Mercurial > hg > Gears > GearsAgda
changeset 614:0c174b6239a0
connected
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 05 Nov 2021 13:50:21 +0900 |
parents | eeb9eb38e5e2 |
children | 83e595bba219 |
files | hoareBinaryTree.agda |
diffstat | 1 files changed, 12 insertions(+), 9 deletions(-) [+] |
line wrap: on
line diff
--- a/hoareBinaryTree.agda Fri Nov 05 12:58:24 2021 +0900 +++ b/hoareBinaryTree.agda Fri Nov 05 13:50:21 2021 +0900 @@ -119,14 +119,14 @@ replaceP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → (tree repl : bt A) → (stack : List (bt A)) → treeInvariant tree ∧ stackInvariant tree stack ∧ replacedTree key value tree repl - → (next : ℕ → A → (tree1 : bt A) → (stack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant tree1 stack ∧ replacedTree key value tree tree1 → bt-depth tree1 < bt-depth tree → t ) + → (next : ℕ → A → (tree1 repl : bt A) → (stack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant tree1 stack ∧ replacedTree key value tree1 repl → bt-depth tree1 < bt-depth tree → t ) → (exit : (tree1 repl : bt A) → treeInvariant tree1 ∧ replacedTree key value tree1 repl → t) → t replaceP key value tree repl [] Pre next exit = exit tree repl {!!} -replaceP key value tree repl (leaf ∷ st) Pre next exit = next key value tree st {!!} {!!} +replaceP key value tree repl (leaf ∷ st) Pre next exit = next key value tree {!!} st {!!} {!!} replaceP key value tree repl (node key₁ value₁ left right ∷ st) Pre next exit with <-cmp key key₁ -... | tri< a ¬b ¬c = next key value (node key₁ value₁ tree right ) st {!!} {!!} -... | tri≈ ¬a b ¬c = next key value (node key₁ value left right ) st {!!} {!!} -... | tri> ¬a ¬b c = next key value (node key₁ value₁ left tree ) st {!!} {!!} +... | tri< a ¬b ¬c = next key value (node key₁ value₁ tree right ) {!!} st {!!} {!!} +... | tri≈ ¬a b ¬c = next key value (node key₁ value left right ) {!!} st {!!} {!!} +... | tri> ¬a ¬b c = next key value (node key₁ value₁ left tree ) {!!} st {!!} {!!} open import Relation.Binary.Definitions @@ -152,16 +152,19 @@ open _∧_ + insertTreeP : {n m : Level} {A : Set n} {t : Set m} → (tree : bt A) → (key : ℕ) → (value : A) → treeInvariant tree → (exit : (tree repl : bt A) → treeInvariant tree ∧ replacedTree key value tree repl → t ) → t insertTreeP {n} {m} {A} {t} tree key value P exit = TerminatingLoopS (bt A ∧ List (bt A) ) {λ p → treeInvariant (proj1 p) ∧ stackInvariant (proj1 p) (proj2 p) } (λ p → bt-depth (proj1 p)) ⟪ tree , [] ⟫ ⟪ P , lift tt ⟫ $ λ p P loop → findP key (proj1 p) (proj2 p) P (λ t s P1 lt → loop ⟪ t , s ⟫ P1 lt ) $ λ t s P → replaceNodeP key value t (proj1 P) - $ λ t1 P1 R → TerminatingLoopS (bt A ∧ List (bt A) ∧ replacedTree key value t t1 ) - {λ p → treeInvariant (proj1 p) ∧ stackInvariant (proj1 p) (proj1 (proj2 p)) ∧ replacedTree key value (proj1 p) {!!} } - (λ p → bt-depth (proj1 p)) ⟪ t , ⟪ s , {!!} ⟫ ⟫ ⟪ proj1 P , ⟪ proj2 P , {!!} ⟫ ⟫ - $ λ p P1 loop → {!!} -- replaceP key value (proj1 p) t1 (proj1 (proj2 p)) ? -- (λ k v t s s1 P2 P3 lt → loop ⟪ t , ⟪ s , ? ⟫ ⟫ ? lt ) exit + $ λ t1 P1 R → TerminatingLoopS (List (bt A) ∧ (bt A ∧ bt A )) + {λ p → treeInvariant (proj1 (proj2 p)) ∧ stackInvariant (proj1 (proj2 p)) (proj1 p) ∧ replacedTree key value (proj1 (proj2 p)) (proj2 (proj2 p)) } + (λ p → bt-depth (proj1 (proj2 p))) ⟪ s , ⟪ t , t1 ⟫ ⟫ ⟪ proj1 P , ⟪ proj2 P , R ⟫ ⟫ + $ λ p P1 loop → replaceP key value (proj1 (proj2 p)) (proj2 (proj2 p)) (proj1 p) P1 + (λ key value tree1 repl1 stack P2 lt → loop ⟪ stack , ⟪ tree1 , repl1 ⟫ ⟫ P2 lt ) exit + top-value : {n : Level} {A : Set n} → (tree : bt A) → Maybe A top-value leaf = nothing top-value (node key value tree tree₁) = just value