Mercurial > hg > Gears > GearsAgda
changeset 685:01c16d4d6d8c
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 30 Nov 2021 05:52:13 +0900 |
parents | 33bd83e5168f |
children | 4efb74d28d6a |
files | hoareBinaryTree.agda |
diffstat | 1 files changed, 14 insertions(+), 6 deletions(-) [+] |
line wrap: on
line diff
--- a/hoareBinaryTree.agda Mon Nov 29 23:12:56 2021 +0900 +++ b/hoareBinaryTree.agda Tue Nov 30 05:52:13 2021 +0900 @@ -296,9 +296,9 @@ replaceP {n} {_} {A} key value {tree} repl (node key₁ value₁ left right ∷ st@(tree1 ∷ st1)) Pre next exit with <-cmp key key₁ ... | tri< a ¬b ¬c = next key value (node key₁ value₁ repl right ) st Post ≤-refl where Post : replacePR key value tree1 (node key₁ value₁ repl right ) st (λ _ _ _ → Lift n ⊤) - Post with replacePR.si Pre - ... | s-left x t = {!!} -- can't happen - ... | s-right {_} {_} {tree₁} {key₂} {v1} lt si = record { tree0 = replacePR.tree0 Pre ; ti = replacePR.ti Pre ; si = repl10 ; ri = repl11 ; ci = lift tt } where + Post with replacePR.si Pre | inspect replacePR.si Pre + ... | s-left x t | record { eq = eq} = {!!} -- can't happen + ... | s-right {_} {_} {tree₁} {key₂} {v1} lt si | record { eq = refl } = record { tree0 = replacePR.tree0 Pre ; ti = replacePR.ti Pre ; si = repl10 ; ri = repl11 ; ci = lift tt } where repl09 : tree1 ≡ node key₂ v1 tree₁ (node key₁ value₁ left right) repl09 = si-property1 si repl10 : stackInvariant key tree1 (replacePR.tree0 Pre) (tree1 ∷ st1) @@ -306,15 +306,23 @@ ... | refl = si repl03 : s-right {_} {_} {_} {_} {_} {tree₁} {key₂} {v1} lt si ≡ replacePR.si Pre → child-replaced key value (node key₁ value₁ left right ∷ tree1 ∷ st1) (node key₁ value₁ left right) (replacePR.tree0 Pre) (replacePR.si Pre) ≡ left - repl03 = {!!} - repl04 : (si : stackInvariant key tree1 (replacePR.tree0 Pre) (tree1 ∷ st1) ) → child-replaced key value (tree1 ∷ st1) tree1 (replacePR.tree0 Pre) si ≡ node key₁ value₁ left right - repl04 = {!!} + repl03 refl = refl + repl04 : (si : stackInvariant key tree1 (replacePR.tree0 Pre) (tree1 ∷ st1) ) + → tree1 ≡ node key₂ v1 tree₁ (node key₁ value₁ left right) → child-replaced key value (tree1 ∷ st1) tree1 (replacePR.tree0 Pre) si ≡ node key₁ value₁ left right + repl04 s-single refl = {!!} + repl04 (s-right lt2 si2) refl = {!!} + repl04 (s-left lt2 si2) refl = refl repl07 : (si : stackInvariant key tree1 (replacePR.tree0 Pre) (tree1 ∷ st1) ) → node key₁ value₁ (child-replaced key value (node key₁ value₁ left right ∷ tree1 ∷ st1) (node key₁ value₁ left right) (replacePR.tree0 Pre) (replacePR.si Pre)) right ≡ child-replaced key value (tree1 ∷ st1) tree1 (replacePR.tree0 Pre) si repl07 = {!!} repl11 : replacedTree key value (child-replaced key value (tree1 ∷ st1) tree1 (replacePR.tree0 Pre) repl10 ) (node key₁ value₁ repl right) repl11 = subst (λ k → replacedTree key value k (node key₁ value₁ repl right)) (repl07 repl10) ( r-left a (replacePR.ri Pre)) + repl12 : replacedTree key value (child-replaced key value (tree1 ∷ st1) tree1 (replacePR.tree0 Pre) repl10 ) (node key₁ value₁ repl right) + repl12 with repl09 | repl10 + ... | refl | s-single = {!!} + ... | refl | s-right lt2 si2 = {!!} + ... | refl | s-left lt2 si2 = r-left a (subst (λ k → replacedTree key value k repl ) (repl03 refl) (replacePR.ri Pre)) ... | tri≈ ¬a b ¬c = next key value {{!!}} (node key₁ value left right ) st {!!} ≤-refl -- can't happen ... | tri> ¬a ¬b c = next key value {{!!}} (node key₁ value₁ left tree ) st {!!} ≤-refl