLinkedStack } ) node001 ( λ tree → tree ) test004 = findNode {Level.zero} {Level.zero} {ℕ} {RedBlackTree ℕ} ( record { root = just node003 ; nodeStack = emptySingleLinkedStack } ) node001 ( λ tree → tree ) replaceNode : {n m : Level } {a : Set n} {t : Set m} → RedBlackTree {n} a → (Node a ) → (RedBlackTree {n} a → t) → t replaceNode {n} {m} {a} {t} tree n0 next = replaceNode2 (nodeStack tree) (λ newNode → next record { root = just newNode ; nodeStack = emptySingleLinkedStack } ) module FindNodeR where replaceNode1 : (Maybe (Node a )) → Node a replaceNode1 nothing = record n0 { left = nothing ; right = nothing } replaceNode1 (just x) = record n0 { left = left x ; right = right x } replaceNode2 : SingleLinkedStack (Node a ) → (Node a → t) → t replaceNode2 [] next = next ( replaceNode1 (root tree) ) replaceNode2 (x ∷ st) next with <-cmp (key x) (key n0) replaceNode2 (x ∷ st) next | tri< a ¬b ¬c = replaceNode2 st ( λ new → next ( record x { left = left new } ) ) replaceNode2 (x ∷ st) next | tri≈ ¬a b ¬c = replaceNode2 st ( λ new → next ( record x { left = left new ; right = right new } ) ) replaceNode2 (x ∷ st) next | tri> ¬a ¬b c = replaceNode2 st ( λ new → next ( record x { right = right new } ) ) insertNode : {n m : Level } {a : Set n} {t : Set m} → RedBlackTree {n} a → (Node a ) → (RedBlackTree {n} a → t) → t insertNode tree n0 next = findNode1 tree n0 ( λ new → replaceNode tree n0 next ) createEmptyRedBlackTreeℕ : {n m : Level} {t : Set m} (a : Set n) (b : ℕ) → RedBlackTree {n} a createEmptyRedBlackTreeℕ a b = record { root = nothing ; nodeStack = emptySingleLinkedStack } findNodeLeft : {n : Level } {a : Set n} (r : Node a ) (t : SingleLinkedStack (Node a)) → Set n findNodeLeft x [] = (left x ≡ nothing ) ∧ (right x ≡ nothing ) findNodeLeft {n} x (h ∷ t) = Lift n ((key x) < (key h)) -- stack の top と比較するのはたぶん replace ...? findNodeRight : {n : Level } {a : Set n} (r : Node a ) (t : SingleLinkedStack (Node a)) → Set n findNodeRight x [] = (left x ≡ nothing ) ∧ (right x ≡ nothing ) findNodeRight {n} x (h ∷ t) = Lift n ((key x) > (key h)) data FindNodeInvariant {n : Level } {a : Set n} : (t : SingleLinkedStack (Node a)) (node : Maybe (Node a) ) → Set n where fni-stackEmpty : (now : Maybe (Node a) ) → FindNodeInvariant [] now fni-treeEmpty : (st : SingleLinkedStack (Node a)) → FindNodeInvariant st nothing fni-Left : (x : Node a) (st : SingleLinkedStack (Node a)) (node : Maybe (Node a )) → FindNodeInvariant ( x ∷ st ) node → findNodeLeft x st → FindNodeInvariant st node fni-Right : (x : Node a) (st : SingleLinkedStack (Node a)) (node : Maybe (Node a )) → FindNodeInvariant ( x ∷ st ) node → findNodeRight x st → FindNodeInvariant st node findNodeLoop : {n : Level } {a : Set n} (r : Node a ) (t : SingleLinkedStack (Node a)) → Set n findNodeLoop x st = ((findNodeRight x st) ∨ (findNodeLeft x st)) findNode1h : {n m : Level } {a : Set n} {t : Set m} → (tree : RedBlackTree {n} a ) → (Node a ) → ((new : RedBlackTree {n} a) → FindNodeInvariant (nodeStack new) (root new ) → t ) → ( FindNodeInvariant (nodeStack tree) (root tree) ) → t findNode1h {n} {m} {a} {t} tree n0 next prev = findNode2h (root tree) (nodeStack tree) prev module FindNodeH where findNode2h : (new : Maybe (Node a )) → (s : SingleLinkedStack (Node a )) → FindNodeInvariant s new → t findNode2h nothing st prev = next record { root = nothing ; nodeStack = st } prev findNode2h (just x) st prev with <-cmp (key n0) (key x) ... | tri≈ ¬a b ¬c = next (record {root = just x ; nodeStack = st }) prev ... | tri< a ¬b ¬c = pushSingleLinkedStack st x (λ s1 → findNode2h (right x) s1 (fni-Left x s1 {!!} {!!} {!!}) ) ... | tri> ¬a ¬b c = pushSingleLinkedStack st x (λ s1 → findNode2h (left x) s1 (fni-Right x s1 {!!} {!!} {!!}) ) -- replaceNodeH : {n m : Level } {a : Set n} {t : Set m} → RedBlackTree {n} a → (Node a ) → (RedBlackTree {n} a → {!!} → t) → {!!} → t -- replaceNodeH = {!!}