view redBlackTreeTest.agda @ 540:6a4830c5a514

testing
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Thu, 11 Jan 2018 11:55:22 +0900
parents 39d465c20e5a
children 429ece770187
line wrap: on
line source

module redBlackTreeTest where

open import RedBlackTree
open import stack
open import Level hiding (zero)

open import Data.Nat

open Tree
open Node
open RedBlackTree.RedBlackTree
open Stack

-- tests

putTree1 : {n m : Level } {a k si : Set n} {t : Set m} -> RedBlackTree {n} {m} {t} a k si -> k -> a -> (RedBlackTree {n} {m} {t} a k si -> t) -> t
putTree1 {n} {m} {a} {k} {si} {t} tree k1 value next with (root tree)
...                                | Nothing = next (record tree {root = Just (leafNode k1 value) })
...                                | Just n2  = clearStack (nodeStack tree) (\ s -> findNode tree s (leafNode k1 value) n2 (\ tree1 s n1 -> replaceNode tree1 s n1 next))

open import Relation.Binary.PropositionalEquality
open import Relation.Binary.Core
open import Function


check1 : {m : Level } (n : Maybe (Node  ℕ ℕ)) -> ℕ -> Bool {m}
check1 Nothing _ = False
check1 (Just n)  x with Data.Nat.compare (value n)  x
...  | equal _ = True
...  | _ = False

test1 : putTree1 {_} {_} {ℕ} {ℕ} (createEmptyRedBlackTreeℕ ℕ {Set Level.zero} ) 1 1 ( \t -> getRedBlackTree t 1 ( \t x -> check1 x 1 ≡ True   ))
test1 = refl

test2 : putTree1 {_} {_} {ℕ} {ℕ} (createEmptyRedBlackTreeℕ ℕ {Set Level.zero} ) 1 1 (
    \t -> putTree1 t 2 2 (
    \t -> getRedBlackTree t 1 (
    \t x -> check1 x 1 ≡ True   )))
test2 = refl

test3 : putTree1 {_} {_} {ℕ} {ℕ} (createEmptyRedBlackTreeℕ ℕ {Set Level.zero} ) 1 1 
    $ \t -> putTree1 t 2 2 
    $ \t -> getRedBlackTree t 2 
    $ \t x -> check1 x 2 ≡ True  
test3 = refl

-- test4 : putTree1 {_} {_} {ℕ} {ℕ} ( createEmptyRedBlackTreeℕ ℕ {Set Level.zero} ) 1 1 $  \t -> putTree1 t 2 2  $ \t ->
--   root t ≡ Just (record { key = 1; value = 1; left = Just (record { key = 2 ; value = 2 } ); right = Nothing} )
-- test4 = refl


-- test5 : Maybe (Node ℕ ℕ)
test5 = putTree1 {_} {_} {ℕ} {ℕ} (createEmptyRedBlackTreeℕ ℕ ) 1 1 
    $ \t -> putTree1 t 2 2
    -- $ \t -> putTree1 t 3 3 
    $ \t ->  clearStack (nodeStack t)
    $ \s -> findNode1 t s (leafNode 3 3) ( root t )
    $ \t1 s n1 -> replaceNode t1 s n1 
    $ \t -> getRedBlackTree t 3
    $ \t x -> SingleLinkedStack.top (stack s)
    -- $ \t x -> n1
    -- $ \t x -> root t1
  where
     findNode1 : {n m : Level } {a k si : Set n} {t : Set m} -> RedBlackTree {n} {m} {t} a k si -> Stack (Node a k) si -> (Node a k) -> (Maybe (Node a k)) -> (RedBlackTree {n} {m} {t} a k si -> Stack (Node a k) si -> Node a k -> t) -> t
     findNode1 t s n1 Nothing next = next t s n1
     findNode1 t s n1 ( Just n2 ) next = findNode t s n1 n2 next

-- test51 : putTree1 {_} {_} {ℕ} {ℕ} {_} {Maybe (Node ℕ ℕ)} (createEmptyRedBlackTreeℕ ℕ {Set Level.zero} ) 1 1 $ \t ->
--   putTree1 t 2 2 $ \t -> putTree1 t 3 3 $ \t -> root t ≡ Just (record { key = 1; value = 1; left = Just (record { key = 2 ; value = 2 } ); right = Nothing} )
-- test51 = refl

test6 : Maybe (Node ℕ ℕ)
test6 = root (createEmptyRedBlackTreeℕ {_} ℕ {Maybe (Node ℕ ℕ)})


test7 : Maybe (Node ℕ ℕ)
test7 = clearStack (nodeStack tree2) (\ s -> replaceNode tree2 s n2 (\ t -> root t))
  where
    tree2 = createEmptyRedBlackTreeℕ {_} ℕ {Maybe (Node ℕ ℕ)}
    k1 = 1
    n2 = leafNode 0 0
    value1 = 1

test8 : Maybe (Node ℕ ℕ)
test8 = putTree1 {_} {_} {ℕ} {ℕ} (createEmptyRedBlackTreeℕ ℕ) 1 1 
    $ \t -> putTree1 t 2 2 (\ t -> root t)