Mercurial > hg > Gears > GearsAgda
view hoareBinaryTree1.agda @ 602:0dbbcab02864
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 07 Jun 2020 15:44:39 +0900 |
parents | 7ae0c25d2b58 |
children |
line wrap: on
line source
module hoareBinaryTree1 where open import Level renaming (zero to Z ; suc to succ) open import Data.Nat hiding (compare) open import Data.Nat.Properties as NatProp open import Data.Maybe -- open import Data.Maybe.Properties open import Data.Empty open import Data.List open import Data.Product open import Function as F hiding (const) open import Relation.Binary open import Relation.Binary.PropositionalEquality open import Relation.Nullary hiding (proof) open import logic data bt {n : Level} (A : Set n) : Set n where bt-empty : bt A bt-node : (key : ℕ) → A → (ltree : bt A) → (rtree : bt A) → bt A bt-find : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree : bt A ) → List (bt A) → ( bt A → List (bt A) → t ) → t bt-find {n} {m} {A} {t} key leaf@(bt-empty) stack exit = exit leaf stack bt-find {n} {m} {A} {t} key (bt-node key₁ AA tree tree₁) stack next with <-cmp key key₁ bt-find {n} {m} {A} {t} key node@(bt-node key₁ AA tree tree₁) stack exit | tri≈ ¬a b ¬c = exit node stack bt-find {n} {m} {A} {t} key node@(bt-node key₁ AA ltree rtree) stack next | tri< a ¬b ¬c = bt-find key ltree (node ∷ stack) next bt-find {n} {m} {A} {t} key node@(bt-node key₁ AA ltree rtree) stack next | tri> ¬a ¬b c = bt-find key rtree (node ∷ stack) next bt-replace : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → A → bt A → List (bt A) → (bt A → t ) → t bt-replace {n} {m} {A} {t} ikey a otree stack next = bt-replace0 otree where bt-replace1 : bt A → List (bt A) → t bt-replace1 tree [] = next tree bt-replace1 node ((bt-empty) ∷ stack) = bt-replace1 node stack bt-replace1 node ((bt-node key₁ b x x₁) ∷ stack) = bt-replace1 (bt-node key₁ b node x₁) stack bt-replace0 : (tree : bt A) → t bt-replace0 tree@(bt-node key _ ltr rtr) = bt-replace1 (bt-node ikey a ltr rtr) stack -- find case bt-replace0 bt-empty = bt-replace1 (bt-node ikey a bt-empty bt-empty) stack bt-Empty : {n : Level} {A : Set n} → bt A bt-Empty = bt-empty bt-insert : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → A → bt A → (bt A → t ) → t bt-insert key a tree next = bt-find key tree [] (λ mtree stack → bt-replace key a mtree stack (λ tree → next tree) ) find-test : bt ℕ find-test = bt-find 5 bt-empty [] (λ x y → x) insert-test : bt ℕ insert-test = bt-insert 5 7 bt-empty (λ x → x) insert-test1 : bt ℕ insert-test1 = bt-insert 5 7 bt-empty (λ x → bt-insert 15 17 x (λ y → y)) insert-test2 : {n : Level} {t : Set n} → ( bt ℕ → t ) → t insert-test2 next = bt-insert 15 17 bt-empty $ λ x1 → bt-insert 5 7 x1 $ λ x2 → bt-insert 1 3 x2 $ λ x3 → bt-insert 4 2 x3 $ λ x4 → bt-insert 1 4 x4 $ λ y → next y insert-test3 : bt ℕ insert-test3 = bt-insert 15 17 bt-empty $ λ x1 → bt-insert 5 7 x1 $ λ x2 → bt-insert 1 3 x2 $ λ x3 → bt-insert 4 2 x3 $ λ x4 → bt-insert 1 4 x4 $ λ y → y insert-find0 : bt ℕ insert-find0 = insert-test2 $ λ tree → bt-find 1 tree [] $ λ x y → x insert-find1 : List (bt ℕ) insert-find1 = insert-test2 $ λ tree → bt-find 1 tree [] $ λ x y → y -- -- 1 After insert, all node except inserted node is preserved -- 2 After insert, specified key node is inserted -- 3 tree node order is consistent -- -- 4 noes on stack + current node = original top node .... invriant bt-find -- 5 noes on stack + current node = original top node with replaced node .... invriant bt-replace tree+stack0 : {n : Level} {A : Set n} → (tree mtree : bt A) → (stack : List (bt A)) → Set n tree+stack0 {n} {A} tree mtree [] = {!!} tree+stack0 {n} {A} tree mtree (x ∷ stack) = {!!} tree+stack : {n : Level} {A : Set n} → (tree mtree : bt A) → (stack : List (bt A)) → Set n tree+stack {n} {A} bt-empty mtree stack = (mtree ≡ bt-empty) ∧ (stack ≡ []) tree+stack {n} {A} (bt-node key x tree tree₁) mtree stack = bt-replace key x mtree stack (λ ntree → ntree ≡ tree) data _implies_ (A B : Set ) : Set (succ Z) where proof : ( A → B ) → A implies B implies2p : {A B : Set } → A implies B → A → B implies2p (proof x) = x bt-find-hoare1 : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree mtree : bt A ) → (stack : List (bt A)) → (tree+stack tree mtree stack) → ( (ntree : bt A) → (nstack : List (bt A)) → (tree+stack tree ntree nstack) → t ) → t bt-find-hoare1 {n} {m} {A} {t} key leaf@(bt-empty) mtree stack t+s exit = exit leaf stack {!!} bt-find-hoare1 {n} {m} {A} {t} key (bt-node key₁ AA tree tree₁) mtree stack t+s next with <-cmp key key₁ bt-find-hoare1 {n} {m} {A} {t} key node@(bt-node key₁ AA tree tree₁) mtree stack t+s exit | tri≈ ¬a b ¬c = exit node stack {!!} bt-find-hoare1 {n} {m} {A} {t} key node@(bt-node key₁ AA ltree rtree) mtree stack t+s next | tri< a ¬b ¬c = bt-find-hoare1 {n} {m} {A} {t} key ltree {!!} (node ∷ stack) {!!} {!!} bt-find-hoare1 {n} {m} {A} {t} key node@(bt-node key₁ AA ltree rtree) mtree stack t+s next | tri> ¬a ¬b c = bt-find-hoare1 key rtree {!!} (node ∷ stack) {!!} {!!} bt-find-hoare : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree : bt A ) → ( (ntree : bt A) → (nstack : List (bt A)) → (tree+stack tree ntree nstack) → t ) → t bt-find-hoare {n} {m} {A} {t} key node exit = bt-find-hoare1 {n} {m} {A} {t} key node bt-empty [] ({!!}) exit