module RedBlackTree where open import Level hiding (zero) open import Data.Nat hiding (compare) open import Data.Nat.Properties as NatProp open import Data.Maybe open import Data.Bool open import Data.Empty open import Relation.Binary open import Relation.Binary.PropositionalEquality open import stack record TreeMethods {n m : Level } {a : Set n } {t : Set m } (treeImpl : Set n ) : Set (m Level.⊔ n) where field putImpl : treeImpl → a → (treeImpl → t) → t getImpl : treeImpl → (treeImpl → Maybe a → t) → t open TreeMethods record Tree {n m : Level } {a : Set n } {t : Set m } (treeImpl : Set n ) : Set (m Level.⊔ n) where field tree : treeImpl treeMethods : TreeMethods {n} {m} {a} {t} treeImpl putTree : a → (Tree treeImpl → t) → t putTree d next = putImpl (treeMethods ) tree d (\t1 → next (record {tree = t1 ; treeMethods = treeMethods} )) getTree : (Tree treeImpl → Maybe a → t) → t getTree next = getImpl (treeMethods ) tree (\t1 d → next (record {tree = t1 ; treeMethods = treeMethods} ) d ) open Tree data Color {n : Level } : Set n where Red : Color Black : Color record Node {n : Level } (a : Set n) (k : ℕ) : Set n where inductive field key : ℕ value : a right : Maybe (Node a k) left : Maybe (Node a k) color : Color {n} open Node record RedBlackTree {n m : Level } {t : Set m} (a : Set n) (k : ℕ) : Set (m Level.⊔ n) where field root : Maybe (Node a k) nodeStack : SingleLinkedStack (Node a k) -- compare : k → k → Tri A B C open RedBlackTree open SingleLinkedStack compTri : ( x y : ℕ ) -> Tri ( x < y ) ( x ≡ y ) ( x > y ) compTri = IsStrictTotalOrder.compare (Relation.Binary.StrictTotalOrder.isStrictTotalOrder <-strictTotalOrder) where open import Relation.Binary -- put new node at parent node, and rebuild tree to the top -- {-# TERMINATING #-} -- https://agda.readthedocs.io/en/v2.5.3/language/termination-checking.html replaceNode : {n m : Level } {t : Set m } {a : Set n} {k : ℕ} → RedBlackTree {n} {m} {t} a k → SingleLinkedStack (Node a k) → Node a k → (RedBlackTree {n} {m} {t} a k → t) → t replaceNode {n} {m} {t} {a} {k} tree s n0 next = popSingleLinkedStack s ( \s parent → replaceNode1 s parent) module ReplaceNode where replaceNode1 : SingleLinkedStack (Node a k) → Maybe ( Node a k ) → t replaceNode1 s nothing = next ( record tree { root = just (record n0 { color = Black}) } ) replaceNode1 s (just n1) with compTri (key n1) (key n0) replaceNode1 s (just n1) | tri< lt ¬eq ¬gt = replaceNode {n} {m} {t} {a} {k} tree s ( record n1 { value = value n0 ; left = left n0 ; right = right n0 } ) next replaceNode1 s (just n1) | tri≈ ¬lt eq ¬gt = replaceNode {n} {m} {t} {a} {k} tree s ( record n1 { left = just n0 } ) next replaceNode1 s (just n1) | tri> ¬lt ¬eq gt = replaceNode {n} {m} {t} {a} {k} tree s ( record n1 { right = just n0 } ) next rotateRight : {n m : Level } {t : Set m } {a : Set n} {k : ℕ} → RedBlackTree {n} {m} {t} a k → SingleLinkedStack (Node a k) → Maybe (Node a k) → Maybe (Node a k) → (RedBlackTree {n} {m} {t} a k → SingleLinkedStack (Node a k) → Maybe (Node a k) → Maybe (Node a k) → t) → t rotateRight {n} {m} {t} {a} {k} tree s n0 parent rotateNext = getSingleLinkedStack s (\ s n0 → rotateRight1 {n} {m} {t} {a} {k} tree s n0 parent rotateNext) where rotateRight1 : {n m : Level } {t : Set m } {a : Set n} {k : ℕ} → RedBlackTree {n} {m} {t} a k → SingleLinkedStack (Node a k) → Maybe (Node a k) → Maybe (Node a k) → (RedBlackTree {n} {m} {t} a k → SingleLinkedStack (Node a k) → Maybe (Node a k) → Maybe (Node a k) → t) → t rotateRight1 {n} {m} {t} {a} {k} tree s n0 parent rotateNext with n0 ... | nothing = rotateNext tree s nothing n0 ... | just n1 with parent ... | nothing = rotateNext tree s (just n1 ) n0 ... | just parent1 with left parent1 ... | nothing = rotateNext tree s (just n1) nothing ... | just leftParent with compTri (key n1) (key leftParent) rotateRight1 {n} {m} {t} {a} {k} tree s n0 parent rotateNext | just n1 | just parent1 | just leftParent | tri< a₁ ¬b ¬c = rotateNext tree s (just n1) parent rotateRight1 {n} {m} {t} {a} {k} tree s n0 parent rotateNext | just n1 | just parent1 | just leftParent | tri≈ ¬a b ¬c = rotateNext tree s (just n1) parent rotateRight1 {n} {m} {t} {a} {k} tree s n0 parent rotateNext | just n1 | just parent1 | just leftParent | tri> ¬a ¬b c = rotateNext tree s (just n1) parent rotateLeft : {n m : Level } {t : Set m } {a : Set n} {k : ℕ} → RedBlackTree {n} {m} {t} a k → SingleLinkedStack (Node a k) → Maybe (Node a k) → Maybe (Node a k) → (RedBlackTree {n} {m} {t} a k → SingleLinkedStack (Node a k) → Maybe (Node a k) → Maybe (Node a k) → t) → t rotateLeft {n} {m} {t} {a} {k} tree s n0 parent rotateNext = getSingleLinkedStack s (\ s n0 → rotateLeft1 tree s n0 parent rotateNext) where rotateLeft1 : {n m : Level } {t : Set m } {a : Set n} {k : ℕ} → RedBlackTree {n} {m} {t} a k → SingleLinkedStack (Node a k) → Maybe (Node a k) → Maybe (Node a k) → (RedBlackTree {n} {m} {t} a k → SingleLinkedStack (Node a k) → Maybe (Node a k) → Maybe (Node a k) → t) → t rotateLeft1 {n} {m} {t} {a} {k} tree s n0 parent rotateNext with n0 ... | nothing = rotateNext tree s nothing n0 ... | just n1 with parent ... | nothing = rotateNext tree s (just n1) nothing ... | just parent1 with right parent1 ... | nothing = rotateNext tree s (just n1) nothing ... | just rightParent with compTri (key n1) (key rightParent) rotateLeft1 {n} {m} {t} {a} {k} tree s n0 parent rotateNext | just n1 | just parent1 | just rightParent | tri< a₁ ¬b ¬c = rotateNext tree s (just n1) parent rotateLeft1 {n} {m} {t} {a} {k} tree s n0 parent rotateNext | just n1 | just parent1 | just rightParent | tri≈ ¬a b ¬c = rotateNext tree s (just n1) parent rotateLeft1 {n} {m} {t} {a} {k} tree s n0 parent rotateNext | just n1 | just parent1 | just rightParent | tri> ¬a ¬b c = rotateNext tree s (just n1) parent -- ... | EQ = rotateNext tree s (just n1) parent -- ... | _ = rotateNext tree s (just n1) parent {-# TERMINATING #-} insertCase5 : {n m : Level } {t : Set m } {a : Set n} {k : ℕ} → RedBlackTree {n} {m} {t} a k → SingleLinkedStack (Node a k) → Maybe (Node a k) → Node a k → Node a k → (RedBlackTree {n} {m} {t} a k → t) → t insertCase5 {n} {m} {t} {a} {k} tree s n0 parent grandParent next = pop2SingleLinkedStack s (\ s parent grandParent → insertCase51 tree s n0 parent grandParent next) where insertCase51 : {n m : Level } {t : Set m } {a : Set n} {k : ℕ} → RedBlackTree {n} {m} {t} a k → SingleLinkedStack (Node a k) → Maybe (Node a k) → Maybe (Node a k) → Maybe (Node a k) → (RedBlackTree {n} {m} {t} a k → t) → t insertCase51 {n} {m} {t} {a} {k} tree s n0 parent grandParent next with n0 ... | nothing = next tree ... | just n1 with parent | grandParent ... | nothing | _ = next tree ... | _ | nothing = next tree ... | just parent1 | just grandParent1 with left parent1 | left grandParent1 ... | nothing | _ = next tree ... | _ | nothing = next tree ... | just leftParent1 | just leftGrandParent1 with compTri (key n1) (key leftParent1) | compTri (key leftParent1) (key leftGrandParent1) ... | tri≈ ¬a b ¬c | tri≈ ¬a1 b1 ¬c1 = rotateRight tree s n0 parent (\ tree s n0 parent → insertCase5 tree s n0 parent1 grandParent1 next) ... | _ | _ = rotateLeft tree s n0 parent (\ tree s n0 parent → insertCase5 tree s n0 parent1 grandParent1 next) -- ... | EQ | EQ = rotateRight tree s n0 parent (\ tree s n0 parent → insertCase5 tree s n0 parent1 grandParent1 next) -- ... | _ | _ = rotateLeft tree s n0 parent (\ tree s n0 parent → insertCase5 tree s n0 parent1 grandParent1 next) insertCase4 : {n m : Level } {t : Set m } {a : Set n} {k : ℕ} → RedBlackTree {n} {m} {t} a k → SingleLinkedStack (Node a k) → Node a k → Node a k → Node a k → (RedBlackTree {n} {m} {t} a k → t) → t insertCase4 {n} {m} {t} {a} {k} tree s n0 parent grandParent next with (right parent) | (left grandParent) ... | nothing | _ = insertCase5 tree s (just n0) parent grandParent next ... | _ | nothing = insertCase5 tree s (just n0) parent grandParent next ... | just rightParent | just leftGrandParent with compTri (key n0) (key rightParent) | compTri (key parent) (key leftGrandParent) -- (key n0) (key rightParent) | (key parent) (key leftGrandParent) -- ... | EQ | EQ = popSingleLinkedStack s (\ s n1 → rotateLeft tree s (left n0) (just grandParent) -- (\ tree s n0 parent → insertCase5 tree s n0 rightParent grandParent next)) -- ... | _ | _ = insertCase41 tree s n0 parent grandParent next ... | tri≈ ¬a b ¬c | tri≈ ¬a1 b1 ¬c1 = popSingleLinkedStack s (\ s n1 → rotateLeft tree s (left n0) (just grandParent) (\ tree s n0 parent → insertCase5 tree s n0 rightParent grandParent next)) ... | _ | _ = insertCase41 tree s n0 parent grandParent next where insertCase41 : {n m : Level } {t : Set m } {a : Set n} {k : ℕ} → RedBlackTree {n} {m} {t} a k → SingleLinkedStack (Node a k) → Node a k → Node a k → Node a k → (RedBlackTree {n} {m} {t} a k → t) → t insertCase41 {n} {m} {t} {a} {k} tree s n0 parent grandParent next with (left parent) | (right grandParent) ... | nothing | _ = insertCase5 tree s (just n0) parent grandParent next ... | _ | nothing = insertCase5 tree s (just n0) parent grandParent next ... | just leftParent | just rightGrandParent with compTri (key n0) (key leftParent) | compTri (key parent) (key rightGrandParent) ... | tri≈ ¬a b ¬c | tri≈ ¬a1 b1 ¬c1 = popSingleLinkedStack s (\ s n1 → rotateRight tree s (right n0) (just grandParent) (\ tree s n0 parent → insertCase5 tree s n0 leftParent grandParent next)) ... | _ | _ = insertCase5 tree s (just n0) parent grandParent next -- ... | EQ | EQ = popSingleLinkedStack s (\ s n1 → rotateRight tree s (right n0) (just grandParent) -- (\ tree s n0 parent → insertCase5 tree s n0 leftParent grandParent next)) -- ... | _ | _ = insertCase5 tree s (just n0) parent grandParent next colorNode : {n : Level } {a : Set n} {k : ℕ} → Node a k → Color → Node a k colorNode old c = record old { color = c } {-# TERMINATING #-} insertNode : {n m : Level } {t : Set m } {a : Set n} {k : ℕ} → RedBlackTree {n} {m} {t} a k → SingleLinkedStack (Node a k) → Node a k → (RedBlackTree {n} {m} {t} a k → t) → t insertNode {n} {m} {t} {a} {k} tree s n0 next = get2SingleLinkedStack s (insertCase1 n0) where insertCase1 : Node a k → SingleLinkedStack (Node a k) → Maybe (Node a k) → Maybe (Node a k) → t -- placed here to allow mutual recursion -- http://agda.readthedocs.io/en/v2.5.2/language/mutual-recursion.html insertCase3 : SingleLinkedStack (Node a k) → Node a k → Node a k → Node a k → t insertCase3 s n0 parent grandParent with left grandParent | right grandParent ... | nothing | nothing = insertCase4 tree s n0 parent grandParent next ... | nothing | just uncle = insertCase4 tree s n0 parent grandParent next ... | just uncle | _ with compTri ( key uncle ) ( key parent ) insertCase3 s n0 parent grandParent | just uncle | _ | tri≈ ¬a b ¬c = insertCase4 tree s n0 parent grandParent next insertCase3 s n0 parent grandParent | just uncle | _ | tri< a ¬b ¬c with color uncle insertCase3 s n0 parent grandParent | just uncle | _ | tri< a ¬b ¬c | Red = pop2SingleLinkedStack s ( \s p0 p1 → insertCase1 ( record grandParent { color = Red ; left = just ( record parent { color = Black } ) ; right = just ( record uncle { color = Black } ) }) s p0 p1 ) insertCase3 s n0 parent grandParent | just uncle | _ | tri< a ¬b ¬c | Black = insertCase4 tree s n0 parent grandParent next insertCase3 s n0 parent grandParent | just uncle | _ | tri> ¬a ¬b c with color uncle insertCase3 s n0 parent grandParent | just uncle | _ | tri> ¬a ¬b c | Red = pop2SingleLinkedStack s ( \s p0 p1 → insertCase1 ( record grandParent { color = Red ; left = just ( record parent { color = Black } ) ; right = just ( record uncle { color = Black } ) }) s p0 p1 ) insertCase3 s n0 parent grandParent | just uncle | _ | tri> ¬a ¬b c | Black = insertCase4 tree s n0 parent grandParent next -- ... | EQ = insertCase4 tree s n0 parent grandParent next -- ... | _ with color uncle -- ... | Red = pop2SingleLinkedStack s ( \s p0 p1 → insertCase1 ( -- record grandParent { color = Red ; left = just ( record parent { color = Black } ) ; right = just ( record uncle { color = Black } ) }) s p0 p1 ) -- ... | Black = insertCase4 tree s n0 parent grandParent next --!! insertCase2 : SingleLinkedStack (Node a k) → Node a k → Node a k → Node a k → t insertCase2 s n0 parent grandParent with color parent ... | Black = replaceNode tree s n0 next ... | Red = insertCase3 s n0 parent grandParent insertCase1 n0 s nothing nothing = next tree insertCase1 n0 s nothing (just grandParent) = next tree insertCase1 n0 s (just parent) nothing = replaceNode tree s (colorNode n0 Black) next insertCase1 n0 s (just parent) (just grandParent) = insertCase2 s n0 parent grandParent ---- -- find node potition to insert or to delete, the path will be in the stack -- findNode : {n m : Level } {a : Set n} {k : ℕ} {t : Set m} → RedBlackTree {n} {m} {t} a k → SingleLinkedStack (Node a k) → (Node a k) → (Node a k) → (RedBlackTree {n} {m} {t} a k → SingleLinkedStack (Node a k) → Node a k → t) → t findNode {n} {m} {a} {k} {t} tree s n0 n1 next = pushSingleLinkedStack s n1 (\ s → findNode1 s n1) module FindNode where findNode2 : SingleLinkedStack (Node a k) → (Maybe (Node a k)) → t findNode2 s nothing = next tree s n0 findNode2 s (just n) = findNode tree s n0 n next findNode1 : SingleLinkedStack (Node a k) → (Node a k) → t findNode1 s n1 with (compTri (key n0) (key n1)) findNode1 s n1 | tri< a ¬b ¬c = popSingleLinkedStack s ( \s _ → next tree s (record n1 { key = key n1 ; value = value n0 } ) ) findNode1 s n1 | tri≈ ¬a b ¬c = findNode2 s (right n1) findNode1 s n1 | tri> ¬a ¬b c = findNode2 s (left n1) -- ... | EQ = popSingleLinkedStack s ( \s _ → next tree s (record n1 { key = key n1 ; value = value n0 } ) ) -- ... | GT = findNode2 s (right n1) -- ... | LT = findNode2 s (left n1) leafNode : {n : Level } { a : Set n } → a → (k : ℕ) → (Node a k) leafNode v k1 = record { key = k1 ; value = v ; right = nothing ; left = nothing ; color = Red } putRedBlackTree : {n m : Level} {t : Set m} {a : Set n} {k : ℕ} → RedBlackTree {n} {m} {t} a k → ℕ → ℕ → (RedBlackTree {n} {m} {t} a k → t) → t putRedBlackTree {n} {m} {t} {a} {k} tree val k1 next with (root tree) putRedBlackTree {n} {m} {t} {a} {k} tree val k1 next | nothing = next (record tree {root = just (leafNode val k1) }) putRedBlackTree {n} {m} {t} {a} {k} tree val k1 next | just n2 = clearSingleLinkedStack (nodeStack tree) (λ s → findNode tree s (leafNode {!!} {!!}) n2 (λ tree1 s n1 → insertNode tree1 s n1 next)) -- putRedBlackTree {n} {m} {t} {a} {k} tree value k1 next with (root tree) -- ... | nothing = next (record tree {root = just (leafNode k1 value) }) -- ... | just n2 = clearSingleLinkedStack (nodeStack tree) (\ s → findNode tree s (leafNode k1 value) n2 (\ tree1 s n1 → insertNode tree1 s n1 next)) -- getRedBlackTree : {n m : Level } {t : Set m} {a : Set n} {k : ℕ} → RedBlackTree {n} {m} {t} {A} a k → k → (RedBlackTree {n} {m} {t} {A} a k → (Maybe (Node a k)) → t) → t -- getRedBlackTree {_} {_} {t} {a} {k} tree k1 cs = checkNode (root tree) -- module GetRedBlackTree where -- http://agda.readthedocs.io/en/v2.5.2/language/let-and-where.html -- search : Node a k → t -- checkNode : Maybe (Node a k) → t -- checkNode nothing = cs tree nothing -- checkNode (just n) = search n -- search n with compTri k1 (key n) -- search n | tri< a ¬b ¬c = checkNode (left n) -- search n | tri≈ ¬a b ¬c = cs tree (just n) -- search n | tri> ¬a ¬b c = checkNode (right n) -- compareT : {A B C : Set } → ℕ → ℕ → Tri A B C -- compareT x y with IsStrictTotalOrder.compare (Relation.Binary.StrictTotalOrder.isStrictTotalOrder <-strictTotalOrder) x y -- compareT x y | tri< a ¬b ¬c = tri< {!!} {!!} {!!} -- compareT x y | tri≈ ¬a b ¬c = {!!} -- compareT x y | tri> ¬a ¬b c = {!!} -- -- ... | tri≈ a b c = {!!} -- -- ... | tri< a b c = {!!} -- -- ... | tri> a b c = {!!} -- compare2 : (x y : ℕ ) → CompareResult {Level.zero} -- compare2 zero zero = EQ -- compare2 (suc _) zero = GT -- compare2 zero (suc _) = LT -- compare2 (suc x) (suc y) = compare2 x y -- -- putUnblanceTree : {n m : Level } {a : Set n} {k : ℕ} {t : Set m} → RedBlackTree {n} {m} {t} {A} a k → k → a → (RedBlackTree {n} {m} {t} {A} a k → t) → t -- -- putUnblanceTree {n} {m} {A} {a} {k} {t} tree k1 value next with (root tree) -- -- ... | nothing = next (record tree {root = just (leafNode k1 value) }) -- -- ... | just n2 = clearSingleLinkedStack (nodeStack tree) (λ s → findNode tree s (leafNode k1 value) n2 (λ tree1 s n1 → replaceNode tree1 s n1 next)) -- -- checkT : {m : Level } (n : Maybe (Node ℕ ℕ)) → ℕ → Bool -- -- checkT nothing _ = false -- -- checkT (just n) x with compTri (value n) x -- -- ... | tri≈ _ _ _ = true -- -- ... | _ = false -- -- checkEQ : {m : Level } ( x : ℕ ) -> ( n : Node ℕ ℕ ) -> (value n ) ≡ x -> checkT {m} (just n) x ≡ true -- -- checkEQ x n refl with compTri (value n) x -- -- ... | tri≈ _ refl _ = refl -- -- ... | tri> _ neq gt = ⊥-elim (neq refl) -- -- ... | tri< lt neq _ = ⊥-elim (neq refl) createEmptyRedBlackTreeℕ : {n m : Level} {t : Set m} (a : Set n) (b : ℕ) → RedBlackTree {n} {m} {t} a b createEmptyRedBlackTreeℕ a b = record { root = nothing ; nodeStack = emptySingleLinkedStack -- ; nodeComp = λ x x₁ → {!!} } -- ( x y : ℕ ) -> Tri ( x < y ) ( x ≡ y ) ( x > y ) -- test = (λ x → (createEmptyRedBlackTreeℕ x x) -- ts = createEmptyRedBlackTreeℕ {ℕ} {?} {!!} 0 -- tes = putRedBlackTree {_} {_} {_} (createEmptyRedBlackTreeℕ {_} {_} {_} 3 3) 2 2 (λ t → t)