view src/synchronizedQueue/synchronizedQueueIdeal.c @ 143:34a7a21edc36

recude stack get using traverse field
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Wed, 09 Nov 2016 22:33:16 +0900
parents 5c3db1bef268
children
line wrap: on
line source

#include <stdlib.h>
#include <stdio.h>

#include "synchronizedQueueContext.h"

#include "allocate.h"
#include "origin_cs.h"

#ifdef CLANG
#define _CbC_retrun __return
#define _CbC_environment __environment
#endif

#define NUM 100

extern __code initSynchronizedQueueContext(struct Context* context);
extern void allocator(struct Context* context);

__code meta(struct Context* context, enum Code next) {
    goto (context->code[next])(context);
}

//__code code1(struct Context* context) {
//    context->data[Allocate]->allocate.size = sizeof(struct Element);
//    goto code2(context);
//}

__code code1(struct Context* context, struct Allocate* allocate) {
    allocate->size = sizeof(long);
    allocator();
    goto code2(count)
}

__code code2(struct Context* context, long* count) {
    *count = 0;
    goto code3(count, allocate);
}

__code code3(struct Context* context, long* count, struct Allocate* allocate) {
    long loop = *count;
    if(loop == NUM) {
        goto thread_exit();
    }
    allocate->size = sizeof(struct Element);
    allocator(context);
    got code4(count, allocate, element);
}

__code code4(struct Context* context, long* count, struct Allocate* allocate, struct Element* element) {
    allocate->after_put = Code3;
    element->value = (*count)++;
    struct Queue* queue = &context->data[Queue]->queue;
    goto sender(queue);
}

__code meta_sender(struct Context* context, struct Queue* queue, enum Code next) {
    // lock
    pthread_mutex_lock(&queue->mutex);
    goto (context->code[next])(context);
}

__code sender(struct Context* context, struct Queue* queue) {
    goto put(queue);
}

__code meta_put(struct Context* context, struct Queue* queue, enum Code next) {
    // signal
    pthread_cond_signal(&queue->cond);
    // unlock
    pthread_mutex_unlock(&queue->mutex);
    goto (context->code[next])(context);
}

__code put(struct Context* context, struct Allocate* allocate, struct Queue* queue, struct Element* element) {
    if(queue->first) {
        queue->last->next = element;
    } else {
        queue->first = element;
    }
    queue->last   = element;
    element->next = 0;
    queue->count++;
    printf("Put %d\n\n", element->value);
    goto meta_put(context, queue, allocate->after_put);
}

__code code5(struct Context* context, struct Allocate* allocate) {
    allocate->size = sizeof(long);
    allocator();
    long* count = &context->data[Counter]->count
    goto code6(count);
}

__code code5_stub(struct Context* context) {
    goto code5(context, &context->data[Allocate]->allocate);
}

__code code6(struct Context* context, long* count) {
    *count = 0;
    struct Allocate* allocate = &context->data[Allocate]->allocate;
    goto code7(count, allocate);
}

__code code7(struct Context* context, long* count, struct Allocate* allocate) {
    long loop = *count;
    if(loop == NUM) {
        goto threadExit();
    }
    (*count)++;
    allocate->after_get = Code7;
    goto receiver(queue);
}

__code meta_receiver(struct Context* context, struct Queue* queue, enum Code next) {
    // lock
    pthread_mutex_lock(&queue->mutex);
    goto (context->code[next])(context);
}

__code receiver(struct Context* context, struct Queue* queue) {
    goto get(queue);
}

__code meta_get(struct Context* context, struct Queue* queue, enum Code next) {
    pthread_mutex_unlock(&queue->mutex);
    goto (context->code[next])(context);
}

__code get(struct Context* context, struct Allocate* allocate, struct Queue* queue, struct Element* element) {
    // thread wait if queue is empty
    while (queue->count == 0) {
        pthread_cond_wait(&queue->cond, &queue->mutex);
    }
    printf("      Get %d\n\n", queue->first->value);
    queue->first = (queue->first->next) ? queue->first->next : 0;
    queue->count--;
    goto meta_get(context, allocate->after_get);
}

__code thread_exit(struct Context* context) {
    free(context->code);
    free(context->data);
    free(context->heapStart);
    pthread_exit(0);
}

void* thread_func(void* context) {
    goto start_code((struct Context*)context, Code1);
    return 0;
}

void* thread_func2(void* context) {
    goto start_code((struct Context*)context, Code5);
    return 0;
}

int main() {
    struct Context* context1 = (struct Context*)malloc(sizeof(struct Context));
    initSynchronizedQueueContext(context1);
    struct Context* context2 = (struct Context*)malloc(sizeof(struct Context));
    initSynchronizedQueueContext(context2);
    struct Context* context3 = (struct Context*)malloc(sizeof(struct Context));
    initSynchronizedQueueContext(context3);
    struct Context* context4 = (struct Context*)malloc(sizeof(struct Context));
    initSynchronizedQueueContext(context4);
    context2->data[Queue] = context1->data[Queue];
    context3->data[Queue] = context1->data[Queue];
    context4->data[Queue] = context1->data[Queue];
    pthread_t thread1, thread2, thread3, thread4;
    pthread_create(&thread1, NULL, thread_func, (void *)context1);
    pthread_create(&thread2, NULL, thread_func, (void *)context2);
    pthread_create(&thread3, NULL, thread_func2, (void *)context3);
    pthread_create(&thread4, NULL, thread_func2, (void *)context4);
    pthread_join(thread1, NULL);
    pthread_join(thread2, NULL);
    pthread_join(thread3, NULL);
    pthread_join(thread4, NULL);
}