Mercurial > hg > Gears > GearsAgda
changeset 825:02f431665ebc
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 29 Jan 2024 11:42:39 +0900 |
parents | 7d73749f097e |
children | cfdb145f1581 |
files | hoareBinaryTree1.agda |
diffstat | 1 files changed, 37 insertions(+), 9 deletions(-) [+] |
line wrap: on
line diff
--- a/hoareBinaryTree1.agda Sun Jan 28 12:19:45 2024 +0900 +++ b/hoareBinaryTree1.agda Mon Jan 29 11:42:39 2024 +0900 @@ -41,6 +41,8 @@ open import Data.Unit hiding ( _≟_ ) -- ; _≤?_ ; _≤_) +-- +-- data treeInvariant {n : Level} {A : Set n} : (tree : bt A) → Set n where t-leaf : treeInvariant leaf t-single : (key : ℕ) → (value : A) → treeInvariant (node key value leaf leaf) @@ -54,6 +56,30 @@ → treeInvariant (node key₁ value₁ (node key value t₁ t₂) (node key₂ value₂ t₃ t₄)) -- +-- treeInvraiant is not enough to show that a tree is sorted +-- +max-key-in-left : {n : Level} {A : Set n} → (key : ℕ) → bt A → ℕ +max-key-in-left {_} {A} key tr = ? + +min-key-in-right : {n : Level} {A : Set n} → (key : ℕ) → bt A → ℕ +min-key-in-right {_} {A} key tr = ? + +data treeInvariantSorted {n : Level} {A : Set n} : (tree : bt A) → Set n where + st-leaf : treeInvariantSorted leaf + st-single : (key : ℕ) → (value : A) → treeInvariantSorted (node key value leaf leaf) + st-right : {key key₁ : ℕ} → {value value₁ : A} → {t₁ t₂ : bt A} → key < key₁ → treeInvariantSorted (node key₁ value₁ t₁ t₂) + → treeInvariantSorted (node key value leaf (node key₁ value₁ t₁ t₂)) + st-left : {key key₁ : ℕ} → {value value₁ : A} → {t₁ t₂ : bt A} → key < key₁ → treeInvariantSorted (node key value t₁ t₂) + → treeInvariantSorted (node key₁ value₁ (node key value t₁ t₂) leaf ) + st-node : {key key₁ key₂ : ℕ} → {value value₁ value₂ : A} → {left right : bt A} + → (tl : treeInvariantSorted left ) + → (tr : treeInvariantSorted right ) + → max-key-in-left key left < key → key < min-key-in-right key right + → treeInvariantSorted (node key value₁ left right) + + + +-- -- stack always contains original top at end (path of the tree) -- data stackInvariant {n : Level} {A : Set n} (key : ℕ) : (top orig : bt A) → (stack : List (bt A)) → Set n where @@ -122,6 +148,17 @@ si-property-last key t t0 (.t ∷ x ∷ st) (s-left _ _ _ _ si ) with si-property1 si ... | refl = si-property-last key x t0 (x ∷ st) si +Diffkey : {n : Level} (A : Set n) (tree0 : bt A) → (key : ℕ) → (tree : bt A) → (stack : List (bt A)) → (si : stackInvariant key tree tree0 stack) → Set +Diffkey A leaf key .leaf .(leaf ∷ []) s-nil = ? +Diffkey A (node key₁ value tree0 tree1) key .(node key₁ value tree0 tree1) .(node key₁ value tree0 tree1 ∷ []) s-nil = ? +Diffkey A tree0 key leaf .(leaf ∷ _) (s-right .leaf .tree0 tree₁ x si) = ? +Diffkey A tree0 key (node key₁ value tree tree₂) .(node key₁ value tree tree₂ ∷ _) (s-right .(node key₁ value tree tree₂) .tree0 tree₁ x si) = ? +Diffkey A tree0 key tree .(tree ∷ _) (s-left .tree .tree0 tree₁ x si) = ? + +si-property-ne : {n : Level} {A : Set n} (key : ℕ) (tree tree0 : bt A) → (stack : List (bt A)) → stackInvariant key tree tree0 stack + → length stack > 1 → ¬ ( node-key tree ≡ just key ) +si-property-ne = ? + rt-property1 : {n : Level} {A : Set n} (key : ℕ) (value : A) (tree tree1 : bt A ) → replacedTree key value tree tree1 → ¬ ( tree1 ≡ leaf ) rt-property1 {n} {A} key value .leaf .(node key value leaf leaf) r-leaf () rt-property1 {n} {A} key value .(node key _ _ _) .(node key value _ _) r-node () @@ -868,15 +905,6 @@ ... | s2-s12p refl refl = ⟪ (λ () ) , ( λ () ) ⟫ ... | s2-1s2p refl refl = ⟪ (λ () ) , ( λ () ) ⟫ -pg-prop-2 : {n : Level} (A : Set n) → (tree orig : bt A ) → {key : ℕ } - → (stack : List (bt A)) → (si : stackInvariant key tree orig stack) → (pg : PG A tree stack) - → ¬ (node-key (PG.parent pg) ≡ node-key tree) -pg-prop-2 {_} A tree orig stack si pg with PG.pg pg | PG.stack=gp pg -... | s2-s1p2 x x₁ | t = ? -... | s2-1sp2 x x₁ | t = ? -... | s2-s12p x x₁ | t = ? -... | s2-1s2p x x₁ | t = ? - -- PGtoRBinvariant : {n : Level} {A : Set n} → {key d0 ds dp dg : ℕ } → (tree orig : bt (Color ∧ A) ) -- → RBtreeInvariant orig -- → (stack : List (bt (Color ∧ A))) → (pg : PG (Color ∧ A) tree stack )