Mercurial > hg > Gears > GearsAgda
view work.agda @ 798:794f6d8ddac2
10/28
author | Moririn |
---|---|
date | Sat, 28 Oct 2023 19:11:12 +0900 |
parents | 12e19644535e |
children | 6f27c2c18035 |
line wrap: on
line source
module work where open import Level hiding (suc ; zero ; _⊔_ ) open import Data.Nat hiding (compare) open import Data.Nat.Properties as NatProp open import Data.Maybe -- open import Data.Maybe.Properties open import Data.Empty open import Data.List open import Data.Product open import Function as F hiding (const) open import Relation.Binary open import Relation.Binary.PropositionalEquality open import Relation.Nullary open import logic data bt {n : Level} (A : Set n) : Set n where leaf : bt A node : (key : ℕ) → (value : A) → (left : bt A) → (right : bt A) → bt A node-key : {n : Level}{A : Set n} → bt A → Maybe ℕ node-key leaf = nothing node-key (node key value tree tree₁) = just key node-value : {n : Level} {A : Set n} → bt A → Maybe A node-value leaf = nothing node-value (node key value tree tree₁) = just value bt-depth : {n : Level} {A : Set n} → (tree : bt A) → ℕ bt-depth leaf = 0 bt-depth (node key value tree tree₁) = suc (bt-depth tree ⊔ bt-depth tree₁) --一番下のleaf =0から戻るたびにsucをしていく treeTest1 : bt ℕ treeTest1 = node 0 0 leaf (node 3 1 (node 2 5 (node 1 7 leaf leaf ) leaf) (node 5 5 leaf leaf)) -- 0 0 -- / \ -- leaf 3 1 -- / \ -- 2 5 2 -- / \ -- 1 leaf 3 -- / \ -- leaf leaf 4 treeTest2 : bt ℕ treeTest2 = node 3 1 (node 2 5 (node 1 7 leaf leaf ) leaf) (node 5 5 leaf leaf) testdb : ℕ testdb = bt-depth treeTest1 -- 4 import Data.Unit hiding ( _≟_ ; _≤?_ ; _≤_) data treeInvariant {n : Level} {A : Set n} : (tree : bt A) → Set n where t-leaf : treeInvariant leaf t-single : (key : ℕ) → (value : A) → treeInvariant (node key value leaf leaf) t-left : {key key1 : ℕ} → {value value1 : A} → {t1 t2 : bt A} → key < key1 → treeInvariant (node key value t1 t2) → treeInvariant (node key1 value1 (node key value t1 t2) leaf) t-right : {key key1 : ℕ} → {value value1 : A} → {t1 t2 : bt A} → key < key1 → treeInvariant (node key1 value1 t1 t2) → treeInvariant (node key value leaf (node key1 value1 t1 t2)) t-node : {key key1 key2 : ℕ}→ {value value1 value2 : A} → {t1 t2 t3 t4 : bt A} → key1 < key → key < key2 → treeInvariant (node key1 value1 t1 t2) → treeInvariant (node key2 value2 t3 t4) → treeInvariant (node key value (node key1 value1 t1 t2) (node key2 value2 t3 t4)) data stackInvariant {n : Level} {A : Set n} (key : ℕ ) : (top orig : bt A) → (stack : List (bt A)) → Set n where s-nil : {tree0 : bt A} → stackInvariant key tree0 tree0 (tree0 ∷ [] ) s-right : {key1 : ℕ } → {value : A } → {tree0 t1 t2 : bt A } → {st : List (bt A)} → key1 < key → stackInvariant key (node key1 value t1 t2) tree0 st → stackInvariant key t2 tree0 (t2 ∷ st) s-left : {key1 : ℕ } → {value : A } → {tree0 t1 t2 : bt A } → {st : List (bt A)} → key < key1 → stackInvariant key (node key1 value t1 t2) tree0 st → stackInvariant key t1 tree0 (t1 ∷ st) data replacedTree {n : Level } {A : Set n} (key : ℕ) (value : A) : (before after : bt A) → Set n where r-leaf : replacedTree key value leaf (node key value leaf leaf) r-node : {value₁ : A} → {left right : bt A} → replacedTree key value (node key value₁ left right) (node key value left right) -- key is the repl's key , so need comp key and key1 r-left : {key1 : ℕ} {value1 : A }→ {left right repl : bt A} → key < key1 → replacedTree key value left repl → replacedTree key value (node key1 value1 left right) (node key1 value1 repl right) r-right : {key1 : ℕ } {value1 : A} → {left right repl : bt A} → key1 < key → replacedTree key value right repl → replacedTree key value (node key1 value1 left right) (node key1 value1 left repl) depth-1< : {i j : ℕ} → suc i ≤ suc (i Data.Nat.⊔ j ) depth-1< {i} {j} = s≤s (m≤m⊔n _ j) depth-2< : {i j : ℕ} → suc i ≤ suc (j Data.Nat.⊔ i ) depth-2< {i} {j} = s≤s (m≤n⊔m j i) depth-3< : {i : ℕ } → suc i ≤ suc (suc i) depth-3< {zero} = s≤s ( z≤n ) depth-3< {suc i} = s≤s (depth-3< {i} ) treeLeftDown : {n : Level} {A : Set n} {key : ℕ} {value : A} → (tleft tright : bt A) → treeInvariant (node key value tleft tright) → treeInvariant tleft treeLeftDown leaf leaf (t-single key value) = t-leaf treeLeftDown leaf (node key value t1 t2) (t-right x ti) = t-leaf treeLeftDown (node key value t t₁) leaf (t-left x ti) = ti treeLeftDown (node key value t t₁) (node key₁ value₁ t1 t2) (t-node x x1 ti ti2 ) = ti treeRightDown : {n : Level} {A : Set n} {key : ℕ} {value : A} → (tleft tright : bt A) → treeInvariant (node key value tleft tright) → treeInvariant tright treeRightDown leaf leaf (t-single key value) = t-leaf treeRightDown leaf (node key value t1 t2) (t-right x ti) = ti treeRightDown (node key value t t₁) leaf (t-left x ti) = t-leaf treeRightDown (node key value t t₁) (node key₁ value₁ t1 t2) (t-node x x1 ti ti2 ) = ti2 findP : {n m : Level} {A : Set n} {t : Set n} → (tkey : ℕ) → (top orig : bt A) → (st : List (bt A)) → (treeInvariant top) → stackInvariant tkey top orig st → (next : (newtop : bt A) → (stack : List (bt A)) → (treeInvariant newtop) → (stackInvariant tkey newtop orig stack) → bt-depth newtop < bt-depth top → t) → (exit : (newtop : bt A) → (stack : List (bt A)) → (treeInvariant newtop) → (stackInvariant tkey newtop orig stack) --need new stack ? → (newtop ≡ leaf) ∨ (node-key newtop ≡ just tkey) → t) → t findP tkey leaf orig st ti si next exit = exit leaf st ti si (case1 refl) findP tkey (node key value tl tr) orig st ti si next exit with <-cmp tkey key findP tkey top orig st ti si next exit | tri≈ ¬a refl ¬c = exit top st ti si (case2 refl) findP tkey (node key value tl tr) orig st ti si next exit | tri< a ¬b ¬c = next tl (tl ∷ st) (treeLeftDown tl tr ti) (s-left a si) (s≤s (m≤m⊔n (bt-depth tl) (bt-depth tr))) findP tkey (node key value tl tr) orig st ti si next exit | tri> ¬a ¬b c = next tr (tr ∷ st) (treeRightDown tl tr ti) (s-right c si) (s≤s (m≤n⊔m (bt-depth tl) (bt-depth tr))) --RBT data Color : Set where Red : Color Black : Color RB→bt : {n : Level} (A : Set n) → (bt (Color ∧ A)) → bt A RB→bt {n} A leaf = leaf RB→bt {n} A (node key ⟪ C , value ⟫ tr t1) = (node key value (RB→bt A tr) (RB→bt A t1)) color : {n : Level} {A : Set n} → (bt (Color ∧ A)) → Color color leaf = Black color (node key ⟪ C , value ⟫ rb rb₁) = C black-depth : {n : Level} {A : Set n} → (tree : bt (Color ∧ A) ) → ℕ black-depth leaf = 0 black-depth (node key ⟪ Red , value ⟫ t t₁) = black-depth t ⊔ black-depth t₁ black-depth (node key ⟪ Black , value ⟫ t t₁) = suc (black-depth t ⊔ black-depth t₁ ) data RBtreeInvariant {n : Level} {A : Set n} : (tree : bt (Color ∧ A)) → Set n where rb-leaf : RBtreeInvariant leaf rb-single : (key : ℕ) → (value : A) → RBtreeInvariant (node key ⟪ Black , value ⟫ leaf leaf) rb-right-red : {key key₁ : ℕ} → {value value₁ : A} → {t t₁ : bt (Color ∧ A)} → key < key₁ → black-depth t ≡ black-depth t₁ → RBtreeInvariant (node key₁ ⟪ Black , value₁ ⟫ t t₁) → RBtreeInvariant (node key ⟪ Red , value ⟫ leaf (node key₁ ⟪ Black , value₁ ⟫ t t₁)) rb-right-black : {key key₁ : ℕ} → {value value₁ : A} → {t t₁ : bt (Color ∧ A)} → key < key₁ → {c : Color} → black-depth t ≡ black-depth t₁ → RBtreeInvariant (node key₁ ⟪ c , value₁ ⟫ t t₁) → RBtreeInvariant (node key ⟪ Black , value ⟫ leaf (node key₁ ⟪ c , value₁ ⟫ t t₁)) rb-left-red : {key key₁ : ℕ} → {value value₁ : A} → {t t₁ : bt (Color ∧ A)} → key < key₁ → black-depth t ≡ black-depth t₁ → RBtreeInvariant (node key₁ ⟪ Black , value₁ ⟫ t t₁) → RBtreeInvariant (node key ⟪ Red , value ⟫ (node key₁ ⟪ Black , value₁ ⟫ t t₁) leaf ) rb-left-black : {key key₁ : ℕ} → {value value₁ : A} → {t t₁ : bt (Color ∧ A)} → key < key₁ → {c : Color} → black-depth t ≡ black-depth t₁ → RBtreeInvariant (node key₁ ⟪ c , value₁ ⟫ t t₁) → RBtreeInvariant (node key ⟪ Black , value ⟫ (node key₁ ⟪ c , value₁ ⟫ t t₁) leaf) rb-node-red : {key key₁ key₂ : ℕ} → {value value₁ value₂ : A} → {t₁ t₂ t₃ t₄ : bt (Color ∧ A)} → key < key₁ → key₁ < key₂ → black-depth t₁ ≡ black-depth t₂ → RBtreeInvariant (node key ⟪ Black , value ⟫ t₁ t₂) → black-depth t₃ ≡ black-depth t₄ → RBtreeInvariant (node key₂ ⟪ Black , value₂ ⟫ t₃ t₄) → RBtreeInvariant (node key₁ ⟪ Red , value₁ ⟫ (node key ⟪ Black , value ⟫ t₁ t₂) (node key₂ ⟪ Black , value₂ ⟫ t₃ t₄)) rb-node-black : {key key₁ key₂ : ℕ} → {value value₁ value₂ : A} → {t₁ t₂ t₃ t₄ : bt (Color ∧ A)} → key < key₁ → key₁ < key₂ → {c c₁ : Color} → black-depth t₁ ≡ black-depth t₂ → RBtreeInvariant (node key ⟪ c , value ⟫ t₁ t₂) → black-depth t₃ ≡ black-depth t₄ → RBtreeInvariant (node key₂ ⟪ c₁ , value₂ ⟫ t₃ t₄) → RBtreeInvariant (node key₁ ⟪ Black , value₁ ⟫ (node key ⟪ c , value ⟫ t₁ t₂) (node key₂ ⟪ c₁ , value₂ ⟫ t₃ t₄)) data rotatedTree {n : Level} {A : Set n} : (before after : bt A) → Set n where rtt-node : {t : bt A } → rotatedTree t t -- a b -- b c d a -- d e e c -- rtt-right : {ka kb kc kd ke : ℕ} {va vb vc vd ve : A} → {c d e c1 d1 e1 : bt A} → {ctl ctr dtl dtr etl etr : bt A} --kd < kb < ke < ka< kc → {ctl1 ctr1 dtl1 dtr1 etl1 etr1 : bt A} → kd < kb → kb < ke → ke < ka → ka < kc → rotatedTree (node ke ve etl etr) (node ke ve etl1 etr1) → rotatedTree (node kd vd dtl dtr) (node kd vd dtl1 dtr1) → rotatedTree (node kc vc ctl ctr) (node kc vc ctl1 ctr1) → rotatedTree (node ka va (node kb vb (node kd vd dtl dtr) (node ke ve etl etr)) (node kc vc ctl ctr)) (node kb vb (node kd vd dtl1 dtr1) (node ka va (node ke ve etl1 etr1) (node kc vc ctl1 ctr1))) rtt-left : {ka kb kc kd ke : ℕ} {va vb vc vd ve : A} → {c d e c1 d1 e1 : bt A} → {ctl ctr dtl dtr etl etr : bt A} --kd < kb < ke < ka< kc → {ctl1 ctr1 dtl1 dtr1 etl1 etr1 : bt A} -- after child → kd < kb → kb < ke → ke < ka → ka < kc → rotatedTree (node ke ve etl etr) (node ke ve etl1 etr1) → rotatedTree (node kd vd dtl dtr) (node kd vd dtl1 dtr1) → rotatedTree (node kc vc ctl ctr) (node kc vc ctl1 ctr1) → rotatedTree (node kb vb (node kd vd dtl1 dtr1) (node ka va (node ke ve etl1 etr1) (node kc vc ctl1 ctr1))) (node ka va (node kb vb (node kd vd dtl dtr) (node ke ve etl etr)) (node kc vc ctl ctr)) RBtreeLeftDown : {n : Level} {A : Set n} {key : ℕ} {value : A} {c : Color} → (tleft tright : bt (Color ∧ A)) → RBtreeInvariant (node key ⟪ c , value ⟫ tleft tright) → RBtreeInvariant tleft RBtreeLeftDown leaf leaf (rb-single k1 v) = rb-leaf RBtreeLeftDown leaf (node key ⟪ Black , value ⟫ t1 t2 ) (rb-right-red x bde rbti) = rb-leaf RBtreeLeftDown leaf (node key ⟪ Black , value ⟫ t1 t2 ) (rb-right-black x bde rbti) = rb-leaf RBtreeLeftDown leaf (node key ⟪ Red , value ⟫ t1 t2 ) (rb-right-black x bde rbti)= rb-leaf RBtreeLeftDown (node key ⟪ Black , value ⟫ t t₁) leaf (rb-left-black x bde ti) = ti RBtreeLeftDown (node key ⟪ Black , value ⟫ t t₁) leaf (rb-left-red x bde ti)= ti RBtreeLeftDown (node key ⟪ Red , value ⟫ t t₁) leaf (rb-left-black x bde ti) = ti RBtreeLeftDown (node key ⟪ Black , value ⟫ t t₁) (node key₁ ⟪ Black , value1 ⟫ t1 t2) (rb-node-black x x1 bde1 til bde2 tir) = til RBtreeLeftDown (node key ⟪ Black , value ⟫ t t₁) (node key₁ ⟪ Black , value1 ⟫ t1 t2) (rb-node-red x x1 bde1 til bde2 tir) = til RBtreeLeftDown (node key ⟪ Red , value ⟫ t t₁) (node key₁ ⟪ Black , value1 ⟫ t1 t2) (rb-node-black x x1 bde1 til bde2 tir) = til RBtreeLeftDown (node key ⟪ Black , value ⟫ t t₁) (node key₁ ⟪ Red , value1 ⟫ t1 t2) (rb-node-black x x1 bde1 til bde2 tir) = til RBtreeLeftDown (node key ⟪ Red , value ⟫ t t₁) (node key₁ ⟪ Red , value1 ⟫ t1 t2) (rb-node-black x x1 bde1 til bde2 tir) = til RBtreeRightDown : {n : Level} {A : Set n} { key : ℕ} {value : A} {c : Color} → (tleft tright : bt (Color ∧ A)) → RBtreeInvariant (node key ⟪ c , value ⟫ tleft tright) → RBtreeInvariant tright RBtreeRightDown leaf leaf (rb-single k1 v1 ) = rb-leaf RBtreeRightDown leaf (node key ⟪ Black , value ⟫ t1 t2 ) (rb-right-red x bde rbti) = rbti RBtreeRightDown leaf (node key ⟪ Black , value ⟫ t1 t2 ) (rb-right-black x bde rbti) = rbti RBtreeRightDown leaf (node key ⟪ Red , value ⟫ t1 t2 ) (rb-right-black x bde rbti)= rbti RBtreeRightDown (node key ⟪ Black , value ⟫ t t₁) leaf (rb-left-black x bde ti) = rb-leaf RBtreeRightDown (node key ⟪ Black , value ⟫ t t₁) leaf (rb-left-red x bde ti) = rb-leaf RBtreeRightDown (node key ⟪ Red , value ⟫ t t₁) leaf (rb-left-black x bde ti) = rb-leaf RBtreeRightDown (node key ⟪ Black , value ⟫ t t₁) (node key₁ ⟪ Black , value1 ⟫ t1 t2) (rb-node-black x x1 bde1 til bde2 tir) = tir RBtreeRightDown (node key ⟪ Black , value ⟫ t t₁) (node key₁ ⟪ Black , value1 ⟫ t1 t2) (rb-node-red x x1 bde1 til bde2 tir) = tir RBtreeRightDown (node key ⟪ Red , value ⟫ t t₁) (node key₁ ⟪ Black , value1 ⟫ t1 t2) (rb-node-black x x1 bde1 til bde2 tir) = tir RBtreeRightDown (node key ⟪ Black , value ⟫ t t₁) (node key₁ ⟪ Red , value1 ⟫ t1 t2) (rb-node-black x x1 bde1 til bde2 tir) = tir RBtreeRightDown (node key ⟪ Red , value ⟫ t t₁) (node key₁ ⟪ Red , value1 ⟫ t1 t2) (rb-node-black x x1 bde1 til bde2 tir) = tir findRBT : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree tree0 : bt (Color ∧ A) ) → (stack : List (bt (Color ∧ A))) → treeInvariant tree ∧ stackInvariant key tree tree0 stack → RBtreeInvariant tree → (next : (tree1 : bt (Color ∧ A) ) → (stack : List (bt (Color ∧ A))) → treeInvariant tree1 ∧ stackInvariant key tree1 tree0 stack → RBtreeInvariant tree1 → bt-depth tree1 < bt-depth tree → t ) → (exit : (tree1 : bt (Color ∧ A)) → (stack : List (bt (Color ∧ A))) → treeInvariant tree1 ∧ stackInvariant key tree1 tree0 stack → RBtreeInvariant tree1 → (tree1 ≡ leaf ) ∨ ( node-key tree1 ≡ just key ) → t ) → t findRBT key leaf tree0 stack ti rb0 next exit = exit leaf stack ti rb0 (case1 refl) findRBT key n@(node key₁ value left right) tree0 stack ti rb0 next exit with <-cmp key key₁ findRBT key (node key₁ value left right) tree0 stack ti rb0 next exit | tri< a ¬b ¬c = next left (left ∷ stack) ⟪ treeLeftDown left right (_∧_.proj1 ti) , s-left a (_∧_.proj2 ti) ⟫ (RBtreeLeftDown left right rb0) depth-1< findRBT key n tree0 stack ti rb0 _ exit | tri≈ ¬a refl ¬c = exit n stack ti rb0 (case2 refl) findRBT key (node key₁ value left right) tree0 stack ti rb0 next exit | tri> ¬a ¬b c = next right (right ∷ stack) ⟪ treeRightDown left right (_∧_.proj1 ti), s-right c (_∧_.proj2 ti) ⟫ (RBtreeRightDown left right rb0) depth-2< child-replaced : {n : Level} {A : Set n} (key : ℕ) (tree : bt A) → bt A child-replaced key leaf = leaf child-replaced key (node key₁ value left right) with <-cmp key key₁ ... | tri< a ¬b ¬c = left ... | tri≈ ¬a b ¬c = node key₁ value left right ... | tri> ¬a ¬b c = right data replacedRBTree {n : Level} {A : Set n} (key : ℕ) (value : A) : (before after : bt (Color ∧ A) ) → Set n where rbr-leaf : {ca cb : Color} → replacedRBTree key value leaf (node key ⟪ cb , value ⟫ leaf leaf) rbr-node : {value₁ : A} → {ca cb : Color } → {t t₁ : bt (Color ∧ A)} → replacedRBTree key value (node key ⟪ ca , value₁ ⟫ t t₁) (node key ⟪ cb , value ⟫ t t₁) rbr-right : {k : ℕ } {v1 : A} → {ca cb : Color} → {t t1 t2 : bt (Color ∧ A)} → k < key → replacedRBTree key value t2 t → replacedRBTree key value (node k ⟪ ca , v1 ⟫ t1 t2) (node k ⟪ cb , v1 ⟫ t1 t) rbr-left : {k : ℕ } {v1 : A} → {ca cb : Color} → {t t1 t2 : bt (Color ∧ A)} → k < key → replacedRBTree key value t1 t → replacedRBTree key value (node k ⟪ ca , v1 ⟫ t1 t2) (node k ⟪ cb , v1 ⟫ t t2) data ParentGrand {n : Level} {A : Set n} (self : bt A) : (parent uncle grand : bt A) → Set n where s2-s1p2 : {kp kg : ℕ} {vp vg : A} → {n1 n2 : bt A} {parent grand : bt A } → parent ≡ node kp vp self n1 → grand ≡ node kg vg parent n2 → ParentGrand self parent n2 grand s2-1sp2 : {kp kg : ℕ} {vp vg : A} → {n1 n2 : bt A} {parent grand : bt A } → parent ≡ node kp vp n1 self → grand ≡ node kg vg parent n2 → ParentGrand self parent n2 grand s2-s12p : {kp kg : ℕ} {vp vg : A} → {n1 n2 : bt A} {parent grand : bt A } → parent ≡ node kp vp self n1 → grand ≡ node kg vg n2 parent → ParentGrand self parent n2 grand s2-1s2p : {kp kg : ℕ} {vp vg : A} → {n1 n2 : bt A} {parent grand : bt A } → parent ≡ node kp vp n1 self → grand ≡ node kg vg n2 parent → ParentGrand self parent n2 grand record PG {n : Level } (A : Set n) (self : bt A) (stack : List (bt A)) : Set n where field parent grand uncle : bt A pg : ParentGrand self parent uncle grand rest : List (bt A) stack=gp : stack ≡ ( self ∷ parent ∷ grand ∷ rest ) record RBI {n : Level} {A : Set n} (key : ℕ) (value : A) (orig repl : bt (Color ∧ A) ) (stack : List (bt (Color ∧ A))) : Set n where field od d rd : ℕ tree rot : bt (Color ∧ A) origti : treeInvariant orig origrb : RBtreeInvariant orig treerb : RBtreeInvariant tree replrb : RBtreeInvariant repl d=rd : ( d ≡ rd ) ∨ ((suc d ≡ rd ) ∧ (color tree ≡ Red)) si : stackInvariant key tree orig stack rotated : rotatedTree tree rot ri : replacedRBTree key value (child-replaced key rot ) repl rbi-case1 : {n : Level} {A : Set n} → {key : ℕ} → {value : A} → (parent repl : bt (Color ∧ A) ) → RBtreeInvariant parent → RBtreeInvariant repl → {left right : bt (Color ∧ A)} → parent ≡ node key ⟪ Black , value ⟫ left right → (color right ≡ Red → RBtreeInvariant (node key ⟪ Black , value ⟫ left repl ) ) ∧ (color left ≡ Red → RBtreeInvariant (node key ⟪ Black , value ⟫ repl right ) ) rbi-case1 {n} {A} {key} parent repl rbtip rbtir x = ⟪ {!!} , {!!} ⟫ blackdepth≡ : {n : Level } {A : Set n} → {C : Color} {key : ℕ} {value : A} → (tree1 tree2 : bt (Color ∧ A)) → RBtreeInvariant tree1 → RBtreeInvariant tree2 → RBtreeInvariant (node key ⟪ C , value ⟫ tree1 tree2) → black-depth tree1 ≡ black-depth tree2 blackdepth≡ leaf leaf ri1 ri2 rip = refl blackdepth≡ leaf (node key value t2 t3) ri1 ri2 rip = {!!} --rip kara mitibiki daseru RBinvariant kara toreruka blackdepth≡ (node key value t1 t3) leaf ri1 ri2 rip = {!!} blackdepth≡ (node key value t1 t3) (node key₁ value₁ t2 t4) ri1 ri2 rip = {!!} {- rbi-case1 : {n : Level} {A : Set n} → {key : ℕ} → {value : A} → (parent repl : bt (Color ∧ A) ) → RBtreeInvariant parent → RBtreeInvariant repl → (left right : bt (Color ∧ A)) → parent ≡ node key ⟪ Black , value ⟫ left right → RBtreeInvariant left → RBtreeInvariant right → (color right ≡ Red → RBtreeInvariant (node key ⟪ Black , value ⟫ left repl ) ) ∧ (color left ≡ Red → RBtreeInvariant (node key ⟪ Black , value ⟫ repl right ) ) rbi-case1 {n} {A} {key} (node key1 ⟪ Black , value1 ⟫ l r) leaf rbip rbir (node key3 ⟪ Red , val3 ⟫ la ra) (node key4-- ⟪ Red , val4 ⟫ lb rb) pa li ri = {!!} -}