Mercurial > hg > Gears > GearsAgda
view redBlackTreeTest.agda @ 564:40ab3d39e49d
using strict total order
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 11 Apr 2018 11:29:57 +0900 |
parents | 8634f448e699 |
children | ba7c5f1c2937 |
line wrap: on
line source
module redBlackTreeTest where open import RedBlackTree open import stack open import Level hiding (zero) renaming ( suc to succ ) open import Data.Empty open import Data.Nat open import Relation.Nullary open import Algebra open import Relation.Binary open import Data.Nat.Properties as NatProp open Tree open Node open RedBlackTree.RedBlackTree open Stack -- tests putTree1 : {n m : Level } {a k : Set n} {t : Set m} → RedBlackTree {n} {m} {t} a k → k → a → (RedBlackTree {n} {m} {t} a k → t) → t putTree1 {n} {m} {a} {k} {t} tree k1 value next with (root tree) ... | Nothing = next (record tree {root = Just (leafNode k1 value) }) ... | Just n2 = clearSingleLinkedStack (nodeStack tree) (λ s → findNode tree s (leafNode k1 value) n2 (λ tree1 s n1 → replaceNode tree1 s n1 next)) open import Relation.Binary.PropositionalEquality open import Relation.Binary.Core open import Function check1 : {m : Level } (n : Maybe (Node ℕ ℕ)) → ℕ → Bool {m} check1 Nothing _ = False check1 (Just n) x with Data.Nat.compare (value n) x ... | equal _ = True ... | _ = False check2 : {m : Level } (n : Maybe (Node ℕ ℕ)) → ℕ → Bool {m} check2 Nothing _ = False check2 (Just n) x with compare2 (value n) x ... | EQ = True ... | _ = False test1 : putTree1 {_} {_} {ℕ} {ℕ} (createEmptyRedBlackTreeℕ ℕ {Set Level.zero} ) 1 1 ( λ t → getRedBlackTree t 1 ( λ t x → check2 x 1 ≡ True )) test1 = refl test2 : putTree1 {_} {_} {ℕ} {ℕ} (createEmptyRedBlackTreeℕ ℕ {Set Level.zero} ) 1 1 ( λ t → putTree1 t 2 2 ( λ t → getRedBlackTree t 1 ( λ t x → check2 x 1 ≡ True ))) test2 = refl open ≡-Reasoning test3 : putTree1 {_} {_} {ℕ} {ℕ} (createEmptyRedBlackTreeℕ ℕ {Set Level.zero}) 1 1 $ λ t → putTree1 t 2 2 $ λ t → putTree1 t 3 3 $ λ t → putTree1 t 4 4 $ λ t → getRedBlackTree t 1 $ λ t x → check2 x 1 ≡ True test3 = begin check2 (Just (record {key = 1 ; value = 1 ; color = Black ; left = Nothing ; right = Just (leafNode 2 2)})) 1 ≡⟨ refl ⟩ True ∎ test31 = putTree1 {_} {_} {ℕ} {ℕ} (createEmptyRedBlackTreeℕ ℕ ) 1 1 $ λ t → putTree1 t 2 2 $ λ t → putTree1 t 3 3 $ λ t → putTree1 t 4 4 $ λ t → getRedBlackTree t 4 $ λ t x → x -- test5 : Maybe (Node ℕ ℕ) test5 = putTree1 {_} {_} {ℕ} {ℕ} (createEmptyRedBlackTreeℕ ℕ ) 4 4 $ λ t → putTree1 t 6 6 $ λ t0 → clearSingleLinkedStack (nodeStack t0) $ λ s → findNode1 t0 s (leafNode 3 3) ( root t0 ) $ λ t1 s n1 → replaceNode t1 s n1 $ λ t → getRedBlackTree t 3 -- $ λ t x → SingleLinkedStack.top (stack s) -- $ λ t x → n1 $ λ t x → root t where findNode1 : {n m : Level } {a k : Set n} {t : Set m} → RedBlackTree {n} {m} {t} a k → SingleLinkedStack (Node a k) → (Node a k) → (Maybe (Node a k)) → (RedBlackTree {n} {m} {t} a k → SingleLinkedStack (Node a k) → Node a k → t) → t findNode1 t s n1 Nothing next = next t s n1 findNode1 t s n1 ( Just n2 ) next = findNode t s n1 n2 next -- test51 : putTree1 {_} {_} {ℕ} {ℕ} {_} {Maybe (Node ℕ ℕ)} (createEmptyRedBlackTreeℕ ℕ {Set Level.zero} ) 1 1 $ λ t → -- putTree1 t 2 2 $ λ t → putTree1 t 3 3 $ λ t → root t ≡ Just (record { key = 1; value = 1; left = Just (record { key = 2 ; value = 2 } ); right = Nothing} ) -- test51 = refl test6 : Maybe (Node ℕ ℕ) test6 = root (createEmptyRedBlackTreeℕ {_} ℕ {Maybe (Node ℕ ℕ)}) test7 : Maybe (Node ℕ ℕ) test7 = clearSingleLinkedStack (nodeStack tree2) (λ s → replaceNode tree2 s n2 (λ t → root t)) where tree2 = createEmptyRedBlackTreeℕ {_} ℕ {Maybe (Node ℕ ℕ)} k1 = 1 n2 = leafNode 0 0 value1 = 1 test8 : Maybe (Node ℕ ℕ) test8 = putTree1 {_} {_} {ℕ} {ℕ} (createEmptyRedBlackTreeℕ ℕ) 1 1 $ λ t → putTree1 t 2 2 (λ t → root t) test9 : putRedBlackTree {_} {_} {ℕ} {ℕ} (createEmptyRedBlackTreeℕ ℕ {Set Level.zero} ) 1 1 ( λ t → getRedBlackTree t 1 ( λ t x → check2 x 1 ≡ True )) test9 = refl test10 : putRedBlackTree {_} {_} {ℕ} {ℕ} (createEmptyRedBlackTreeℕ ℕ {Set Level.zero} ) 1 1 ( λ t → putRedBlackTree t 2 2 ( λ t → getRedBlackTree t 1 ( λ t x → check2 x 1 ≡ True ))) test10 = refl test11 = putRedBlackTree {_} {_} {ℕ} {ℕ} (createEmptyRedBlackTreeℕ ℕ) 1 1 $ λ t → putRedBlackTree t 2 2 $ λ t → putRedBlackTree t 3 3 $ λ t → getRedBlackTree t 2 $ λ t x → root t redBlackInSomeState :{ m : Level } (a : Set Level.zero) (n : Maybe (Node a ℕ)) {t : Set m} → RedBlackTree {Level.zero} {m} {t} a ℕ redBlackInSomeState {m} a n {t} = record { root = n ; nodeStack = emptySingleLinkedStack ; compare = compareT } -- compare2 : (x y : ℕ ) → CompareResult {Level.zero} -- compare2 zero zero = EQ -- compare2 (suc _) zero = GT -- compare2 zero (suc _) = LT -- compare2 (suc x) (suc y) = compare2 x y contraposition : {m : Level } {A B : Set m} → (B → A) → (¬ A → ¬ B) contraposition f = λ x y → x (f y) compareTri1 : (n : ℕ) → zero <′ suc n compareTri1 zero = ≤′-refl compareTri1 (suc n) = ≤′-step ( compareTri1 n ) compareTri2 : (n m : ℕ) → n ≤′ m → suc n ≤′ suc m compareTri2 _ _ ≤′-refl = ≤′-refl compareTri2 n (suc m) ( ≤′-step p ) = ≤′-step { suc n } ( compareTri2 n m p ) <′dec : Set <′dec = ∀ m n → Dec ( m ≤′ n ) compareTri6 : ∀ m {n} → ¬ m ≤′ n → ¬ suc m ≤′ suc n is≤′ : <′dec is≤′ zero zero = yes ≤′-refl is≤′ zero (suc n) = yes (lemma n) where lemma : (n : ℕ) → zero ≤′ suc n lemma zero = ≤′-step ≤′-refl lemma (suc n) = ≤′-step (lemma n) is≤′ (suc m) (zero) = no ( λ () ) is≤′ (suc m) (suc n) with is≤′ m n ... | yes p = yes ( compareTri2 _ _ p ) ... | no p = no ( compareTri6 _ p ) compareTri20 : {n : ℕ} → ¬ suc n ≤′ zero compareTri20 () compareTri21 : (n m : ℕ) → suc n ≤′ suc m → n ≤′ m compareTri21 _ _ ≤′-refl = ≤′-refl compareTri21 (suc n) zero ( ≤′-step p ) = compareTri23 (suc n) ( ≤′-step p ) p where compareTri23 : (n : ℕ) → suc n ≤′ suc zero → suc n ≤′ zero → n ≤′ zero compareTri23 zero ( ≤′-step p ) _ = ≤′-refl compareTri23 zero ≤′-refl _ = ≤′-refl compareTri23 (suc n1) ( ≤′-step p ) () compareTri21 n (suc m) ( ≤′-step p ) = ≤′-step (compareTri21 _ _ p) compareTri21 zero zero ( ≤′-step p ) = ≤′-refl compareTri3 : ∀ m {n} → ¬ m ≡ suc (m + n) compareTri3 zero () compareTri3 (suc m) eq = compareTri3 m (cong pred eq) compareTri4' : ∀ m {n} → ¬ n ≡ m → ¬ suc n ≡ suc m compareTri4' m {n} with n ≟ m ... | yes refl = λ x y → x refl ... | no p = λ x y → p ( cong pred y ) compareTri4 : ∀ m {n} → ¬ n ≡ m → ¬ suc n ≡ suc m compareTri4 m = contraposition ( λ x → cong pred x ) -- compareTri6 : ∀ m {n} → ¬ m ≤′ n → ¬ suc m ≤′ suc n compareTri6 m {n} = λ x y → x (compareTri21 _ _ y) compareTri5 : ∀ m {n} → ¬ m <′ n → ¬ suc m <′ suc n compareTri5 m {n} = compareTri6 (suc m) compareTri : Trichotomous _≡_ _<′_ compareTri zero zero = tri≈ ( λ ()) refl ( λ ()) compareTri zero (suc n) = tri< ( compareTri1 n ) ( λ ()) ( λ ()) compareTri (suc n) zero = tri> ( λ ()) ( λ ()) ( compareTri1 n ) compareTri (suc n) (suc m) with compareTri n m ... | tri< p q r = tri< (compareTri2 (suc n) m p ) (compareTri4 _ q) ( compareTri5 _ r ) ... | tri≈ p refl r = tri≈ (compareTri5 _ p) refl ( compareTri5 _ r ) ... | tri> p q r = tri> ( compareTri5 _ p ) (compareTri4 _ q) (compareTri2 (suc m) n r ) compareDecTest : (n n1 : Node ℕ ℕ) → ( key n ≡ key n1 ) ∨ ( ¬ key n ≡ key n1 ) compareDecTest n n1 with (key n) ≟ (key n1) ... | yes p = pi1 p ... | no ¬p = pi2 ¬p putTest1Lemma2 : (k : ℕ) → compare2 k k ≡ EQ putTest1Lemma2 zero = refl putTest1Lemma2 (suc k) = putTest1Lemma2 k putTest1Lemma1 : (x y : ℕ) → compareℕ x y ≡ compare2 x y putTest1Lemma1 zero zero = refl putTest1Lemma1 (suc m) zero = refl putTest1Lemma1 zero (suc n) = refl putTest1Lemma1 (suc m) (suc n) with Data.Nat.compare m n putTest1Lemma1 (suc .m) (suc .(Data.Nat.suc m + k)) | less m k = lemma1 m where lemma1 : (m : ℕ) → LT ≡ compare2 m (ℕ.suc (m + k)) lemma1 zero = refl lemma1 (suc y) = lemma1 y putTest1Lemma1 (suc .m) (suc .m) | equal m = lemma1 m where lemma1 : (m : ℕ) → EQ ≡ compare2 m m lemma1 zero = refl lemma1 (suc y) = lemma1 y putTest1Lemma1 (suc .(Data.Nat.suc m + k)) (suc .m) | greater m k = lemma1 m where lemma1 : (m : ℕ) → GT ≡ compare2 (ℕ.suc (m + k)) m lemma1 zero = refl lemma1 (suc y) = lemma1 y putTest1Lemma3 : (k : ℕ) → compareℕ k k ≡ EQ putTest1Lemma3 k = trans (putTest1Lemma1 k k) ( putTest1Lemma2 k ) compareLemma1 : {x y : ℕ} → compare2 x y ≡ EQ → x ≡ y compareLemma1 {zero} {zero} refl = refl compareLemma1 {zero} {suc _} () compareLemma1 {suc _} {zero} () compareLemma1 {suc x} {suc y} eq = cong ( λ z → ℕ.suc z ) ( compareLemma1 ( trans lemma2 eq ) ) where lemma2 : compare2 (ℕ.suc x) (ℕ.suc y) ≡ compare2 x y lemma2 = refl open IsStrictTotalOrder compTri : ( x y : ℕ ) -> Tri (x < y) ( x ≡ y ) ( x > y ) compTri = IsStrictTotalOrder.compare (Relation.Binary.StrictTotalOrder.isStrictTotalOrder strictTotalOrder) checkT : {m : Level } (n : Maybe (Node ℕ ℕ)) → ℕ → Bool {m} checkT Nothing _ = False checkT (Just n) x with compTri (value n) x ... | tri≈ _ _ _ = True ... | _ = False putTest1 :{ m : Level } (n : Maybe (Node ℕ ℕ)) → (k : ℕ) (x : ℕ) → putTree1 {_} {_} {ℕ} {ℕ} (redBlackInSomeState {_} ℕ n {Set Level.zero}) k x (λ t → getRedBlackTree t k (λ t x1 → checkT x1 x ≡ True)) putTest1 n k x with n ... | Just n1 = lemma2 ( record { top = Nothing } ) where lemma2 : (s : SingleLinkedStack (Node ℕ ℕ) ) → putTree1 (record { root = Just n1 ; nodeStack = s ; compare = compareT }) k x (λ t → GetRedBlackTree.checkNode t k (λ t₁ x1 → checkT x1 x ≡ True) (root t)) lemma2 s with compTri k (key n1) ... | tri≈ le eq gt = lemma3 where lemma3 : getRedBlackTree {_} {_} {ℕ} {ℕ} {Set Level.zero} ( record { root = Just ( record { key = key n1 ; value = x ; right = right n1 ; left = left n1 ; color = Black } ) ; nodeStack = s ; compare = λ x₁ y → compareT x₁ y } ) k ( λ t x1 → checkT x1 x ≡ True) lemma3 = {!!} ... | tri> le eq gt = {!!} ... | tri< le eq gt = {!!} ... | Nothing = lemma1 where lemma1 : getRedBlackTree {_} {_} {ℕ} {ℕ} {Set Level.zero} ( record { root = Just ( record { key = k ; value = x ; right = Nothing ; left = Nothing ; color = Red } ) ; nodeStack = record { top = Nothing } ; compare = λ x₁ y → compareT x₁ y } ) k ( λ t x1 → checkT x1 x ≡ True) lemma1 = {!!}