Mercurial > hg > Gears > GearsAgda
view hoareBinaryTree.agda @ 591:8ab2e2f9469f
use <=
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 06 Dec 2019 17:48:18 +0900 |
parents | 7c424dd0945d |
children | 7fb57243a8c9 |
line wrap: on
line source
module hoareBinaryTree where open import Level renaming (zero to Z ; suc to succ) open import Data.Nat hiding (compare) open import Data.Nat.Properties as NatProp open import Data.Maybe -- open import Data.Maybe.Properties open import Data.Empty open import Data.List open import Data.Product open import Function as F hiding (const) open import Relation.Binary open import Relation.Binary.PropositionalEquality open import Relation.Nullary open import logic SingleLinkedStack = List emptySingleLinkedStack : {n : Level } {Data : Set n} -> SingleLinkedStack Data emptySingleLinkedStack = [] clearSingleLinkedStack : {n m : Level } {Data : Set n} {t : Set m} -> SingleLinkedStack Data → ( SingleLinkedStack Data → t) → t clearSingleLinkedStack [] cg = cg [] clearSingleLinkedStack (x ∷ as) cg = cg [] pushSingleLinkedStack : {n m : Level } {t : Set m } {Data : Set n} -> List Data -> Data -> (Code : SingleLinkedStack Data -> t) -> t pushSingleLinkedStack stack datum next = next ( datum ∷ stack ) popSingleLinkedStack : {n m : Level } {t : Set m } {a : Set n} -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> t) -> t popSingleLinkedStack [] cs = cs [] nothing popSingleLinkedStack (data1 ∷ s) cs = cs s (just data1) emptySigmaStack : {n : Level } { Data : Set n} → List Data emptySigmaStack = [] pushSigmaStack : {n m : Level} {d d2 : Set n} {t : Set m} → d2 → List d → (List (d × d2) → t) → t pushSigmaStack {n} {m} {d} d2 st next = next (Data.List.zip (st) (d2 ∷ []) ) tt = pushSigmaStack 3 (true ∷ []) (λ st → st) _iso_ : {n : Level} {a : Set n} → ℕ → ℕ → Set d iso d' = (¬ (suc d ≤ d')) ∧ (¬ (suc d' ≤ d)) iso-intro : {n : Level} {a : Set n} {x y : ℕ} → ¬ (suc x ≤ y) → ¬ (suc y ≤ x) → _iso_ {n} {a} x y iso-intro = λ z z₁ → record { proj1 = z ; proj2 = z₁ } {-- data A B : C → D → Set where の A B と C → D の差は? --} data bt {n : Level} {a : Set n} : Set n where -- (a : Setn) bt-leaf : ⦃ l u : ℕ ⦄ → l ≤ u → bt bt-node : ⦃ l l' u u' : ℕ ⦄ → (d : ℕ) → bt {n} {a} → bt {n} {a} → l ≤ l' → u' ≤ u → bt -- -- -- no children , having left node , having right node , having both -- data bt' {n : Level} (A : Set n) : (key : ℕ) → Set n where -- (a : Setn) bt'-leaf : (key : ℕ) → bt' A key bt'-node : { l r : ℕ } → (key : ℕ) → (value : A) → bt' {n} A l → bt' {n} A r → l ≤ key → key ≤ r → bt' A key data bt'-path {n : Level} (A : Set n) : Set n where -- (a : Setn) bt'-left : (key : ℕ) → {left-key : ℕ} → (bt' A left-key ) → (key ≤ left-key) → bt'-path A bt'-right : (key : ℕ) → {right-key : ℕ} → (bt' A right-key ) → (right-key ≤ key) → bt'-path A test = bt'-left {Z} {ℕ} 3 {5} (bt'-leaf 5) (s≤s (s≤s (s≤s {!!}))) bt-find' : {n m : Level} {A : Set n} {t : Set m} {tn : ℕ} → (key : ℕ) → (tree : bt' A tn ) → List (bt'-path A ) → ( {key1 : ℕ } → bt' A key1 → List (bt'-path A ) → t ) → t bt-find' key tr@(bt'-leaf key₁) stack next = next tr stack -- no key found bt-find' key (bt'-node key₁ value tree tree₁ x x₁) stack next with <-cmp key key₁ bt-find' key tr@(bt'-node {l} {r} key₁ value tree tree₁ x x₁) stack next | tri< a ¬b ¬c = bt-find' key tree ( (bt'-left key {key₁} tr {!!} ) ∷ stack) next bt-find' key found@(bt'-node key₁ value tree tree₁ x x₁) stack next | tri≈ ¬a b ¬c = next found stack bt-find' key tr@(bt'-node key₁ value tree tree₁ x x₁) stack next | tri> ¬a ¬b c = bt-find' key tree ( (bt'-right key {key₁} tr {!!} ) ∷ stack) next a<sa : { a : ℕ } → a < suc a a<sa {zero} = s≤s z≤n a<sa {suc a} = s≤s a<sa pa<a : { a : ℕ } → pred (suc a) < suc a pa<a {zero} = s≤s z≤n pa<a {suc a} = s≤s pa<a bt-replace' : {n m : Level} {A : Set n} {t : Set m} {tn : ℕ} → (key : ℕ) → (value : A ) → (tree : bt' A tn ) → List (bt'-path A ) → ( {key1 : ℕ } → bt' A key1 → t ) → t bt-replace' {n} {m} {A} {t} {tn} key value node stack next = bt-replace1 tn node where bt-replace0 : {tn : ℕ } (node : bt' A tn ) → List (bt'-path A ) → t bt-replace0 node [] = next node bt-replace0 node (bt'-left key x x₁ ∷ stack) = {!!} bt-replace0 node (bt'-right key x x₁ ∷ stack) = {!!} bt-replace1 : (tn : ℕ ) (tree : bt' A tn ) → t bt-replace1 tn (bt'-leaf key0) = bt-replace0 (bt'-node tn value (bt'-leaf (pred tn)) (bt'-leaf (suc tn) ){!!} {!!}) stack bt-replace1 tn (bt'-node key value node node₁ x x₁) = bt-replace0 (bt'-node key value node node₁ x x₁) stack bt-find'-assert1 : {n m : Level} {A : Set n} {t : Set m} → Set n bt-find'-assert1 {n} {m} {A} {t} = (key : ℕ) → (val : A) → bt-find' key {!!} {!!} (λ tree stack → {!!}) -- find'-support : {n m : Level} {a : Set n} {t : Set m} ⦃ l u : ℕ ⦄ → (d : ℕ) → (tree : bt' {n} {a} ) → SingleLinkedStack (bt' {n} {a} ) → ( (bt' {n} {a} ) → SingleLinkedStack (bt' {n} {a} ) → Maybe (Σ ℕ (λ d' → _iso_ {n} {a} d d')) → t ) → t -- find'-support {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ key leaf@(bt'-leaf x) st cg = cg leaf st nothing -- find'-support {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ key (bt'-node d tree₁ tree₂ x x₁) st cg with <-cmp key d -- find'-support {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ key node@(bt'-node d tree₁ tree₂ x x₁) st cg | tri≈ ¬a b ¬c = cg node st (just (d , iso-intro {n} {a} ¬a ¬c)) -- find'-support {n} {m} {a} {t} key node@(bt'-node ⦃ nl ⦄ ⦃ l' ⦄ ⦃ nu ⦄ ⦃ u' ⦄ d L R x x₁) st cg | tri< a₁ ¬b ¬c = -- pushSingleLinkedStack st node -- (λ st2 → find'-support {n} {m} {a} {t} {{l'}} {{d}} key L st2 cg) -- find'-support {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ key node@(bt'-node ⦃ ll ⦄ ⦃ ll' ⦄ ⦃ lr ⦄ ⦃ lr' ⦄ d L R x x₁) st cg | tri> ¬a ¬b c = pushSingleLinkedStack st node -- (λ st2 → find'-support {n} {m} {a} {t} {{d}} {{lr'}} key R st2 cg) lleaf : {n : Level} {a : Set n} → bt {n} {a} lleaf = (bt-leaf ⦃ 0 ⦄ ⦃ 3 ⦄ z≤n) lleaf1 : {n : Level} {A : Set n} → (0 < 3) → (a : A) → (d : ℕ ) → bt' {n} A d lleaf1 0<3 a d = bt'-leaf d test-node1 : bt' ℕ 3 test-node1 = bt'-node (3) 3 (bt'-leaf 2) (bt'-leaf 4) (s≤s (s≤s {!!})) (s≤s (s≤s (s≤s {!!}))) rleaf : {n : Level} {a : Set n} → bt {n} {a} rleaf = (bt-leaf ⦃ 3 ⦄ ⦃ 3 ⦄ (s≤s (s≤s (s≤s z≤n)))) test-node : {n : Level} {a : Set n} → bt {n} {a} test-node {n} {a} = (bt-node ⦃ 0 ⦄ ⦃ 0 ⦄ ⦃ 4 ⦄ ⦃ 4 ⦄ 3 lleaf rleaf z≤n ≤-refl ) -- stt : {n m : Level} {a : Set n} {t : Set m} → {!!} -- stt {n} {m} {a} {t} = pushSingleLinkedStack [] (test-node ) (λ st → pushSingleLinkedStack st lleaf (λ st2 → st2) ) -- search の {{ l }} {{ u }} はその時みている node の 大小。 l が小さく u が大きい -- ここでは d が現在の node のkey値なので比較後のsearch では値が変わる bt-search : {n m : Level} {a : Set n} {t : Set m} ⦃ l u : ℕ ⦄ → (d : ℕ) → bt {n} {a} → (Maybe (Σ ℕ (λ d' → _iso_ {n} {a} d d')) → t ) → t bt-search {n} {m} {a} {t} key (bt-leaf x) cg = cg nothing bt-search {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ key (bt-node ⦃ ll ⦄ ⦃ l' ⦄ ⦃ uu ⦄ ⦃ u' ⦄ d L R x x₁) cg with <-cmp key d bt-search {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ key (bt-node ⦃ ll ⦄ ⦃ l' ⦄ ⦃ uu ⦄ ⦃ u' ⦄ d L R x x₁) cg | tri< a₁ ¬b ¬c = bt-search ⦃ l' ⦄ ⦃ d ⦄ key L cg bt-search {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ key (bt-node ⦃ ll ⦄ ⦃ l' ⦄ ⦃ uu ⦄ ⦃ u' ⦄ d L R x x₁) cg | tri≈ ¬a b ¬c = cg (just (d , iso-intro {n} {a} ¬a ¬c)) bt-search {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ key (bt-node ⦃ ll ⦄ ⦃ l' ⦄ ⦃ uu ⦄ ⦃ u' ⦄ d L R x x₁) cg | tri> ¬a ¬b c = bt-search ⦃ d ⦄ ⦃ u' ⦄ key R cg -- bt-search {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ key (bt-node ⦃ l ⦄ ⦃ l' ⦄ ⦃ u ⦄ ⦃ u' ⦄ d L R x x₁) cg | tri< a₁ ¬b ¬c = ? -- bt-search ⦃ l' ⦄ ⦃ d ⦄ key L cg -- bt-search {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ key (bt-node d L R x x₁) cg | tri≈ ¬a b ¬c = cg (just (d , iso-intro {n} {a} ¬a ¬c)) -- bt-search {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ key (bt-node ⦃ l ⦄ ⦃ l' ⦄ ⦃ u ⦄ ⦃ u' ⦄ d L R x x₁) cg | tri> ¬a ¬b c = bt-search ⦃ d ⦄ ⦃ u' ⦄ key R cg -- この辺の test を書くときは型を考えるのがやや面倒なので先に動作を書いてから型を ? から補間するとよさそう bt-search-test : {n m : Level} {a : Set n} {t : Set m} ⦃ l u : ℕ ⦄ → (x : (x₁ : Maybe (Σ ℕ (λ z → ((x₂ : 4 ≤ z) → ⊥) ∧ ((x₂ : suc z ≤ 3) → ⊥)))) → t) → t bt-search-test {n} {m} {a} {t} = bt-search {n} {m} {a} {t} ⦃ zero ⦄ ⦃ 4 ⦄ 3 test-node bt-search-test-bad : {n m : Level} {a : Set n} {t : Set m} ⦃ l u : ℕ ⦄ → (x : (x₁ : Maybe (Σ ℕ (λ z → ((x₂ : 8 ≤ z) → ⊥) ∧ ((x₂ : suc z ≤ 7) → ⊥)))) → t) → t bt-search-test-bad {n} {m} {a} {t} = bt-search {n} {m} {a} {t} ⦃ zero ⦄ ⦃ 4 ⦄ 7 test-node -- up-some : {n m : Level} {a : Set n} {t : Set m} ⦃ l u : ℕ ⦄ {d : ℕ} → (Maybe (Σ ℕ (λ d' → _iso_ {n} {a} d d'))) → (Maybe ℕ) -- up-some (just (fst , snd)) = just fst -- up-some nothing = nothing search-lem : {n m : Level} {a : Set n} {t : Set m} ⦃ l u : ℕ ⦄ → (key : ℕ) → (tree : bt {n} {a} ) → bt-search ⦃ l ⦄ ⦃ u ⦄ key tree (λ gdata → gdata ≡ gdata) search-lem {n} {m} {a} {t} key (bt-leaf x) = refl search-lem {n} {m} {a} {t} key (bt-node d tree₁ tree₂ x x₁) with <-cmp key d search-lem {n} {m} {a} {t} key (bt-node ⦃ ll ⦄ ⦃ ll' ⦄ ⦃ lr ⦄ ⦃ lr' ⦄ d tree₁ tree₂ x x₁) | tri< lt ¬eq ¬gt = search-lem {n} {m} {a} {t} ⦃ ll' ⦄ ⦃ d ⦄ key tree₁ search-lem {n} {m} {a} {t} key (bt-node d tree₁ tree₂ x x₁) | tri≈ ¬lt eq ¬gt = refl search-lem {n} {m} {a} {t} key (bt-node ⦃ ll ⦄ ⦃ ll' ⦄ ⦃ lr ⦄ ⦃ lr' ⦄ d tree₁ tree₂ x x₁) | tri> ¬lt ¬eq gt = search-lem {n} {m} {a} {t} ⦃ d ⦄ ⦃ lr' ⦄ key tree₂ -- bt-find find-support : {n m : Level} {a : Set n} {t : Set m} ⦃ l u : ℕ ⦄ → (d : ℕ) → (tree : bt {n} {a} ) → SingleLinkedStack (bt {n} {a} ) → ( (bt {n} {a} ) → SingleLinkedStack (bt {n} {a} ) → Maybe (Σ ℕ (λ d' → _iso_ {n} {a} d d')) → t ) → t find-support {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ key leaf@(bt-leaf x) st cg = cg leaf st nothing find-support {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ key (bt-node d tree₁ tree₂ x x₁) st cg with <-cmp key d find-support {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ key node@(bt-node d tree₁ tree₂ x x₁) st cg | tri≈ ¬a b ¬c = cg node st (just (d , iso-intro {n} {a} ¬a ¬c)) find-support {n} {m} {a} {t} key node@(bt-node ⦃ nl ⦄ ⦃ l' ⦄ ⦃ nu ⦄ ⦃ u' ⦄ d L R x x₁) st cg | tri< a₁ ¬b ¬c = pushSingleLinkedStack st node (λ st2 → find-support {n} {m} {a} {t} {{l'}} {{d}} key L st2 cg) find-support {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ key node@(bt-node ⦃ ll ⦄ ⦃ ll' ⦄ ⦃ lr ⦄ ⦃ lr' ⦄ d L R x x₁) st cg | tri> ¬a ¬b c = pushSingleLinkedStack st node (λ st2 → find-support {n} {m} {a} {t} {{d}} {{lr'}} key R st2 cg) bt-find : {n m : Level} {a : Set n} {t : Set m} ⦃ l u : ℕ ⦄ → (d : ℕ) → (tree : bt {n} {a} ) → SingleLinkedStack (bt {n} {a} ) → ( (bt {n} {a} ) → SingleLinkedStack (bt {n} {a} ) → Maybe (Σ ℕ (λ d' → _iso_ {n} {a} d d')) → t ) → t bt-find {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ key tr st cg = clearSingleLinkedStack st (λ cst → find-support ⦃ l ⦄ ⦃ u ⦄ key tr cst cg) find-test : {n m : Level} {a : Set n} {t : Set m} ⦃ l u : ℕ ⦄ → List bt -- ? find-test {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ = bt-find {n} {_} {a} ⦃ l ⦄ ⦃ u ⦄ 3 test-node [] (λ tt st ad → st) {-- result λ {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ → bt-node 3 (bt-leaf z≤n) (bt-leaf (s≤s (s≤s (s≤s z≤n)))) z≤n (s≤s (s≤s (s≤s (s≤s z≤n)))) ∷ [] --} find-lem : {n m : Level} {a : Set n} {t : Set m} ⦃ l u : ℕ ⦄ → (d : ℕ) → (tree : bt {n} {a}) → (st : List (bt {n} {a})) → find-support {{l}} {{u}} d tree st (λ ta st ad → ta ≡ ta) find-lem d (bt-leaf x) st = refl find-lem d (bt-node d₁ tree tree₁ x x₁) st with <-cmp d d₁ find-lem d (bt-node d₁ tree tree₁ x x₁) st | tri≈ ¬a b ¬c = refl find-lem d (bt-node d₁ tree tree₁ x x₁) st | tri< a ¬b ¬c with tri< a ¬b ¬c find-lem {n} {m} {a} {t} {{l}} {{u}} d (bt-node d₁ tree tree₁ x x₁) st | tri< lt ¬b ¬c | tri< a₁ ¬b₁ ¬c₁ = find-lem {n} {m} {a} {t} {{l}} {{u}} d tree {!!} find-lem d (bt-node d₁ tree tree₁ x x₁) st | tri< a ¬b ¬c | tri≈ ¬a b ¬c₁ = {!!} find-lem d (bt-node d₁ tree tree₁ x x₁) st | tri< a ¬b ¬c | tri> ¬a ¬b₁ c = {!!} find-lem d (bt-node d₁ tree tree₁ x x₁) st | tri> ¬a ¬b c = {!!} bt-singleton :{n m : Level} {a : Set n} {t : Set m} ⦃ l u : ℕ ⦄ → (d : ℕ) → ( (bt {n} {a} ) → t ) → t bt-singleton {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ d cg = cg (bt-node ⦃ 0 ⦄ ⦃ 0 ⦄ ⦃ d ⦄ ⦃ d ⦄ d (bt-leaf ⦃ 0 ⦄ ⦃ d ⦄ z≤n ) (bt-leaf ⦃ d ⦄ ⦃ d ⦄ ≤-refl) z≤n ≤-refl) singleton-test : {n m : Level} {a : Set n} {t : Set m} ⦃ l u : ℕ ⦄ → bt -- ? singleton-test {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ = bt-singleton {n} {_} {a} ⦃ l ⦄ ⦃ u ⦄ 10 λ x → x replace-helper : {n m : Level} {a : Set n} {t : Set m} ⦃ l u : ℕ ⦄ → (tree : bt {n} {a} ) → SingleLinkedStack (bt {n} {a} ) → ( (bt {n} {a} ) → t ) → t replace-helper {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ tree [] cg = cg tree replace-helper {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ tree@(bt-node d L R x₁ x₂) (bt-leaf x ∷ st) cg = replace-helper ⦃ l ⦄ ⦃ u ⦄ tree st cg -- Unknown Case replace-helper {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ (bt-node d tree tree₁ x₁ x₂) (bt-node d₁ x x₃ x₄ x₅ ∷ st) cg with <-cmp d d₁ replace-helper {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ subt@(bt-node d tree tree₁ x₁ x₂) (bt-node d₁ x x₃ x₄ x₅ ∷ st) cg | tri< a₁ ¬b ¬c = replace-helper ⦃ l ⦄ ⦃ u ⦄ (bt-node d₁ subt x₃ x₄ x₅) st cg replace-helper {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ subt@(bt-node d tree tree₁ x₁ x₂) (bt-node d₁ x x₃ x₄ x₅ ∷ st) cg | tri≈ ¬a b ¬c = replace-helper ⦃ l ⦄ ⦃ u ⦄ (bt-node d₁ subt x₃ x₄ x₅) st cg replace-helper {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ subt@(bt-node d tree tree₁ x₁ x₂) (bt-node d₁ x x₃ x₄ x₅ ∷ st) cg | tri> ¬a ¬b c = replace-helper ⦃ l ⦄ ⦃ u ⦄ (bt-node d₁ x₃ subt x₄ x₅) st cg replace-helper {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ tree (x ∷ st) cg = replace-helper ⦃ l ⦄ ⦃ u ⦄ tree st cg -- Unknown Case bt-replace : {n m : Level} {a : Set n} {t : Set m} ⦃ l u : ℕ ⦄ → (d : ℕ) → (bt {n} {a} ) → SingleLinkedStack (bt {n} {a} ) → Maybe (Σ ℕ (λ d' → _iso_ {n} {a} d d')) → ( (bt {n} {a} ) → t ) → t bt-replace {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ d tree st eqP cg = replace-helper {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ ((bt-node ⦃ 0 ⦄ ⦃ 0 ⦄ ⦃ d ⦄ ⦃ d ⦄ d (bt-leaf ⦃ 0 ⦄ ⦃ d ⦄ z≤n ) (bt-leaf ⦃ d ⦄ ⦃ d ⦄ ≤-refl) z≤n ≤-refl)) st cg -- 証明に insert がはいっててほしい bt-insert : {n m : Level} {a : Set n} {t : Set m} ⦃ l u : ℕ ⦄ → (d : ℕ) → (tree : bt {n} {a}) → ((bt {n} {a}) → t) → t bt-insert {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ d tree cg = bt-find {n} {_} {a} ⦃ l ⦄ ⦃ u ⦄ d tree [] (λ tt st ad → bt-replace ⦃ l ⦄ ⦃ u ⦄ d tt st ad cg ) pickKey : {n m : Level} {a : Set n} {t : Set m} ⦃ l u : ℕ ⦄ → (tree : bt {n} {a}) → Maybe ℕ pickKey (bt-leaf x) = nothing pickKey (bt-node d tree tree₁ x x₁) = just d insert-test : {n m : Level} {a : Set n} {t : Set m} ⦃ l u : ℕ ⦄ → bt -- ? insert-test {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ = bt-insert {n} {_} {a} ⦃ l ⦄ ⦃ u ⦄ 1 test-node λ x → x insert-test-l : {n m : Level} {a : Set n} {t : Set m} ⦃ l u : ℕ ⦄ → bt -- ? insert-test-l {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ = bt-insert {n} {_} {a} ⦃ l ⦄ ⦃ u ⦄ 1 (lleaf) λ x → x insert-lem : {n m : Level} {a : Set n} {t : Set m} ⦃ l u : ℕ ⦄ → (d : ℕ) → (tree : bt {n} {a}) → bt-insert {n} {_} {a} ⦃ l ⦄ ⦃ u ⦄ d tree (λ tree1 → bt-find ⦃ l ⦄ ⦃ u ⦄ d tree1 [] (λ tt st ad → (pickKey {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ tt) ≡ just d ) ) insert-lem d (bt-leaf x) with <-cmp d d -- bt-insert d (bt-leaf x) (λ tree1 → {!!}) insert-lem d (bt-leaf x) | tri< a ¬b ¬c = ⊥-elim (¬b refl) insert-lem d (bt-leaf x) | tri≈ ¬a b ¬c = refl insert-lem d (bt-leaf x) | tri> ¬a ¬b c = ⊥-elim (¬b refl) insert-lem d (bt-node d₁ tree tree₁ x x₁) with <-cmp d d₁ -- bt-insert d (bt-node d₁ tree tree₁ x x₁) (λ tree1 → {!!}) insert-lem d (bt-node d₁ tree tree₁ x x₁) | tri≈ ¬a b ¬c with <-cmp d d insert-lem d (bt-node d₁ tree tree₁ x x₁) | tri≈ ¬a b ¬c | tri< a ¬b ¬c₁ = ⊥-elim (¬b refl) insert-lem d (bt-node d₁ tree tree₁ x x₁) | tri≈ ¬a b ¬c | tri≈ ¬a₁ b₁ ¬c₁ = refl insert-lem d (bt-node d₁ tree tree₁ x x₁) | tri≈ ¬a b ¬c | tri> ¬a₁ ¬b c = ⊥-elim (¬b refl) insert-lem d (bt-node d₁ tree tree₁ x x₁) | tri< a ¬b ¬c = {!!} where lem-helper : find-support ⦃ {!!} ⦄ ⦃ {!!} ⦄ d tree (bt-node d₁ tree tree₁ x x₁ ∷ []) (λ tt₁ st ad → replace-helper ⦃ {!!} ⦄ ⦃ {!!} ⦄ (bt-node ⦃ {!!} ⦄ ⦃ {!!} ⦄ ⦃ {!!} ⦄ ⦃ {!!} ⦄ d (bt-leaf ⦃ 0 ⦄ ⦃ d ⦄ z≤n) (bt-leaf ⦃ {!!} ⦄ ⦃ {!!} ⦄ (≤-reflexive refl)) z≤n (≤-reflexive refl)) st (λ tree1 → find-support ⦃ {!!} ⦄ ⦃ {!!} ⦄ d tree1 [] (λ tt₂ st₁ ad₁ → pickKey {{!!}} {{!!}} {{!!}} {{!!}} ⦃ {!!} ⦄ ⦃ {!!} ⦄ tt₂ ≡ just d))) lem-helper = {!!} insert-lem d (bt-node d₁ tree tree₁ x x₁) | tri> ¬a ¬b c = {!!}