Mercurial > hg > Gears > GearsAgda
changeset 670:0022b7ce7c16
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 22 Nov 2021 21:59:06 +0900 |
parents | 077e2f3e417f |
children | b5fde9727830 |
files | hoareBinaryTree.agda |
diffstat | 1 files changed, 13 insertions(+), 10 deletions(-) [+] |
line wrap: on
line diff
--- a/hoareBinaryTree.agda Mon Nov 22 19:23:20 2021 +0900 +++ b/hoareBinaryTree.agda Mon Nov 22 21:59:06 2021 +0900 @@ -108,7 +108,7 @@ -- stack always contains original top at end -- data stackInvariant {n : Level} {A : Set n} (key : ℕ) : (top orig : bt A) → (stack : List (bt A)) → Set n where - s-single : {tree0 : bt A} → stackInvariant key tree0 tree0 (tree0 ∷ []) + s-single : {tree0 : bt A} → ¬ ( tree0 ≡ leaf ) → stackInvariant key tree0 tree0 (tree0 ∷ []) s-right : {tree tree0 tree₁ : bt A} → {key₁ : ℕ } → {v1 : A } → {st : List (bt A)} → key₁ < key → stackInvariant key (node key₁ v1 tree₁ tree) tree0 st → stackInvariant key tree tree0 (tree ∷ st) s-left : {tree₁ tree0 tree : bt A} → {key₁ : ℕ } → {v1 : A } → {st : List (bt A)} @@ -123,7 +123,7 @@ → k > key → replacedTree key value t1 t2 → replacedTree key value (node k v1 t1 t) (node k v1 t2 t) replFromStack : {n : Level} {A : Set n} {key : ℕ} {top orig : bt A} → {stack : List (bt A)} → stackInvariant key top orig stack → bt A -replFromStack (s-single {tree} ) = tree +replFromStack (s-single {tree} _ ) = tree replFromStack (s-right {tree} x st) = tree replFromStack (s-left {tree} x st) = tree @@ -150,22 +150,22 @@ stack-last (x ∷ s) = stack-last s stackInvariantTest1 : stackInvariant 4 treeTest2 treeTest1 ( treeTest2 ∷ treeTest1 ∷ [] ) -stackInvariantTest1 = s-right (add< 2) s-single +stackInvariantTest1 = s-right (add< 2) (s-single (λ ())) si-property0 : {n : Level} {A : Set n} {key : ℕ} {tree tree0 : bt A} → {stack : List (bt A)} → stackInvariant key tree tree0 stack → ¬ ( stack ≡ [] ) -si-property0 s-single () +si-property0 (s-single _ ) () si-property0 (s-right x si) () si-property0 (s-left x si) () si-property1 : {n : Level} {A : Set n} {key : ℕ} {tree tree0 tree1 : bt A} → {stack : List (bt A)} → stackInvariant key tree tree0 (tree1 ∷ stack) → tree1 ≡ tree -si-property1 s-single = refl +si-property1 (s-single _ ) = refl si-property1 (s-right _ si) = refl si-property1 (s-left _ si) = refl si-property-last : {n : Level} {A : Set n} (key : ℕ) (tree tree0 : bt A) → (stack : List (bt A)) → stackInvariant key tree tree0 stack → stack-last stack ≡ just tree0 -si-property-last key t t0 (t ∷ []) s-single = refl +si-property-last key t t0 (t ∷ []) (s-single _) = refl si-property-last key t t0 (.t ∷ x ∷ st) (s-right _ si ) with si-property1 si ... | refl = si-property-last key x t0 (x ∷ st) si si-property-last key t t0 (.t ∷ x ∷ st) (s-left _ si ) with si-property1 si @@ -185,7 +185,7 @@ stackTreeInvariant : {n : Level} {A : Set n} (key : ℕ) (sub tree : bt A) → (stack : List (bt A)) → treeInvariant tree → stackInvariant key sub tree stack → treeInvariant sub -stackTreeInvariant {_} {A} key sub tree (sub ∷ []) ti s-single = ti +stackTreeInvariant {_} {A} key sub tree (sub ∷ []) ti (s-single _) = ti stackTreeInvariant {_} {A} key sub tree (sub ∷ st) ti (s-right _ si ) = ti-right (si1 si) where si1 : {tree₁ : bt A} → {key₁ : ℕ} → {v1 : A} → stackInvariant key (node key₁ v1 tree₁ sub ) tree st → treeInvariant (node key₁ v1 tree₁ sub ) si1 {tree₁ } {key₁ } {v1 } si = stackTreeInvariant key (node key₁ v1 tree₁ sub ) tree st ti si @@ -276,9 +276,12 @@ replaceP key value {tree0} {tree} repl (leaf ∷ []) Pre next exit with si-property-last _ _ _ _ (proj1 (proj2 Pre)) -- tree0 ≡ leaf ... | refl = exit tree0 (node key value leaf leaf) ⟪ proj1 Pre , r-leaf ⟫ replaceP key value {tree0} {tree} repl (node key₁ value₁ left right ∷ []) Pre next exit with <-cmp key key₁ -... | tri< a ¬b ¬c = exit tree0 (node key₁ value₁ tree right ) ⟪ proj1 Pre , {!!} ⟫ -... | tri≈ ¬a b ¬c = exit tree0 (node key₁ value left right ) ⟪ proj1 Pre , {!!} ⟫ -... | tri> ¬a ¬b c = exit tree0 (node key₁ value₁ left tree ) ⟪ proj1 Pre , {!!} ⟫ +... | tri< a ¬b ¬c = exit tree0 (node key₁ value₁ repl right ) ⟪ proj1 Pre , subst (λ k → replacedTree key value k _ ) repl01 (r-left a (proj2 (proj2 Pre))) ⟫ where + repl01 : node key₁ value₁ tree right ≡ tree0 + repl01 with si-property-last _ _ _ _ (proj1 (proj2 Pre)) + ... | refl = {!!} +... | tri≈ ¬a b ¬c = exit tree0 (node key₁ value left right ) ⟪ proj1 Pre , {!!} ⟫ -- can't happen +... | tri> ¬a ¬b c = exit tree0 (node key₁ value₁ left repl ) ⟪ proj1 Pre , {!!} ⟫ replaceP {n} {_} {A} key value {tree0} {tree} repl (leaf ∷ st@(x ∷ xs)) Pre next exit = {!!} -- can't happen replaceP key value {tree0} {tree} repl (node key₁ value₁ left right ∷ st@(_ ∷ _)) Pre next exit with <-cmp key key₁ ... | tri< a ¬b ¬c = next key value {tree0} (node key₁ value₁ tree right ) st ⟪ proj1 Pre , ⟪ {!!} , subst (λ k → replacedTree key value k _ ) {!!} {!!} ⟫ ⟫ ≤-refl